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A Proof of approximation theorem

Note that throughout the paper, we can assume without loss of generality that D = 0 (the zero
matrix) for any LDS we wish to approximate. When this is not the case, we simply add an autore-
gressive component with delay zero P0, which increases the norm of the pseudo-LDS by an additive
RΘ. Also, we use ι to denote the imaginary unit (as opposed to index i).

A.1 Warm-up: Simple autoregressive model

As a warm-up, we first establish rigorous regret bounds for an autoregressive model, depending on
properties of the the minimal polynomial of the linear dynamical system. Next we will see how
introducing wavefilters can improve these bounds.
Theorem 1. Consider a noiseless LDS Θ = (A,B,C, h0 = 0), where A = ΨΛΨ−1 is diagonal-
izable with spectral radius ≤ 1. Let p(x) be a monic polynomial of degree τ such that p(A) = 0.1

Suppose ‖p‖1 ≤ R1,2 ‖B‖2 , ‖C‖2 ≤ RΘ, and ‖Ψ‖F
∥∥Ψ−1

∥∥
F
≤ RΨ.

Suppose y1, . . . , yt is generated from the LDS with inputs xt. Then there exist β ∈ Rτ and
P0, . . . , Pτ−1 ∈ Rm×n satisfying

‖β‖1 ≤ R1 (2)

‖Pj‖F ≤ R1R
2
ΘRΨ (3)

such that

yt = −
τ∑
j=1

βjyt−j +

τ−1∑
j=0

Pjxt−j . (4)

1In other words, the minimal polynomial of A divides p. For a diagonalizable matrix, the minimal polyno-
mial is the characteristic polynomial except without repeated zeros.

2For a polynomial p(x) =
∑τ
j=0 βjx

τ−j , let

‖p‖1 =

τ∑
j=0

|βj | (1)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Proof. Unfolding the LDS,

yt =

t−1∑
i=0

CAiBxt−i (5)

yt−j =

t−j−1∑
i=0

CAiBxt−j−i =

t−1∑
i=j

CAi−jBxt−i. (6)

Let p(x) =
∑τ
j=0 βjx

τ−j (with β0 = 1). Then
τ∑
j=0

βjyt−j (7)

=
∑

0 ≤ j ≤ τ
j ≤ i ≤ t− 1

βjCA
i−jBxt−i (8)

=

τ−1∑
i=0

i∑
j=0

βjCA
i−jBxt−i + C

t−1∑
i=τ

 τ∑
j=0

βjA
i−j

Bxt−i︸ ︷︷ ︸
=0

(9)

using the fact that
∑τ
j=0 βjA

j = Ai−τp(A) = 0. Writing this in the autoregressive format,

yt = −
τ∑
j=1

βjyt−j +

τ−1∑
i=0

i∑
j=0

βjCA
i−jBxt−i. (10)

We let Pi =
∑i
j=0 βjCA

i−jB for 0 ≤ i ≤ τ − 1 and check that this satisfies the conditions. Note
‖MN‖F ≤ min{‖M‖2 ‖N‖F , ‖M‖F ‖N‖2}. By the L1-L∞ inequality,

‖Pi‖F (11)

=

∥∥∥∥∥∥
i∑

j=0

βjCA
i−jB

∥∥∥∥∥∥
F

(12)

≤

 i∑
j=0

|βj |

 max
0≤j≤i

∥∥CAi−jB∥∥
F

(13)

≤R1 ‖C‖2 ‖Ψ‖F ‖Λ‖2
∥∥Ψ−1

∥∥
F
‖B‖2 (14)

≤R1R
2
ΘRΨ. (15)

A.2 Autoregressive model with wavefilters: An approximate convex relaxation for
asymmetric LDS

If we add wavefiltered inputs to the regression, the bounds depend not on the minimal polynomial
p of A, but rather on the minimal polynomial having all the ω` as zeros, where ω` are the phases
of zeros of the characteristic polynomial of A. For example, if all the roots are real and distinct,
then the polynomial is x− 1 rather than

∏
p(α)=0(x−α). This can be an exponential improvement.

For example, consider the case where all the α are close to 1. Then the minimal polynomial is
close to (x− 1)d, which has coefficients as large as exp(Ω(d)). Note the case of real roots reduces
to [HSZ17].

