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A Proof of approximation theorem

Note that throughout the paper, we can assume without loss of generality that D = 0 (the zero
matrix) for any LDS we wish to approximate. When this is not the case, we simply add an autore-
gressive component with delay zero Py, which increases the norm of the pseudo-LDS by an additive
Rg. Also, we use ¢ to denote the imaginary unit (as opposed to index 7).

A.1 Warm-up: Simple autoregressive model

As a warm-up, we first establish rigorous regret bounds for an autoregressive model, depending on
properties of the the minimal polynomial of the linear dynamical system. Next we will see how
introducing wavefilters can improve these bounds.

Theorem 1. Consider a noiseless LDS © = (A, B,C, hg = 0), where A = WAV~ is diagonal-
izable with spectral radius < 1. Let p(x) be a monic polynomial of degree T such that p(A) = O.E]

Suppose |lpll; < Rif]IBlly . IClly < Re, and ||| [, < Re.
Suppose y1,. ..,y is generated from the LDS with inputs x;. Then there exist § € R” and
Py, ..., P._1 € R™*" satisfying
18Il < Ra )
IPillz < R1Rg Ry (3)
such that
T T—1
ve=—> Biyej+ Y P )
j=1 j=0

'In other words, the minimal polynomial of A divides p. For a diagonalizable matrix, the minimal polyno-
mial is the characteristic polynomial except without repeated zeros.
*For a polynomial p(z) = >0 BT let

lIpll, = 185 6))
j=0
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Proof. Unfolding the LDS,

t—1
y=» CABz;_; (5)
i=0
e e
yij= » CABry j ;=Y CA™/Bx ;. (6)
i=0 i=j
Letp(z) = 37, B;z™7 (with By = 1). Then
> By )
j=0
= ). BCAT Bz, ®
0<j<T
j<i<t—1
T—1 ¢ o t—1 T o
=3 > BiCA Bz i +CY | > BA™T | By ©)
1=0 j=0 i=t \j=0
=0
using the fact that Z;:o B; A7 = A*="p(A) = 0. Writing this in the autoregressive format,
T T—1 1<
(T —Zﬂjyt—j +ZZﬂjCAi_jth—i~ (10)
j=1 i=0 j=0

We let P; = Zé‘:o Bj CA" B for 0 < i < 1 — 1 and check that this satisfies the conditions. Note
IMN[ . < mind| M, 1N, M [ N1],}. By the LI-L® incquality,

I1Pill (11)
={>_B,CcAB (12)
Jj=0 F
< Z(:)Iﬁj\ ax [|CAT B, (13)
j:
<RClly %]z ANl [ 97| 7 1Bl (14)
<R1RgRy. (15)
O

A.2 Autoregressive model with wavefilters: An approximate convex relaxation for
asymmetric LDS

If we add wavefiltered inputs to the regression, the bounds depend not on the minimal polynomial
p of A, but rather on the minimal polynomial having all the wy as zeros, where wy are the phases
of zeros of the characteristic polynomial of A. For example, if all the roots are real and distinct,
then the polynomial is « — 1 rather than Hp( a):O(x — «). This can be an exponential improvement.
For example, consider the case where all the « are close to 1. Then the minimal polynomial is
close to (z — 1)9, which has coefficients as large as exp(€2(d)). Note the case of real roots reduces
to [HSZ17].

First, we introduce some notation for convenience. Note that in Definition
25:1 on(u)xs—_y (i) cos (27‘;[7,”7) is a certain convolution. For a € RT we define

o) = (aj0’)i1<jer (16)

a9+ = (a; cos(j0))1<j<r a7

a0 . — (a;sin(j6))1<j<r. (18)



so that we can write Definition [2] as

y(M7 N7ﬂ7p;x1:t7yt71:t7d) (19)
T 7—1
=> But—u+ Y Pimi_ (20)
u=1 7=0
P-1 k t 1 ( 27\'1171)
IS (M(p,h, S Lo N P 1)
p=0 h=1u=7
L (sin,2TuR)
+ N(p,h,:,)of (e, 7 xx)s (22)

We now give a more precise statement of Theorem 3]and prove it.

