
A Auxiliary Lemmas

The following lemma is from (Tsuda et al. [2005]), given here for completeness.

Lemma 11. For Hermitian matrices A,B and Hermitian PSD matrix X , if A � B, then Tr(AX) ≥
Tr(BX).

Proof. Let C := A − B. By definition, C � 0. It suffices to show that Tr(CX) ≥ 0. Let
V QV † be the eigen-decomposition of X , and let C = V PV †, where P := V †CV � 0. Then
Tr(CX) = Tr(V PQV †) = Tr(PQ) =

∑n
i=1 PiiQii. Since P � 0 and all the eigenvalues of X are

nonnegative, Pii ≥ 0, Qii ≥ 0. Therefore Tr(CX) ≥ 0.

Lemma 12. If A,B are Hermitian matrices, then Tr(AB) ∈ R.

Proof. The proof is similar to Lemma 11. Let V QV † be the eigendecomposition of A. Then Q is
a real diagonal matrix. We have B = V PV †, where P := V †BV . Note that P † = V †B†V = P ,
so P has a real diagonal. Then Tr(AB) = Tr(V QV †V PV †) = Tr(V QPV †) = Tr(QP ) =∑n
i=1QiiPii. Since Qii, Pii ∈ R for all i, Tr(AB) ∈ R.

B Proof of Theorem 3

Proof of Theorem 3. Since `t is convex, for all ϕ ∈ K,

`t(Tr(Etωt))− `t(Tr(Etϕ)) ≤ `′t(Tr(Etωt)) [Tr(Etωt)− Tr(Etϕ)] = ∇t • (ωt − ϕ) .

(Recall that ‘•’ denotes the trace inner-product between complex matrices of the same dimensions.)
Summing over t,

T∑
t=1

[`t(Tr(Etωt))− `t(Tr(Etϕ))] ≤
T∑
t=1

[Tr(∇tωt)− Tr(∇tϕ)] .

Define gt(X) = ∇t •X , and g0(X) = 1
ηR(X), where R(X) is the negative von Neumann Entropy

of X (in nats). Denote D2
R := maxϕ,ϕ′∈K{R(ϕ)−R(ϕ′)}. By [Hazan, 2015, Lemma 5.2], for any

ϕ ∈ K, we have
T∑
t=1

[gt(ωt)− gt(ϕ)] ≤
T∑
t=1

∇t • (ωt − ωt+1) +
1

η
D2
R . (4)

Define Φt(X) = {η
∑t
s=1∇s •X +R(X)}, then the convex program in line 5 of Algorithm 1 finds

the minimizer of Φt(X) in K. The following claim shows that that the minimizer is always positive
definite (proof provided later in this section):

Claim 13. For all t ∈ {1, 2, ..., T}, we have ωt � 0.

For X � 0, we can write R(X) = Tr(X logX), and define

∇Φt(X) := η

t∑
s=1

∇s + I + logX .

The definition of ∇Φt(X) is analogous to the gradient of Φt(X) if the function is defined over real
symmetric matrices. Moreover, the following condition, similar to the optimality condition over a
real domain, is satisfied (proof provided later in this section).

Claim 14. For all t ∈ {1, 2, . . . , T − 1},

∇Φt(ωt+1) • (ωt − ωt+1) ≥ 0 . (5)
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Denote
BΦt(ωt‖ωt+1) := Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) • (ωt − ωt+1) .

Then by the Pinsker inequality (see, for example, Carlen and Lieb [2014] and the references therein),

1

2
‖ωt − ωt+1‖2Tr ≤ Tr(ωt logωt)− Tr(ωt logωt+1) = BΦt(ωt‖ωt+1) .

We have

BΦt(ωt‖ωt+1) = Φt(ωt)− Φt(ωt+1)−∇Φt(ωt+1) • (ωt − ωt+1)

≤ Φt(ωt)− Φt(ωt+1)

= Φt−1(ωt)− Φt−1(ωt+1) + η∇t • (ωt − ωt+1)

≤ η∇t • (ωt − ωt+1) , (6)

where the first inequality follows from Claim 14, and the second because Φt−1(ωt) ≤ Φt−1(ωt+1)
(ωt minimizes Φt−1(X)). Therefore

1

2
‖ωt − ωt+1‖2Tr ≤ η∇t • (ωt − ωt+1) . (7)

Let ‖M‖∗Tr denote the dual of the trace norm, i.e., the spectral norm of the matrix M . By Generalized
Cauchy-Schwartz [Bhatia, 1997, Exercise IV.1.14, page 90],

∇t • (ωt − ωt+1) ≤ ‖∇t‖∗Tr ‖ωt − ωt+1‖Tr

≤ ‖∇t‖∗Tr

√
2η∇t • (ωt − ωt+1) . by Eq. (7).