First, we introduce some notation for convenience. Note that in Definition 2,∑T
u=1 φh(u)xt−u(i) cos

(
2πup
W

)
is a certain convolution. For a ∈ RT we define

a(ω) : = (ajω
j)1≤j≤T (16)

a(cos,θ) : = (aj cos(jθ))1≤j≤T (17)

a(sin,θ) : = (aj sin(jθ))1≤j≤T . (18)
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so that we can write Definition 2 as

y(M,N, β, P ;x1:t, yt−1:t−d) (19)

=

τ∑
u=1

βuyt−u +

τ−1∑
j=0

Pjxt−j (20)

+

P−1∑
p=0

k∑
h=1

t∑
u=τ

(
M(p, h, :, :)σ

1
4

h (φ
(cos, 2πupP )

h ∗ x)t−τ (21)

+N(p, h, :, :)σ
1
4

h (φ
(sin, 2πupP )

h ∗ x)t−τ

)
(22)

We now give a more precise statement of Theorem 3 and prove it.
Theorem 2. Consider a LDS Θ = (A,B,C, h0 = 0), where A is diagonalizable with spectral
radius ≤ 1. Let the eigenvalues of A be α` = ω`r` for 1 ≤ ` ≤ d, where |ω`| = 1 and r` ∈ R≥0.
Let S be the set of ω`. Let p(x) be a monic polynomial of degree τ such that p(ω`) = 0 for
each `. Suppose ‖p‖1 ≤ R1, ‖B‖2 , ‖C‖2 ≤ RΘ, and the diagonalization A = ΨΛΨ−1 satisfies
‖Ψ‖F

∥∥Ψ−1
∥∥
F
≤ RΨ.

Suppose y1, . . . , yT is generated from the LDS with inputs x1, . . . , xT such that ‖xt‖2 ≤ Rx for

all 1 ≤ t ≤ T . Then there is k = O
(
lnT ln

(
τRΘRΨR1RxT

ε

))
, W = O

(
τR2

ΘRΨR1RxT
3
2

ε

)
,

M,N ∈ RW×k×n×m, β ∈ Rτ and P0, . . . , Pτ−1 ∈ Rm×n satisfying

‖β‖1 ≤ R1 (23)

‖Pj‖F ≤ R1R
2
ΘRΨ (24)√

‖M‖22,1 + ‖N‖22,1 = O(R2
ΘRΨR1τk

1
2 ) (25)

such that the pseudo-LDS (M,N, β, P ) approximates yt within ε for 1 ≤ t ≤ T :

‖y(M,N, β, P0:τ−1;x1:t, yt−1:t−τ )− yt‖ ≤ ε. (26)

Proof. Our plan is as follows. First we show that choosing βj and Pj as in Theorem 1,

δt = yt +

τ∑
j=1

βjyt−j −
τ−1∑
j=0

Pjxt−j (27)

can be approximated by

δ
(1)
t : =

d∑
`=1

k∑
h=1

M ′`(h, :, :)σ
1
4

h (φ
(ω`)
h ∗ x)t−τ (28)

for M ′` ∈ Ck×n×m; this is obtained by a projection to the wavefilters. Next we approximate δ(1)
t by

discretization of the phase,

δ
(2)
t : =

d∑
`=1

k∑
h=1

M ′`(h, :, :)σ
1
4

h (φ
(e2πιp`/W )
h ∗ x)t−τ (29)

for some integers p` ∈ [0,W − 1]. Finally, we show taking the real part gives something in the form

δ
(2)
t =

d∑
`=1

k∑
h=1

(
M`(h, :, :)σ

1
4

h (φ
(cos,

2πp`
W )

h ∗ x)t−τ (30)

+N`(h, :, :)σ
1
4

h (φ
(sin,

2πp`
W )

h ∗ x)t−τ

)
(31)
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This matches the form of a pseudo-LDS given in Definition 2 after collecting terms,

M(p, :, :, :) =
∑
`:p`=p

M` N(p, :, :, :) =
∑
`:p`=p

N`. (32)

Now we carry out the plan. Again we have (9) except that this time the second term is not 0.
Let A = ΨΛΨ−1, v` be the columns of Ψ and w∗` be the rows of Ψ−1. By assumption on p,∑τ
j=0 βjω

τ−j
` = 0 for each `, so the second term of (9) equals

δt (33)

=C

t−1∑
i=τ

 d∑
`=1

τ∑
j=0

βjα
i−τ
` ατ−j` v`w

∗
`

Bxt−i (34)

=C

t−1∑
i=τ

 d∑
`=1

αi−τ`

τ∑
j=0

βj(α
τ−j
` − ωτ−j` )v`w

∗
`

Bxt−i (35)

=

d∑
`=1

Cv`w
∗
`B

t−1∑
i=τ

ri−τ` ωi−τ`

τ∑
j=0

βjω
τ−j
` (rτ−j` − 1)xt−i (36)