Theorem 2. Consider a LDS © = (A, B,C,hy = 0), where A is diagonalizable with spectral
radius < 1. Let the eigenvalues of A be oy = wyry for 1 < ¢ < d, where |w;| = 1 and vy € Rxq.
Let S be the set of wy. Let p(x) be a monic polynomial of degree T such that p(wg) = 0 for
each L. Suppose ||p||, < Ri, ||B|ly,||C|l, < Re, and the diagonalization A = WAV ™! satisfies
1l [ o= o < R

1
I
Suppose y1,...,yr is generated from the LDS with inputs x1, ...,z such that |||, < R, for

3
all1 < t < T. Then there is k = O(lnTln (M)), W = O (W ,

€

M,N € RWxkxnxm 3 c R™ and Py, ..., Pr_1 € R™ " satisfying

18], < Ry 23)
1Pl < RiRg Ry (24)
VIMIE, + N2, = O(R3 Ry Rark?) 25)

such that the pseudo-LDS (M, N, 3, P) approximates y; within € for 1 <t < T
Hy(M7 N7 Bv POZT—].; T1:ts yt—l:t—T) - yt” S €. (26)

Proof. Our plan is as follows. First we show that choosing 3; and P; as in Theorem|T]

r r—1
Se=ye+ > Bivrj— Y Piwej 27)
j=1 j=0
can be approximated by
d &
5 =305 Mih, s, o (60 % 2)is (28)
£=1 h=1

for M, € Ckxnxm. this is obtained by a projection to the wavefilters. Next we approximate (5§1) by
discretization of the phase,

d k
1 eZWL /W
087 =35 My o (o) ke a) ey (29)

d 1 os, 2TPL
=33 (Me(h,iﬁ)aﬁ( o) ), (30)
=1 h=1
1 (sin 27r”)
—|—]\fg(h,:,:)a,‘l1 (gbh USRI ) P 3D



This matches the form of a pseudo-LDS given in Definition [2] after collecting terms,

M(p,::) = > M N(p,::)= Y N (32)

L:pe=p L:pe=p

Now we carry out the plan. Again we have (9) except that this time the second term is not 0.
Let A = WAU~!, v, be the columns of ¥ and w] be the rows of ¥~!. By assumption on p,

> =0 Bjwy 7 = 0 for each £, so the second term of () equals

5 (33)
d T
(=

t—1
:CZ Z ﬂ Z Ta -ww}f Bx;_; (34)

15=0

t—1
:CZ Z i TZ@ “Nogwy | Bay_; (35)
_Zwa@BZTZ TwiT TZBJ — V) (36)

T t—1
_ZwaZBZZﬂJ< )r; i 37)
7j=01i=71
d T Z J 1 ( )
= Z C’U[U)eB Z 6] —J Tw (/.I/(’I"g) ¢ % $)t_T . (38)
(=1 7=0
Thus this equals
5y (39
- ORI
— T—J ~ w
= WWBZ@ S (u(w) 0 x)H (40)
=1 3=0
6(1)
1
+ZCWWB;@ 1 — (41)
((ulre) = ftre) s 2) “2)

where [ix(r) is the projection of u(r) to the subspace spanned by the rows of ¢1, ..., ¢x. Let ®
1
be the matrix with rows ¢;, let D = diag((c}} )1<n<k) and let my;, € R* be such that fi(ry) =
1

1 _1
®Dmy = 25:1 My pop Gn,ie., me = o, * (¢n, 1(r¢)). The purpose of D is to scale down ¢y, * =
so that gradients will be small in the optimization analysis.

We show that the term (@0) equals 6\") with some choice of M.

@0 (43)

d T—1 T—j
siry, T —1
=Y Cvow;BY _ Bjw; flT (44)
=1 =0 ¢
k 1
S menoi (617 x x)i—s 45)
h=1
d k N
=3 Mk, o (850 * 2)es (46)
(=1 h=1



:(Sgl) 47
where M) (h,r,i) := (Lg)yime,, and

T—1 T—3j
T —1
Ly = Cow;BY _ Bjw; <€1 — ) (48)
=0 ¢
We calculate the error. Here ||z|| _ denotes max; ||z;||,.
d
Z I1Zell (49)
d T—1 .Tq—_j 1
= Z Cvow; B Z Bjw, Zl — (50)
=1 j=0 .
d
<D MCIE Bl g lvelly llwelly 1511 7 (51)
=1
<[IClrlIBlg Z lvell3 Z lwell3 1181, 7 (52)
=1
<R{RyR:iT (53)
s,
d
Z | Lelly max((a(re) = Filre)) ) # ) (55)
SReRleT max [|pu(re) — pu(re) |1 |12/l oo (56)
<R Ry Barv/T max||u(re) = fi(ro)]|, Re (57)
<RYRyRi7VTe; "™ (InT)i. (58)

for some constant ¢; < 1, where the bound on || (r¢) — fz(r¢)|| comes from Lemma C.2 in [HSZ17].
Choose k = C'InT'In (M) for large enough C' makes this < 5.