Rearranging,
∇t • (ωt − ωt+1) ≤ 2η‖∇t‖∗2Tr ≤ 2ηG2

R ,

where GR is an upper bound on ‖∇t‖∗Tr. Combining with Eq. (4), we arrive at the following bound

T∑
t=1

∇t • (ωt − ϕ) ≤
T∑
t=1

∇t • (ωt − ωt+1) +
1

η
D2
R ≤ 2ηTG2

R +
1

η
D2
R .

Taking η = DR

GR

√
2T

, we get
∑T
t=1∇t • (ωt − ϕ) ≤ 2DRGR

√
2T . Going back to the regret bound,

T∑
t=1

[`t(Tr(Etωt))− `t(Tr(Etϕ))] ≤
T∑
t=1

∇t • (ωt − ϕ) ≤ 2DRGR
√

2T .

We proceed to show that DR =
√

(log 2)n. Let ∆2n denote the set of probability distributions
over [2n]. By definition,

D2
R = max

ϕ,ϕ′∈K
{R(ϕ)−R(ϕ′)} = max

ϕ∈K
−R(ϕ) = max

λ∈42n

2n∑
i=1

λi log
1

λi
= n log 2 .

Since the dual norm of the trace norm is the spectral norm, we have

‖∇t‖∗Tr = ‖`′t(Tr(Etωt))Et‖ ≤ L‖Et‖ ≤ L .

Therefore
∑T
t=1[(`t(Tr(Etωt))− `t(Tr(Etϕ))] ≤ 2L

√
(2 log 2)nT .

Proof of Claim 13. Let P ∈ K be such that λmin(P ) = 0. Suppose P = V QV †, where Q is a
diagonal matrix with real values on the diagonal. Assume that Q1,1 = λmax(P ) and Q2n,2n =
λmin(P ) = 0. Let P ′ = V Q′V † such that Q′1,1 = Q1,1 − ε, Q′2n,2n = ε for ε < λmax(P ), and
Q′ii = Qii for i ∈ {2, 3, ..., 2n − 1}, so P ′ ∈ K. We show that there exists ε > 0 such that
Φt(P

′) ≤ Φt(P ). Expanding both sides of the inequality, we see that it is equivalent to showing that
for some ε,

η

t∑
s=1

∇s • (P ′ − P ) ≤ λ1(P ) log λ1(P )− λ1(P ′) log λ1(P ′)− ε log ε .
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Let α = λ1(P ) = Q1,1, and A = η
∑t
s=1∇s. The inequality then becomes

A • (P ′ − P ) ≤ α logα− (α− ε) log(α− ε)− ε log ε .

Observe that ‖A‖ ≤ η
∑t
s=1 ‖∇s‖ = η

∑t
s=1 ‖`′s(Tr(Esωs))Es‖ ≤ ηLt. So by the Generalized

Cauchy-Schwartz inequality,

A • (P ′ − P ) ≤ ηLt ‖P ′ − P‖Tr ≤ 2εηLt .

Since η, t, α, L are finite and − log ε → ∞ as ε → 0, there exists ε small such that 2ηLt ≤
logα− log ε. We have

2ηLtε ≤ ε logα− ε log ε

= α logα− (α− ε) logα− ε log ε

≤ α logα− (α− ε) log(α− ε)− ε log ε .

So there exists ε > 0 such that Φt(P
′) ≤ Φt(P ). If P has multiple eigenvalues that are 0, we can

repeat the proof and show that there exists a PD matrix P ′ such that Φt(P
′) ≤ Φt(P ). Since ωt is a

minimizer of Φt−1 and ω1 � 0, we conclude that ωt � 0 for all t.