=

d∑
`=1

Cv`w
∗
`B

τ∑
j=0

t−1∑
i=τ

βj

(
rτ−j` − 1

)
ri−τ` ωi−j` xt−i (37)

=

d∑
`=1

Cv`w
∗
`B

τ∑
j=0

βjω
τ−j r

τ−j
` − 1

1− r`

(
µ(r`)

(ω`) ∗ x
)
t−τ

. (38)

Thus this equals
δt (39)

=

d∑
`=1

Cv`w
∗
`B

τ∑
j=0

βjω
τ−j
`

rτ−j` − 1

1− r`

(
µ̃(r`)

(ω`) ∗ x
)
t−τ︸ ︷︷ ︸

δ
(1)
t

(40)

+

d∑
`=1

Cv`w
∗
`B

τ∑
j=0

βjω
τ−j
`

rτ−j` − 1

1− r`
(41)(

(µ(r`)− µ̃(r`))
(ω`) ∗ x

)
t−τ

(42)

where µ̃k(r) is the projection of µk(r) to the subspace spanned by the rows of φ1, . . . , φk. Let Φ

be the matrix with rows φj , let D = diag((σ
1
4

h )1≤h≤k) and let m`,h ∈ Rk be such that µ̃(r`) =

ΦDm` =
∑k
h=1m`,hσ

1
4

h φh, i.e., m` = σ
− 1

4

h 〈φh, µ(r`)〉. The purpose of D is to scale down φh ∗ x
so that gradients will be small in the optimization analysis.

We show that the term (40) equals δ(1)
t with some choice of M ′`.

(40) (43)

=

d∑
`=1

Cv`w
∗
`B

τ−1∑
j=0

βjω
τ−j
`

rτ−j` − 1

1− r`
(44)

k∑
h=1

m`,hσ
1
4

h (φ
(ω`)
h ∗ x)t−τ (45)

=

d∑
`=1

k∑
h=1

M ′`(h, :, :)σ
1
4

h (φ
(ω`)
h ∗ x)t−τ (46)
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=δ
(1)
t (47)

where M ′`(h, r, i) := (L`)rim`,h and

L` = Cv`w
∗
`B

τ−1∑
j=0

βjω
τ−j
`

(
rτ−j` − 1

1− r`

)
(48)

We calculate the error. Here ‖x‖∞ denotes maxi ‖xi‖2.

d∑
`=1

‖L`‖F (49)

=

d∑
`=1

∥∥∥∥∥∥Cv`w∗`B
τ−1∑
j=0

βjω
τ−j
`

rτ−j` − 1

1− r`

∥∥∥∥∥∥
F

(50)

≤
d∑
`=1

‖C‖F ‖B‖F ‖v`‖2 ‖w`‖2 ‖β‖1 τ (51)

≤‖C‖F ‖B‖F

√√√√ d∑
`=1

‖v`‖22
d∑
`=1

‖w`‖22 ‖β‖1 τ (52)

≤R2
ΘRΨR1τ (53)∥∥∥δt − δ(1)

t

∥∥∥
2

(54)

≤
d∑
`=1

‖L`‖2 max
`

((µ(r`)− µ̃(r`))
(ω`) ∗ x)t−τ (55)

≤R2
ΘRΨR1τ max

`
‖µ(r`)− µ̃(r`)‖1 ‖x‖∞ (56)

≤R2
ΘRΨR1τ

√
T max

`
‖µ(r`)− µ̃(r`)‖2Rx (57)

≤R2
ΘRΨR1τ

√
Tc
−k/ lnT
1 (lnT )

1
4 . (58)

for some constant c1 < 1, where the bound on ‖µ(r`)− µ̃(r`)‖ comes from Lemma C.2 in [HSZ17].
Choose k = C lnT ln

(
τRΘRΨR1RxT

ε

)
for large enough C makes this ≤ ε

2 .