Now we analyze the effect of discretization. Write wy = et where 6, € [0, 27r) and let p, be such
that ’64 2”” ‘ < {7 where the angles are compared modulo 27. Letw;, = e W We approximate
5 with
1 W
07 =" Mj(h,, o) (61 * x)er (59)

Note that [’ — W] < § |6, — 22£| < T1 We calculate the error. First note
7 ) J W W

d k
SO Mk, ) g o §Z|\Le|\2max|<¢h7 (re)) | (60)
(=1 h=1 =1

SR@R\I,RlT 61)

by (53) and [[u(ry)]l, < L. Then

50 5t(2)H (62)

d

Z 1(hyi, ) (D) = 60) x 2)e (i)

IN

(63)




d k
(ZZMg ||Foh>maxH¢<we>_ | R (64)

¢=1 h=1

7T
gR%R\pRﬂW max || ¢ ||, Re (65)
<ROR¢R17 T /7 TR, (66)
R%quRlTﬂ'TQ RI 3
— <= 67
W =3 ©7)
3
for W = w. This means |5, — 5.° H <e.

Finally, we take the real part of 6,52) (which doesn’t increase the error, because J; is real) to get

T

k
Z ZZ% dn (W)t —r o (R[M} (R, 2, 1)) (68)

d n k T
=222 2 on oz (i) (%(Mxh, X)) (69)

cos (Zpr — S(My(h,:, 1)) sin (27;/;;511) > (70)

which is in the form @I) with M, = R(M}) and N, = —(M)).
The bound on || M|, ; and || N{|,, is

2 2
VIMIE, + N2, an

d d
<> VM + NN Z | M| (72)
=1 =1

d k
Z Z 1M (R, 1%, (73)
; -
=> Lol p lImell, (74)
/=1
= O(RLR% Ry7k?) (75)
because
[mell, = (Z U{% <¢h,u(w)>2> (76)
h=1
k 3
< (Z 0(1)) = O(k?) )
h=1
by Lemma E.4 in [HSZ17]. O

B Proof of the regret bound

In this section, we prove the following theorem:

Theorem 3. Let yi, ...,y denote the predictions made by the fixed pseudo-LDS which has the
smallest total squared-norm error in hindsight. Then, there is a choice of parameters for which the



decision set IC contains all LDSs which obey the assumptions from Section 2.1, and Algorithm [I|
makes predictions 1, such that

T T
>3 =il =D 137 —wil* < O (Rd*/*nlog TVT),
t=1 t=1

where the O() only suppresses factors polylogarithmic in n,m,d, Rg,R;, R, and
R:{’RiR‘l@R?pRi < R.

B.1 Online learning with composite strongly convex regularizers

Algorithm [T]runs the follow-the-regularized-leader (FTRL) algorithm with the regularization

R(M, N, B, P):= | M|j3,+ INI3, + 1812 + > 1Pl
j=1

where ¢ = lanV(VM)/ll and ¢’ = ml(“T(; 21. To achieve the desired regret bound, we need to show that

this regularizer is strongly convex with respect to the composite norm considered in the algorithm.
We will work with the following definition of strong convexity with respect to a norm:

Definition 4 (Strong convexity w.r.t. a norm). A differentiable convex function f : £ — R is
a-strongly convex with respect to the norm || - || if, for all z, x 4+ h € KC, it holds that

Fe+h) > @)+ (Vi) h) + SIh]

We first verify the following claim:

Lemma 5. Suppose the convex functions Ry,...,R,, defined on domains X,,...,X,, are o-
strongly convex with respect to the norms || - ||1,...,| - |ln, respectively. Then, the function
R(z1,...,2n) = Y. iy Ri(x;), defined on the Cartesian product of domains, is (c/n)-strongly
convex w.rt. the norm ||(z1, ..., z,)|| = > i, |z

Proof. Summing the definitions of strong convexity, we get

(.731—‘1-]11,.. l‘n—‘rh)
>ZVR Znh\u

= (VR(x1,...,Tp),vec(hi.,)) ZHh 2

2
n
o
> (VR(@1,.. @), vee(han)) + 5 - (Zl ||hi|i> ,
where the last inequality uses the AM-QM inequality. O

Indeed, each term in R(O) is strongly convex in the respective term in the composite norm ||©)|.
For || M||3 , (and, identically, || N3 ,), we use Corollary 13 from [KSST12]:

Lemma 6. The function M — || M]3 , is

31n(W) -strongly convex w.r.t. the norm || - ||2 1.