Proof of Claim 14. Suppose∇Φt(ωt+1) • (ωt − ωt+1) < 0. Let a ∈ (0, 1) and X̄ = (1− a)ωt+1 +
aωt, then X̄ is a density matrix and is positive definite. Define4 = X̄ − ωt+1 = a(ωt − ωt+1). We
have

Φt(X̄)− Φt(ωt+1) = a∇Φt(ωt+1) • (ωt − ωt+1) +BΦt
(X̄‖ωt+1)

≤ a∇Φt(ωt+1) • (ωt − ωt+1) +
Tr(42)

λmin(ωt+1)

= a∇Φt(ωt+1) • (ωt − ωt+1) +
a2 Tr((ωt − ωt+1)2)

λmin(ωt+1)
.

The above inequality is due to [Audenaert and Eisert, 2005, Theorem 2]. Dividing by a on both sides,
we have

Φt(X̄)− Φt(ωt+1)

a
≤ ∇Φt(ωt+1) • (ωt − ωt+1) +

aTr((ωt − ωt+1)2)

λmin(ωt+1)
.

So we can find a small enough such that the right hand side of the above inequality is negative.
However, we would have Φt(X̄)− Φt(ωt+1) < 0, which is a contradiction. So ∇Φt(ωt+1) • (ωt −
ωt+1) ≥ 0.

C Proof of Theorem 4

Proof of Theorem 4. Note that for any density matrix ϕ, we haveMt •ϕ = 1
L`
′
t(Tr(Etωt)) Tr(Etϕ).

Then, the regret bound for Matrix Multiplicative Weights [Arora and Kale, 2016, Theorem 3.1]
implies that for any density matrix ϕ, we have

T∑
t=1

`′t(Tr(Etωt)) Tr(Etωt) ≤
T∑
t=1

`′t(Tr(Etωt)) Tr(Etϕ) + ηLT +
L log(2n)

η
.

Here, we used the bound M2
t • ωt ≤ 1. Next, since `t is convex, we have

`′t(Tr(Etωt)) Tr(Etωt)− `′t(Tr(Etωt)) Tr(Etϕ) ≥ `t(Tr(Etωt))− `t(Tr(Etϕ)) .

Using this bound, and the stated value of η, we get the required regret bound.

D Proof of Theorem 6

Proof of Theorem 6. Let ρ∗ := ρ⊗k be an amplified version of ρ, over a Hilbert space of dimension
D := 2kn, for some k to be set later. Throughout, we maintain a classical description of a D-
dimensional “amplified hypothesis state” ω∗t , which we view as being the state of k registers with n
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qubits each. We ensure that ω∗t is always symmetric under permuting the k registers. Given ω∗t , our
actual n-qubit hypothesis state ωt is then obtained by simply tracing out k − 1 of the registers.

Given an amplified hypothesis state ω∗, let E∗t be a two-outcome measurement that acts on ω∗ as
follows: it applies the measurement Et to each of the k registers separately, and accepts if and only if
the fraction of measurements that accept equals bt, up to an additive error at most ε/2.

Here is the learning strategy. Our initial hypothesis, ω∗0 := I/D, is the D-dimensional maximally
mixed state, corresponding to ω0 := I/2n. (The maximally mixed state corresponds to the notion
of a uniformly random quantum superposition.) For each t ≥ 1, we are given descriptions of the
measurements E1, . . . , Et, as well as real numbers b1, . . . , bt in [0, 1], such that |bi − Tr (Eiρ)| ≤
ε/3 for all i ∈ [t]. We would like to update our old hypothesis ω∗t−1 to a new hypothesis ω∗t , ideally
such that the difference |Tr (Et+1ωt)− Tr (Et+1ρ)| is small. We do so as follows:

• Given bt, as well classical descriptions of ω∗t−1 and Et, decide whether Tr
(
E∗t ω

∗
t−1

)
≥

1− ε
6 .

• If yes, then set ω∗t := ω∗t−1 (i.e., we do not change the hypothesis).

• Otherwise, let ω∗t be the state obtained by applying E∗t to ω∗t−1 and postselecting on E∗t
accepting. In other words, ω∗t :=M(ω∗t−1), whereM is the operator that postselects on
acceptance by E∗t (as defined above).