Now we analyze the effect of discretization. Write ω` = eθ`ι where θ` ∈ [0, 2π), and let p` be such
that

∣∣θ` − 2πp`
W

∣∣ ≤ π
W where the angles are compared modulo 2π. Let ω′` = e

2πp`ι

W . We approximate
δ

(1)
t with

δ
(2)
t =

d∑
`=1

M ′`(h, :, :)σ
1
4

h (φ
(ω′
`)

h ∗ x)t−τ (59)

Note that |ωj` − ω
′j
` | ≤ j

∣∣θ` − 2πp`
W

∣∣ ≤ πj
W . We calculate the error. First note

d∑
`=1

k∑
h=1

‖M ′`(h, :, :)‖F σ
1
4

h ≤
d∑
`=1

‖L`‖2 max
`,h
| 〈φh, µ(r`)〉 | (60)

≤ R2
ΘRΨR1τ (61)

by (53) and ‖µ(r`)‖2 ≤ 1. Then∥∥∥δ(1)
t − δ

(2)
t

∥∥∥
2

(62)

≤
k∑
h=1

∥∥∥∥∥
d∑
`=1

M ′`(h, i, :)((φ
(ω`)
h − φ(ω′

`)
h ) ∗ x)t−τ (i)

∥∥∥∥∥
2

(63)
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≤

(
d∑
`=1

k∑
h=1

‖M ′`(h, :, :)‖F σ
1
4

h

)
max
h,`

∥∥∥φ(ω`)
h − φ(ω′

`)
h

∥∥∥
1
Rx (64)

≤R2
ΘRΨR1τ

πT

W
max
h
‖φh‖1Rx (65)

≤R2
ΘRΨR1τ

πT

W

√
TRx (66)

=
R2

ΘRΨR1τπT
3
2Rx

W
≤ ε

2
(67)

for W =
2πτR2

ΘRΨR1RxT
3
2

ε . This means
∥∥∥δt − δ(2)

t

∥∥∥ ≤ ε.
Finally, we take the real part of δ(2)

t (which doesn’t increase the error, because δt is real) to get

d∑
`=1

n∑
i=1

k∑
h=1

T∑
u=1

σ
1
4

h φh(u)xt−τ−u(i)<[M ′`(h, :, i)ω
′
`
u
] (68)

=
d∑
`=1

n∑
i=1

k∑
h=1

T∑
u=1

σ
1
4

h φh(u)xt−τ−u(i)

(
<(M ′`(h, :, i)) (69)

cos

(
2πp`u

W

)
−=(M ′`(h, :, i)) sin

(
2πp`u

W

))
(70)

which is in the form (31) with M` = <(M ′`) and N` = −=(M ′`).

The bound on ‖M‖2,1 and ‖N‖2,1 is√
‖M‖22,1 + ‖N‖22,1 (71)

≤
d∑
`=1

√
‖M`‖2F + ‖N`‖2F =

d∑
`=1

‖M ′`‖F (72)

=

d∑
`=1

√√√√ k∑
h=1

‖M ′`(h, :, :)‖
2
F

(73)

=

d∑
`=1

‖L`‖F ‖m`‖2 (74)

= O(R2
ΘR

2
ΨR1τk

1
2 ) (75)

because

‖m`‖2 =

(
k∑
h=1

σ
− 1

2

h 〈φh, µ(r`)〉2
) 1

2

(76)

≤

(
k∑
h=1

O(1)

) 1
2

= O(k
1
2 ) (77)

by Lemma E.4 in [HSZ17].

B Proof of the regret bound

In this section, we prove the following theorem:

Theorem 3. Let y∗1 , . . . , y
∗
T denote the predictions made by the fixed pseudo-LDS which has the

smallest total squared-norm error in hindsight. Then, there is a choice of parameters for which the
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decision set K contains all LDSs which obey the assumptions from Section 2.1, and Algorithm 1
makes predictions ŷt such that

T∑
t=1

‖ŷt − yt‖2 −
T∑
t=1

‖ŷ∗t − yt‖2 ≤ Õ
(
Rd5/2n log7 T

√
T
)
,

where the Õ(·) only suppresses factors polylogarithmic in n,m, d,RΘ, Rx, Ry , and
R3

1R
2
xR

4
ΘR

2
ΨR

2
y ≤ R.

B.1 Online learning with composite strongly convex regularizers

Algorithm 1 runs the follow-the-regularized-leader (FTRL) algorithm with the regularization

R(M,N, β, P ) := ‖M‖22,q + ‖N‖22,q + ‖β‖2q′ +

τ∑
j=1

‖Pj‖2F ,

where q = ln(W )
ln(W )−1 and q′ = ln(τ)

ln(τ)−1 . To achieve the desired regret bound, we need to show that
this regularizer is strongly convex with respect to the composite norm considered in the algorithm.
We will work with the following definition of strong convexity with respect to a norm:
Definition 4 (Strong convexity w.r.t. a norm). A differentiable convex function f : K → R is
α-strongly convex with respect to the norm ‖ · ‖ if, for all x, x+ h ∈ K, it holds that

f(x+ h) ≥ f(x) + 〈∇f(x), h〉+
α

2
‖h‖2.