This is a more general case of the fact that 5 — [|3]|2, is ﬁm—strongly convex w.r.t. the norm
|| 3]|1. Finally, Z;Zl || Pj||% is the squared Euclidean norm of vec(P;., ), which is clearly 1-strongly
convex w.r.t. the same Euclidean norm. Thus, applying Lemma[5] we have:

Corollary 7. R(©) i , where a =

1
12 In(max(7,P)) "

Finally, we note an elementary upper bound for the dual of the norm [|©| in terms of the duals of
the summands, which follows from the definition of dual norm:



Lemma 8. For any norm || - ||, let || - ||* denote its dual norm [|v||* = sup, < 1 (v, w). Then, if

(21, .., 20)| = Doy l|@illi we have

n
(@1, < Y sl
i=1

Corollary 9. In particular, for the norm ||©|| we have defined on pseudo-LDSs, we have:

(M, N, B, P)|* (78)

< [|M

2,00 T [|Vl2,00 + (18]l +

> 1P| - (79)
j=1

B.2 Regret of the FTRL algorithm

We state the standard regret bound of FTRL with a regularizer R which is strongly convex with
respect to an arbitrary norm || - ||. For a reference and proof, see Theorem 2.15 in [SS™12].

Lemma 10. In the standard online convex optimization setting with decision set K, with convex
loss functions f1, ..., fr, let ©1.; denote the decisions made by the FTRL algorithm, which plays an

arbitrary x1, then x;11 = argmin, 22:1 fe(x) + #. Then, if R(x) is a-strongly convex w.r.t.

the norm || - ||, we have the regret bound
T T
2Rmax . T
Regret := x¢) — min r) < R TG
g ;ft( ¢) — i ;ft( ) < " 5

I

where Riax = sup,cx R(x) and Gmax = sup,cx ||Vf(2)

vV 2RmaxT/
G

Regret < O (Gmax\/m) .

With the facts established in Section [B.1] this gives us the following regret bound, which gives an
additive guarantee versus the best pseudo-LDS in hindsight:

To optimize the bound, choose 1 = , for a regret bound of

Corollary 11. For the sequence of squared-loss functions on the predictions f1,..., fr : K — R,
Algorithm 1 produces a sequence of pseudo-LDSs O+, . . ., O such that

T T
©;) — mi ©) < O(GRyVT1 P,7)),
;m ) én&;m ) < 0(GRgv/Tlogmax(P,7))

where G is an upper bound on the quantity

V1 £1(0) 2,00 + I VN £ () 12,00 (80)
Vs £e(O)loe + > IVP1(O)| - 1)
j=1

(Here, V)1 denotes the 4-tensor of partial derivatives with respect to the entries of M, and so on.)
It suffices to establish an upper bound R on the norm of a pseudo-LDS required to approximate a

true LDS, as well as the gradient of the loss function in each of these dual norms. We can obtain the
appropriate diameter constraint from Theorem 3}

Re =0 (R3RyRimVE).

We bound G in the following section.



B.3 Bounding the gradient

In this section, we compute each gradient, and bound its appropriate norm.
Lemma 12. Let G be the bound in the statement in[I1] Then,

G <o (RfRiR%Rq,RzTg’mnk?’ﬂ log? T) .

Proof. First, we use the result from Lemma E.5 from [HSZ17], which states that the ¢; norm of ¢,
is bounded by O(log T’/ 0’11/ 4), to bound the size of the convolutions taken by the algorithm:

Lemma 13. Forany h € [1,k] and p € [0, W — 1], we have

I Z on(u ah * cos(2mup/W)zi_yll2 < O (Ruv/nlogT).
The same holds upon replaczng cos(+) with sin(-).