We now analyze this strategy. Call t “good” if Tr
(
E∗t ω

∗
t−1

)
≥ 1− ε

6 , and “bad” otherwise. Below,
we show that

(i) there are at most O
(
n
ε3 log n

ε

)
bad t’s, and

(ii) for each good t, we have |Tr(Etωt−1)− Tr(Etρ)| ≤ ε.

We start with claim (i). Suppose there have been ` bad t’s, call them t(1) , . . . , t(`), where ` ≤
(n/ε)

10 (we justify this last assumption later, with room to spare). Then there were ` events where
we postselected on E∗t accepting ω∗t−1. We conduct a thought experiment, in which the learning
strategy maintains a quantum register initially in the maximally mixed state I/D, and applies the
postselection operator corresponding to E∗t to the quantum register whenever t is bad. Let p be the
probability that all ` of these postselection events succeed. Then by definition,

p = Tr
(
E∗t(1)ω

∗
t(1)−1

)
· · ·Tr

(
E∗t(`)ω

∗
t(`)−1

)
≤
(

1− ε

6

)`
.

On the other hand, suppose counterfactually that we had started with the “true” hypothesis, ω∗0 :=
ρ∗ = ρ⊗k. In that case, we would have

Tr
(
E∗t(i)ρ

∗
)

= Pr
[
Et(i) accepts ρ between

(
bt(i) −

ε

2

)
k and

(
bt(i) +

ε

2

)
k times

]
≥ 1− 2 e−2k(ε/6)2

for all i. Here the second line follows from the condition that
∣∣Tr
(
Et(i)ρ

)
− bt(i)

∣∣ ≤ ε/6, together
with the Hoeffding bound.

We now make the choice k := C
ε2 log n

ε , for some constant C large enough that

Tr
(
E∗t(i)ρ

∗
)
≥ 1− ε10

400n10

for all i. So by Theorem 5, all ` postselection events would succeed with probability at least

1− 2

√
`

ε10

400n10
≥ 0.9 .

We may write the maximally mixed state, I/D, as

1

D
ρ∗ +

(
1− 1

D

)
ξ ,
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for some other mixed state ξ. For this reason, even when we start with initial hypothesis ω∗0 = I/D,
all ` postselection events still succeed with probability

p ≥ 0.9

D
.

Combining our upper and lower bounds on p now yields

0.9

2kn
≤
(

1− ε

6

)`
or

` = O

(
kn

ε

)
= O

( n
ε3

log
n

ε

)
,

which incidentally justifies our earlier assumption that ` ≤ (n/ε)
10.

It remains only to prove claim (ii). Suppose that

Tr
(
E∗t ω

∗
t−1

)
≥ 1− ε

6
. (8)

Imagine measuring k quantum registers prepared in the joint state ω∗t−1, by applying Et to each regis-
ter. Since the state ω∗t−1 is symmetric under permutation of the k registers, we have that Tr(Etωt−1),
the probability that Et accepts the first register, equals the expected fraction of the k registers that Et
accepts. The bound in Eq. (8) means that, with probability at least 1 − ε

6 over the measurement
outcomes, the fraction of registers which Et accepts is within ±ε/2 of bt. The k measurement
outcomes are not necessarily independent, but the fraction of registers accepted never differs from bt
by more than 1. So by the union bound, we have

|Tr(Etωt−1)− bt| ≤
ε

2
+
ε

6
=

2ε

3
.

Hence by the triangle inequality,

|Tr(Etωt−1)− Tr(Etρ)| ≤ 2ε

3
+ |bt − Tr(Etρ)| ≤ ε ,

as claimed.

E Proof of Corollary 7

We begin with a bound for a generalization of “random access coding” (Nayak [1999], Ambainis
et al. [2002]) or what is also known as the Index function problem in communication complexity.
The generalization was called “serial encoding” by Nayak [1999] and arose in the context of quantum
finite automata. The serial encoding problem is also called Augmented Index in the literature on
streaming algorithms.

The following theorem places a bound on how few qubits serial encoding may use. In other words,
it bounds the number of bits we may encode in an n-qubit quantum state when an arbitrary bit out
of the n may be recovered well via a two-outcome measurement. The bound holds even when the
measurement for recovering yi may depend adaptively on the previous bits y1y2 · · · yi−1 of y, which
we need not know.