We first verify the following claim:
Lemma 5. Suppose the convex functions R1, . . . , Rn, defined on domains X1, . . . ,Xn, are α-
strongly convex with respect to the norms ‖ · ‖1, . . . , ‖ · ‖n, respectively. Then, the function
R(x1, . . . , xn) =

∑n
i=1Ri(xi), defined on the Cartesian product of domains, is (α/n)-strongly

convex w.r.t. the norm ‖(x1, . . . , xn)‖ =
∑n
i=1 ‖xi‖i.

Proof. Summing the definitions of strong convexity, we get

R(x1 + h1, . . . , xn + hn)

≥
n∑
i=1

〈∇R(xi), hi〉+
α

2

n∑
i=1

‖hi‖2i

= 〈∇R(x1, . . . , xn), vec(h1:n)〉+
α

2

n∑
i=1

‖hi‖2i

≥ 〈∇R(x1, . . . , xn), vec(h1:n)〉+
α

2n

(
n∑
i=1

‖hi‖i

)2

,

where the last inequality uses the AM-QM inequality.

Indeed, each term in R(Θ̂) is strongly convex in the respective term in the composite norm ‖Θ̂‖.
For ‖M‖22,q (and, identically, ‖N‖22,q), we use Corollary 13 from [KSST12]:

Lemma 6. The function M 7→ ‖M‖22,q is 1
3 ln(W ) -strongly convex w.r.t. the norm ‖ · ‖2,1.

This is a more general case of the fact that β 7→ ‖β‖2q′ is 1
3 ln(τ) -strongly convex w.r.t. the norm

‖β‖1. Finally,
∑τ
j=1 ‖Pj‖2F is the squared Euclidean norm of vec(P1:τ ), which is clearly 1-strongly

convex w.r.t. the same Euclidean norm. Thus, applying Lemma 5, we have:

Corollary 7. R(Θ̂) is α-strongly convex in ‖Θ̂‖, where α = 1
12 ln(max(τ,P )) .

Finally, we note an elementary upper bound for the dual of the norm ‖Θ̂‖ in terms of the duals of
the summands, which follows from the definition of dual norm:

7



Lemma 8. For any norm ‖ · ‖, let ‖ · ‖∗ denote its dual norm ‖v‖∗ = sup‖w‖ ≤ 1〈v, w〉. Then, if
‖(x1, . . . , xn)‖ =

∑n
i=1 ‖xi‖i, we have

‖(x1, . . . , xn)‖∗ ≤
n∑
i=1

‖xi‖∗i .

Corollary 9. In particular, for the norm ‖Θ̂‖ we have defined on pseudo-LDSs, we have:

‖(M,N, β, P )‖∗ (78)

≤ ‖M‖2,∞ + ‖N‖2,∞ + ‖β‖∞ +

√√√√ τ∑
j=1

‖Pj‖F . (79)

B.2 Regret of the FTRL algorithm

We state the standard regret bound of FTRL with a regularizer R which is strongly convex with
respect to an arbitrary norm ‖ · ‖. For a reference and proof, see Theorem 2.15 in [SS+12].

Lemma 10. In the standard online convex optimization setting with decision set K, with convex
loss functions f1, . . . , fT , let x1:t denote the decisions made by the FTRL algorithm, which plays an
arbitrary x1, then xt+1 := arg minx

∑t
u=1 ft(x) + R(x)

η . Then, if R(x) is α-strongly convex w.r.t.
the norm ‖ · ‖, we have the regret bound

Regret :=

T∑
t=1

ft(xt)−min
x

T∑
t=1

ft(x) ≤ 2Rmax

η
+
ηT

α
G2

max,

where Rmax = supx∈KR(x) and Gmax = supx∈K ‖∇f(x)‖∗.

To optimize the bound, choose η =

√
2RmaxT/α

Gmax
, for a regret bound of

Regret ≤ O
(
Gmax

√
RmaxT/α

)
.

With the facts established in Section B.1, this gives us the following regret bound, which gives an
additive guarantee versus the best pseudo-LDS in hindsight:

Corollary 11. For the sequence of squared-loss functions on the predictions f1, . . . , fT : K → R,
Algorithm 1 produces a sequence of pseudo-LDSs Θ̂1, . . . , Θ̂T such that

T∑
t=1

ft(Θ̂t)− min
Θ̂∈K

T∑
t=1

ft(Θ̂) ≤ O
(
GRΘ̂

√
T log max(P, τ)

)
,

where G is an upper bound on the quantity

‖∇Mft(Θ̂)‖2,∞ + ‖∇Nft(Θ̂)‖2,∞ (80)

+ ‖∇βft(Θ̂)‖∞ +

τ∑
j=1

‖∇P ft(Θ̂)‖F . (81)

(Here, ∇M denotes the 4-tensor of partial derivatives with respect to the entries of M , and so on.)