Proof. We have that for each coordinate i € [n],

|Z¢>h oy cos(2mup/W)a— (i) (82)
< Zash o)/ * Ry < |lgnllioy Ra (83)
< O(R.logT). (84)

O

It will be useful to record an upper bound for the norm of the prediction residual y(é) — ¢, which
appears in the gradient of the least-squares loss. By assumption, we have ||y;|[2 < R,. By the

constraint on ||© || from the algorithm, and noting that y(©) a sum of matrix products of M (p, h, :, :)
and convolutions of the form of the LHS in Lemma we can obtain a bound on y(©) as well:

y(©) — w2 < O (Ry\ly(@)llz) (85)
<0 (RyRé - (Vnklog TR, + Ry + Ry)) (86)
< O (R{R,RERyR;T\/nklogT) . (87)

Call this upper bound U for short. First, we compute the gradients with respect to the 4-tensors M
and N. Fixing one phase p and filter index &, we have:

Vi f1(©)(p, b, 2, ) (88)

.
- ( )(Z¢h cos(2mup/ W)z, ) : (89)

so that
Vs £1(©) (p, b, : :>||2F (90)
< 4)y(©) —ue|? HZ% cos(2mup/W )z, |* On
< U-O(RI\/ﬁlogT) (92)
Thus, we have
k
Va1 f:(©) > IV £(O) (. by )12 93)
h=1

<U-0

/_\

RoVnklog T) (94)



The same bound holds for ||V f+(©)||2,c-
For the 3 part of the gradient, we have

R R T
Vo li(©)() =2 (4(0) ~ ) vy, 95)
so that we have an entrywise bound of
IV5/:(6)oc < O(Ry-U). (96)

Finally, for the P; part, we have

Vi, f1(0) =2 (y(©) ) . ©7)
so that
D Ve fi(©)F < O(VTR, - U). 98)
j=1
The claimed bound on G follows by adding these bounds. O

The final regret bound follows by combining Lemma [12] and Corollary [IT} with the choices k =
© (log T'log (THelefilal)) 7 — ©(d),W = © (TRL Ry R1 R, T3).

C Proof of main theorem: Competitive ratio bounds

C.1 Perturbation analysis

To prove the main theorem, we first need to analyze the approximation when there is noise. Com-
pared to the noiseless case, as analyzed in Theorem 2} we incur an additional term equal to the size
of the perturbation times a competitive ratio depending on the dynamical system.

Lemma 14. Consider an LDS © = (A, B,C, hy = 0) that satisfies the conditions of Theorem
Consider the LDS under adversarial noise @Q)y-Q@). Let y:(x1.7,m.7,&1.7) be the output at time
t given inputs x1.7 and noise n1.7,&1.7. Let G(x1.7, n.1,&1.17) be the prediction made by the
pseudo-LDS at time t. Suppose that (M, N, —(3, P) is a pseudo-LDS that predicts well when there
is no noise:

||g1:T(x1:T7070) _ylzT(‘rlzTaOvO)”Q (99)
T 3
= (Z 19 (x1.7,0,0) =y (x 1.7, 070)”3) <e. (100)
t=1
For bounded adversarial noise Zle Inl® + &)1 < L,
917 (i, nir, &) — yrr (@i, ner, 1) | (101)
<e+0(|B 72 RoRuVL). (102)

Note that the initial hidden state can be dealt with by considering it as noise in the first step 7 .

Proof. Note that g is a linear function of x1.7, 1.7, &1.7.

Ut (x1.1, T, §1r) — Yt (103)
= [9:(0,0,&1.7) — %:(0,0,&1.7)] (104)
+ [9:(0,m1.7,0) — %:(0, 1.7, 0)] (105)
+ [9t(21.7,0,0) — ye(z1.7,0,0)]. (106)

This says that the residual is the sum of the residuals incurred by each &; and 7, individually, plus
the residual for the non-noisy LDS, ¢;(x1.7,0,0) — y(z1.7,0,0).