Theorem 15 (Nayak [1999]). Let k and n be positive integers. For each k-bit string y := y1 · · · yk,
let ρy be an n-qubit mixed state such that for each i ∈ {1, 2, . . . , k}, there is a two-outcome
measurement E that depends only on i and the prefix y1y2 · · · yi−1, and has the following properties

(i) if yi = 0 then Tr(Eρy) ≤ p, and

(ii) if yi = 1 then Tr(Eρy) ≥ 1− p,

where p ∈ [0, 1/2] is the error in predicting the bit yi at vertex v. (We say ρy “serially encodes” y.)
Then n ≥ (1−H(p))k.
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In Appendix F, we present a strengthening of this bound when the bits of y may be only be recovered
in an adaptive order that is a priori unknown. The stronger bound may be of independent interest.

In the context of online learning, the measurements used in recovering bits from a serial encoding are
required to predict the bits with probability bounded away from given “pivot points”. Theorem 15
may be specialized to this case as in Corollary 7, which we prove below.

Proof of Corollary 7. This is a consequence of Theorem 15, when combined with the following
observation. Given the measurement operator E′, parameter ε, and pivot point av as in the statement
of the corollary, we define a new two-outcome measurement E to be associated with vertex v:

E :=


E′

2av
if av ≥ 1

2 , and

1
2(1−av) (E′ + (1− 2av)I) if av < 1

2 .

The measurement E may be interpreted as producing a fixed outcome 0 or 1 with some probability
depending on av, and applying the given measurement E′ with the remaining probability, so as to
translate the pivot point av to 1/2.

We may verify that the operator E satisfies the requirements (i) and (ii) of Theorem 15 with p :=
(1 − ε)/2. We therefore conclude that n ≥ (1 − H((1 − ε)/2)k. Since H(1/2 − δ) ≤ 1 − 2δ2,
for δ ∈ [0, 1/2], we get k = O

(
n/ε2

)
.

F Lower bound on quantum random access codes

Here we present an alternative proof of the linear lower bound on quantum random access codes Nayak
[1999], Ambainis et al. [2002]. It goes via the Matrix Multiplicative Weights algorithm, but gives us
a slightly weaker dependence on decoding error. We also present an extension of the original bound
to more general codes. These may be of independent interest.
Theorem 16. Let k and n be positive integers with k > n. For all k-bit strings y = y1, y2, . . . , yk,
let ρy be the n-qubit quantum mixed state that encodes y. Let p ∈ [0, 1/2] be an error tolerance
parameter. Suppose that there exist measurements E1, E2, . . . , Ek such that for all y ∈ {0, 1}k and
all i ∈ [k], we have |Tr(Eiρy)− yi| ≤ p. Then n ≥ (1/2−p)2

4(log 2) k.

Proof. Run the MMW algorithm described in Section 3.2 with the absolute loss function `t(x) :=
|x− yt| for t = 1, 2, . . . , k iterations. In iteration t, provide as feedback Et and the label yt ∈ {0, 1}
defined as follows:

yt =

{
0 if Tr(Etωt) >

1
2

1 if Tr(Etωt) ≤ 1
2 .

Let y ∈ {0, 1}k be the bit string formed at the end of the process. Then it is easy to check the
following two properties by the construction of the labels: for any t ∈ [k], we have

1. `t(ωt) = |Tr(Etωt)− yt| ≥ 1/2, and

2. `t(ρy)) = |Tr(Etρy)− yt| ≤ p.

By Theorem 4, the MMW algorithm with absolute loss has a regret bound of 2
√

(log 2)kn. So the

above bounds imply that k/2 ≤ pk + 2
√

(log 2)kn, which implies that n ≥ (1/2−p)2
4 log 2 k.

Note that in the above proof, we may allow the measurement in the ith iteration, i.e., the one used
to decode the ith bit, to depend on the previous bits y1, y2, . . . , yi−1. Thus, the lower bound also
applies to serial encoding.

Next we consider encoding of bit-strings y into quantum states ρy with a more relaxed notion of
decoding. The encoding is such that given the encoding for an unknown string y, some bit i1 of y
can be decoded. Given the value yi1 of of this bit, a new bit i2 of y can be decoded, and the index i2
may depend on yi1 . More generally, given a sequence of bits yi1yi2 . . . yij that may be decoded in
this manner, a new bit ij+1 of y can be decoded, for any j ∈ {0, 1, . . . , k − 1}. Here, the index ij+1
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and the measurement used to recover the corresponding bit of y may depend on the sequence of
bits yi1yi2 . . . yij . We show that even with this relaxed notion of decoding, we cannot encode more
than a linear number of bits into an n-qubit state.