It suffices to establish an upper bound RΘ̂ on the norm of a pseudo-LDS required to approximate a
true LDS, as well as the gradient of the loss function in each of these dual norms. We can obtain the
appropriate diameter constraint from Theorem 3:

RΘ̂ = Θ
(
R2

ΘRΨR1τ
√
k
)
.

We bound G in the following section.
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B.3 Bounding the gradient

In this section, we compute each gradient, and bound its appropriate norm.
Lemma 12. Let G be the bound in the statement in 11. Then,

G ≤ O
(
R2

1R
2
xR

2
ΘRΨR

2
yτ

3/2nk3/2 log2 T
)
.

Proof. First, we use the result from Lemma E.5 from [HSZ17], which states that the `1 norm of φh
is bounded by O(log T/σ

1/4
h ), to bound the size of the convolutions taken by the algorithm:

Lemma 13. For any h ∈ [1, k] and p ∈ [0,W − 1], we have

‖
T∑
u=1

φh(u)σ
1/4
h cos(2πup/W )xt−u‖2 ≤ O

(
Rx
√
n log T

)
.

The same holds upon replacing cos(·) with sin(·).

Proof. We have that for each coordinate i ∈ [n],

|
T∑
u=1

φh(u)σ
1/4
h cos(2πup/W )xt−u(i)| (82)

≤
T∑
u=1

φh(u)σ
1/4
h Rx ≤ ‖φh‖1σ1/4

h Rx (83)

≤ O (Rx log T ) . (84)

It will be useful to record an upper bound for the norm of the prediction residual y(Θ̂)− yt, which
appears in the gradient of the least-squares loss. By assumption, we have ‖yt‖2 ≤ Ry . By the
constraint on ‖Θ‖ from the algorithm, and noting that y(Θ̂) a sum of matrix products ofM(p, h, :, :)

and convolutions of the form of the LHS in Lemma 13, we can obtain a bound on y(Θ̂) as well:

‖y(Θ̂)− yt‖2 ≤ O
(
Ry‖y(Θ̂)‖2

)
(85)

≤ O
(
RyRΘ̂ · (

√
nk log TRx +Rx +Ry)

)
(86)

≤ O
(
R2

1RxR
2
ΘRΨR

2
yτ
√
nk log T

)
. (87)

Call this upper bound U for short. First, we compute the gradients with respect to the 4-tensors M
and N . Fixing one phase p and filter index k, we have:

∇Mft(Θ̂)(p, h, :, :) (88)

=2
(
y(Θ̂)− yt

)( T∑
u=1

φh(u) cos(2πup/W )xt−u

)>
, (89)

so that
‖∇Mft(Θ̂)(p, h, :, :)‖2F (90)

≤ 4‖y(Θ̂)− yt‖2‖
T∑
u=1

φh(u) cos(2πup/W )xt−u‖2 (91)

≤ U ·O
(
Rx
√
n log T

)
(92)

Thus, we have

‖∇Mft(Θ̂)‖2,∞ = max
p

√√√√ k∑
h=1

‖∇Mft(Θ̂)(p, h, :, :)‖2F (93)

≤ U ·O
(
Rx
√
nk log T

)
(94)
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The same bound holds for ‖∇Nft(Θ̂)‖2,∞.

For the β part of the gradient, we have

∇βft(Θ̂)(j) = 2
(
y(Θ̂)− yt

)>
yt−j , (95)

so that we have an entrywise bound of

‖∇βft(Θ̂)‖∞ ≤ O (Ry · U) . (96)

Finally, for the Pj part, we have

∇Pjft(Θ̂) = 2
(
y(Θ̂)− yt

)
x>t−j , (97)

so that √√√√ τ∑
j=1

‖∇Pjft(Θ̂)‖2F ≤ O
(√
τRx · U

)
. (98)

The claimed bound on G follows by adding these bounds.

The final regret bound follows by combining Lemma 12 and Corollary 11, with the choices k =
Θ
(
log T log

(
τRΘRΨR1RxT

ε

))
, τ = Θ(d),W = Θ

(
τR2

ΘRΨR1RxT
3
)
.