10



We first analyze the effect of a single perturbation to the observation &;. Suppose 1; = 0 for all ¢ and
& = 0 except for t = w (so that y, = 0 for all ¢ except ¢t = u, where y,, = £,). The predictions
are zero when t & [u, u+ 7], because then the prediction does not depend on y,,. Foru <t < u+7,

||:gt(0507£1:T) 7yt(0a07€1:T)||2 (107)
= lve +>_ B, (108)
j=1 )
< Be—ul €ulls (109)
|91.7(0,0, & T) —y1.7(0,0,&1.7) ] (110)
u+T
(Z 1B u|2> 1€l (111)
= [|Blly €ull2 - (112)

Now we analyze the effect of a single perturbation to the hidden state 7;. Suppose & = 0 for all
t and 7, = 0 except for t = u (so that hy = 0 for all ¢ < wu, h, = 7, and the system thereafter
evolves according to the LDS). For simplicity, we may as well consider the case where u = 1, i.e.,
the perturbation is to the initial hidden state. When ¢ < 7, the error is bounded by

||Z~7t(07771;T,O) - yt(ovnlzTaO)H2 (113)
t—1 t—1 )
= ||yt +Zﬂjyt7j = CZ/BjAt_]_lfl (114)
=1 ) i=0
<NCl N8I, 1%l ANl ([ 5 ol (115)
< RoRy |8y [Imll (116)
||y127'(07771:Ta0) - Z)l:r(O’ULT,O)Hz (117)
<72 Ro Ry |18, [Imll,- (118)
When ¢t > 7, the error is (let 8y = 1)
yt(O,Th;T,O) - gt(07771:T70) (119)
=CY BATIT Iy (120)
=0
T d .
< CZZBjaz_J_lww}‘m (121)
j—oz—1
:(JZZ@ o) = wp T wewim (122)
7j=0¢=1
—CZZBJ T T = Dwewim (123)
j=1¢=1
19(0, ¢, 0) fyt(O M., 0)|l, (124)
< 18llo ZZ p(re)i—r |Coewimll, (125)
j=1/4=1
T d 1 o 7"7—7'].
< Bl Ro lImll, > > —— #re)e—r llvewy (126)
j=1¢=1
[9r+1:7(0, 717, 0) = Yr2:70(0, 717, 0) [ (127
1—p7
< |Bllo Ro lIm 1, Zmax )| Ru (128)
Ty 5

11



< Bl R lmlly | Do VT =3 | Re (129)
j=1

< 8l RoRu7* mll, (130)
by the calculation in (32) and (53] because
L) (131)
1—r AT 9
1
<(1-17k < min{1, k(1 —r)} (132)

1—1r2 1—7r

:min{,/lir,kxﬂ—r} <Vk. (133)

Combining (TT2). (IT8). and (T30) using (T08) and noting ||, < (7 + 1)/ 5]., gives

917z, T, &) — Vel (134)
< 1By Inlly + Re Rev/T(I1BIl, + 1Blloe 7) lIEll2 + € (135)
< O(||Bll o T2 RoRy VL) + ¢ (136)

]

C.2 Proof of Main Theorem

We prove Theorem [I] with the following more precise bounds.

Theorem 15. Consider a LDS with noise satisfying the assumptions in Section [2.1] (given by ()
and (3)), where total noise is bounded by L. Then there is a choice of parameters such that Algo-
rithm|l|learns a pseudo-LDS © whose predictions 4, satisfy

T
> 19— wll” < O (Ra**nv/T) + O(R T R R L) (137)
t=1

where the O() only suppresses factors polylogarithmic in n,m,d, Re, Ry, Ry,logT, and
R?RiR‘l@R%Ri < R.

Proof. Consider the fixed pseudo-LDS which has smallest total squared-norm error in hindsight
for the noiseless LDS. Let y; (1.7, 7.7, &1.7) denote its predictions under inputs x1.7 and noise
m.r, &7 and y¢(x1.7,m1.7,&1.7) denote the true outputs of the system. Given & > 0, choosing
k, P as in Theorem [2] (Approximation) gives

Vi<t<T, |y;(x17,0,0) —y(z1.7,0,0)||, <€ (138)
= |lyir(z1.7,0,0) — yrr(z1r,0,0)], < eVT. (139)
By Lemma [[4] (Perturbation),
lyi.r (v ners &) — ye(@ v, nir, &.r) | (140)
< eVT + O(Roo7? RoRy VL) (141)

In the below we consider the noisy LDS (under inputs x1.7 and noise 71.7, &1.7). By Theorem

(Regret) and (T47),

917 — 3/1:T||§ (142)
= (lirr — yarlls = 1950 — urly) + 155r — yirlls (143)
<0 (RfRiR‘éR?pRids/inog7 T\FT) (144)
+&*T + O(R%2, R4 R L) (145)

Choosing ¢ = T 1 (and k, P based on ¢) means €27 is absorbed into the first term, and we obtain
the bound in the theorem. O
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