We first formalize the above generalization of random access encoding. We view a complete binary
tree of depth d ≥ 0 as consisting of vertices v ∈ {0, 1}≤d. The root of the tree is labeled by
the empty string ε and each internal vertex v of the tree has two children v0, v1. We specify an
adaptive sequence of measurements through a “measurement decision tree”. The tree specifies the
measurement to be applied next, given a prefix of such measurements along with the corresponding
outcomes.
Definition 1. Let k be a positive integer. A measurement decision tree of depth k is a complete binary
tree of depth k, each internal vertex v of which is labeled by a triple (S, i, E), where S ∈ {1, . . . , k}l
is a sequence of length l := |v| of distinct indices, i ∈ {1, . . . , k} is an index that does not occur in S,
and E is a two-outcome measurement. The sequences associated with the children v0, v1 of v (if
defined) are both equal to (S, i).

For a k-bit string y, and sequence S := (i1, i2, . . . , il) with 0 ≤ l ≤ k and ij ∈ {1, 2, . . . , k}, let yS
denote the substring yi1yi2 · · · yil .
Theorem 17. Let k and n be positive integers. For each k-bit string y := y1 · · · yk, let ρy be
an n-qubit mixed state (we say ρy “encodes” y). Suppose there exists a measurement decision tree T
of depth k such that for each internal vertex v of T and all y ∈ {0, 1}k with yS = v, where (S, i, E)
is the triple associated with the vertex v, we have |Tr(Eρy)− yi| ≤ pv, where pv ∈ [0, 1/2] is the
error in predicting the bit yi at vertex v. Then n ≥ (1 − H(p))k, where H is the binary entropy
function, and p := 1

k

∑k
l=1

1
2l

∑
v∈{0,1}l pv is the average error.

Proof. Let Y be a uniformly random k-bit string. We define a random permutation Π of {1, . . . , k}
correlated with Y that is given by the sequence of measurements in the root to leaf path corresponding
to Y . More formally, let Π(1) := i, where i is the index associated with the root of the measurement
decision tree T . For l ∈ {2, . . . , k}, let Π(l) := j, where j is the index associated with the
vertex YΠ(1)YΠ(2) · · ·YΠ(l−1) of the tree T . Let Q be a quantum register such that the joint state
of Y Q is

1

2k

∑
y∈{0,1}k

|y〉〈y| ⊗ ρy .

The quantum mutual information between Y and Q is bounded as I(Y : Q) ≤ |Q| = n. Imagine
having performed the first l − 1 measurements given by the tree T on state Q and having obtained
the correct outcomes YΠ(1)YΠ(2) · · ·YΠ(l−1). These outcomes determine the index Π(l) of the next
bit that may be learned. By the Chain Rule, for any l ∈ {1, . . . , k − 1},

I
(
YΠ(l) · · ·YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)
= I
(
YΠ(l) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)
+ I
(
YΠ(l+1) · · ·YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(l)

)
.

Let E be the operator associated with the vertex V := YΠ(1)YΠ(2) · · ·YΠ(l−1). By hypothesis, the
measurementE predicts the bit YΠ(l) with error at most pV . Using the Fano Inequality, and averaging
over the prefix V , we get

I
(
YΠ(l) : Q | YΠ(1)YΠ(2) · · ·YΠ(l−1)

)
≥ EV (1−H(pV )) .

Applying this repeatedly for l ∈ {1, . . . , k − 1}, we get

I(Y : Q) = I
(
YΠ(1) : Q

)
+ I
(
YΠ(2) : Q | YΠ(1)

)
+ I
(
YΠ(3) : Q|YΠ(1)YΠ(2)

)
+ · · ·+ I

(
YΠ(k) : Q | YΠ(1)YΠ(2) · · ·YΠ(k−1)

)
≥

k∑
l=1

1

2l

∑
v∈{0,1}l

(1−H(pv))

≥ (1−H(p))k ,

by concavity of the binary entropy function, and the definition of p.
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