C Proof of main theorem: Competitive ratio bounds

C.1 Perturbation analysis

To prove the main theorem, we first need to analyze the approximation when there is noise. Com-
pared to the noiseless case, as analyzed in Theorem 2, we incur an additional term equal to the size
of the perturbation times a competitive ratio depending on the dynamical system.
Lemma 14. Consider an LDS Θ = (A,B,C, h0 = 0) that satisfies the conditions of Theorem 3.
Consider the LDS under adversarial noise (2)–(3). Let yt(x1:T , η1:T , ξ1:T ) be the output at time
t given inputs x1:T and noise η1:T , ξ1:T . Let ŷt(x1:T , η1:T , ξ1:T ) be the prediction made by the
pseudo-LDS at time t. Suppose that (M,N,−β, P ) is a pseudo-LDS that predicts well when there
is no noise:

‖ŷ1:T (x1:T , 0, 0)− y1:T (x1:T , 0, 0)‖2 (99)

=

(
T∑
t=1

‖ŷt(x1:T , 0, 0)− y∗t (x1:T , 0, 0)‖22

) 1
2

≤ ε. (100)

For bounded adversarial noise
∑T
t=1 ‖ηt‖

2
+ ‖ξt‖2 ≤ L,

‖ŷ1:T (x1:T , η1:T , ξ1:T )− y1:T (x1:T , η1:T , ξ1:T )‖2 (101)

≤ ε+O(‖β‖∞ τ
3
2RΘRΨ

√
L). (102)

Note that the initial hidden state can be dealt with by considering it as noise in the first step η1.

Proof. Note that ŷt is a linear function of x1:T , η1:T , ξ1:T .

ŷt(x1:T , η1:T , ξ1:T )− yt (103)
= [ŷt(0, 0, ξ1:T )− yt(0, 0, ξ1:T )] (104)

+ [ŷt(0, η1:T , 0)− yt(0, η1:T , 0)] (105)
+ [ŷt(x1:T , 0, 0)− yt(x1:T , 0, 0)]. (106)

This says that the residual is the sum of the residuals incurred by each ξt and ηt individually, plus
the residual for the non-noisy LDS, ŷt(x1:T , 0, 0)− yt(x1:T , 0, 0).
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We first analyze the effect of a single perturbation to the observation ξt. Suppose ηt = 0 for all t and
ξt = 0 except for t = u (so that yt = 0 for all t except t = u, where yu = ξu). The predictions ŷt
are zero when t 6∈ [u, u+ τ ], because then the prediction does not depend on yu. For u ≤ t ≤ u+ τ ,

‖ŷt(0, 0, ξ1:T )− yt(0, 0, ξ1:T )‖2 (107)

=

∥∥∥∥∥∥yt +

τ∑
j=1

βjyt−j

∥∥∥∥∥∥
2

(108)

≤ |βt−u| ‖ξu‖2 (109)
‖ŷ1:T (0, 0, ξ1:T )− y1:T (0, 0, ξ1:T )‖2 (110)

≤

(
u+τ∑
t=u

|βt−u|2
) 1

2

‖ξu‖2 (111)

= ‖β‖2 ‖ξu‖2 . (112)

Now we analyze the effect of a single perturbation to the hidden state ηt. Suppose ξt = 0 for all
t and ηt = 0 except for t = u (so that ht = 0 for all t < u, hu = ηu, and the system thereafter
evolves according to the LDS). For simplicity, we may as well consider the case where u = 1, i.e.,
the perturbation is to the initial hidden state. When t ≤ τ , the error is bounded by

‖ŷt(0, η1:T , 0)− yt(0, η1:T , 0)‖2 (113)

=

∥∥∥∥∥∥yt +

t−1∑
j=1

βjyt−j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥C
t−1∑
j=0

βjA
t−j−1ξ1

∥∥∥∥∥∥ (114)

≤ ‖C‖2 ‖β‖1 ‖Ψ‖F ‖Λ‖2
∥∥Ψ−1

∥∥
F
‖η1‖2 (115)

≤ RΘRΨ ‖β‖1 ‖η1‖2 (116)
‖ŷ1:τ (0, η1:T , 0)− ŷ1:τ (0, η1:T , 0)‖2 (117)

≤ τ 1
2RΘRΨ ‖β‖1 ‖η1‖2 . (118)

When t > τ , the error is (let β0 = 1)
yt(0, η1:T , 0)− ŷt(0, η1:T , 0) (119)

= C

τ∑
j=0

βjA
t−j−1η1 (120)

≤ C
τ∑
j=0

d∑
`=1

βjα
t−j−1
` v`w

∗
` η1 (121)

= C

τ∑
j=0

d∑
`=1

βjα
t−τ−1
` (ατ−j` − ωτ−j` )v`w

∗
` η1 (122)

= C

τ∑
j=1

d∑
`=1

βjω
t−j
` rt−τ−1

` (rτ−j` − 1)v`w
∗
` η1 (123)

‖ŷt(0, ηt, 0)− yt(0, η1:T , 0)‖2 (124)

≤ ‖β‖∞
τ∑
j=1

d∑
`=1

1− rτ−j`

1− r`
µ(r`)t−τ ‖Cv`w∗` η1‖2 (125)

≤ ‖β‖∞RΘ ‖η1‖2
τ∑
j=1

d∑
`=1

1− rτ−j

1− r
µ(r`)t−τ ‖v`w∗` ‖2 (126)

‖ŷτ+1:T (0, η1:T , 0)− yτ+1:T (0, η1:T , 0)‖2 (127)

≤ ‖β‖∞RΘ ‖η1‖2
τ∑
j=1

max
r,`

∥∥∥∥∥1− rτ−j`

1− r`
µ(r`)

∥∥∥∥∥
2

RΨ (128)
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≤ ‖β‖∞RΘ ‖η1‖2

 τ∑
j=1

√
τ − j

RΨ (129)

≤ ‖β‖∞RΘRΨτ
3
2 ‖η1‖2 (130)

by the calculation in (52) and (53) because∥∥∥∥1− rk

1− r
µ(r)

∥∥∥∥
2

(131)

≤ (1− rk)

√
1

1− r2
≤ min{1, k(1− r)}

√
1

1− r
(132)

= min

{√
1

1− r
, k
√

1− r

}
≤
√
k. (133)

Combining (112), (118), and (130) using (106) and noting ‖β‖1 ≤ (τ + 1) ‖β‖∞ gives

‖ŷ1:T (x1:T , η1:T , ξ1:T )− yt‖2 (134)

≤ ‖β‖2 ‖η‖2 +RΘRΨ

√
τ(‖β‖1 + ‖β‖∞ τ) ‖ξ‖2 + ε (135)

≤ O(‖β‖∞ τ
3
2RΘRΨ

√
L) + ε (136)

C.2 Proof of Main Theorem

We prove Theorem 1 with the following more precise bounds.
Theorem 15. Consider a LDS with noise satisfying the assumptions in Section 2.1 (given by (2)
and (3)), where total noise is bounded by L. Then there is a choice of parameters such that Algo-
rithm 1 learns a pseudo-LDS Θ̂ whose predictions ŷt satisfy

T∑
t=1

‖ŷt − yt‖2 ≤ Õ
(
Rd5/2n

√
T
)

+O(R2
∞τ

3R2
ΘR

2
ΨL) (137)

where the Õ(·) only suppresses factors polylogarithmic in n,m, d,RΘ, Rx, Ry, log T , and
R3

1R
2
xR

4
ΘR

2
ΨR

2
y ≤ R.

Proof. Consider the fixed pseudo-LDS which has smallest total squared-norm error in hindsight
for the noiseless LDS. Let y∗t (x1:T , η1:T , ξ1:T ) denote its predictions under inputs x1:T and noise
η1:T , ξ1:T and yt(x1:T , η1:T , ξ1:T ) denote the true outputs of the system. Given ε > 0, choosing
k, P as in Theorem 2 (Approximation) gives

∀1 < t < T, ‖y∗t (x1:T , 0, 0)− yt(x1:T , 0, 0)‖2 ≤ ε (138)

=⇒ ‖y∗1:T (x1:T , 0, 0)− y1:T (x1:T , 0, 0)‖2 ≤ ε
√
T . (139)

By Lemma 14 (Perturbation),

‖y∗1:T (x1:T , η1:T , ξ1:T )− yt(x1:T , η1:T , ξ1:T )‖2 (140)

≤ ε
√
T +O(R∞τ

3
2RΘRΨ

√
L) (141)

In the below we consider the noisy LDS (under inputs x1:T and noise η1:T , ξ1:T ). By Theorem 3
(Regret) and (141),

‖ŷ1:T − y1:T ‖22 (142)

= (‖ŷ1:T − y1:T ‖22 − ‖ŷ
∗
1:T − ŷ1:T ‖22) + ‖ŷ∗1:T − y1:T ‖22 (143)

≤ Õ
(
R3

1R
2
xR

4
ΘR

2
ΨR

2
yd

5/2n log7 T
√
T
)

(144)

+ ε2T +O(R2
∞τ

3R2
ΘR

2
ΨL) (145)

Choosing ε = T−
1
4 (and k, P based on ε) means ε2T is absorbed into the first term, and we obtain

the bound in the theorem.
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