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Abstract

Suppose we have many copies of an unknown n-qubit state ⇢. We measure some
copies of ⇢ using a known two-outcome measurement E1, then other copies using
a measurement E2, and so on. At each stage t, we generate a current hypothesis !t

about the state ⇢, using the outcomes of the previous measurements. We show that
it is possible to do this in a way that guarantees that |Tr(Ei!t)� Tr(Ei⇢)|, the er-
ror in our prediction for the next measurement, is at least " at most O

�
n/"2

�
times.

Even in the “non-realizable” setting—where there could be arbitrary noise in the
measurement outcomes—we show how to output hypothesis states that incur at
most O(

p
Tn ) excess loss over the best possible state on the first T measurements.

These results generalize a 2007 theorem by Aaronson on the PAC-learnability of
quantum states, to the online and regret-minimization settings. We give three
different ways to prove our results—using convex optimization, quantum postse-
lection, and sequential fat-shattering dimension—which have different advantages
in terms of parameters and portability.

1 Introduction

State tomography is a fundamental task in quantum computing of great practical and theoretical
importance. In a typical scenario, we have access to an apparatus that is capable of producing many
copies of a quantum state, and we wish to obtain a description of the state via suitable measurements.
Such a description would allow us, for example, to check the accuracy with which the apparatus
constructs a specific target state.

How many single-copy measurements are needed to “learn” an unknown n-qubit quantum state ⇢?
Suppose we wish to reconstruct the full 2n ⇥ 2n density matrix, even approximately, to within "
in trace distance. If we make no assumptions about ⇢, then it is straightforward to show that the
number of measurements needed grows exponentially with n. In fact, even when we allow joint
measurement of multiple copies of the state, an exponential number of copies of ⇢ are required (see,
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e.g., O’Donnell and Wright [2016], Haah et al. [2017]). (A “joint measurement” of two or more
states on disjoint sequences of qubits is a single measurement of all the qubits together.)

Suppose, on the other hand, that there is some probability distribution D over possible yes/no
measurements, where we identify the measurements with 2n ⇥ 2n Hermitian matrices E with
eigenvalues in [0, 1]. Further suppose we are only concerned about learning the state ⇢ well
enough to predict the outcomes of most measurements E drawn from D—where “predict” means
approximately calculating the probability, Tr(E⇢), of a “yes” result. Then for how many (known)
sample measurements Ei, drawn independently from D, do we need to know the approximate value
of Tr(Ei⇢), before we have enough data to achieve this?

Aaronson [2007] proved that the number of sample measurements needed, m, grows only linearly
with the number of qubits n. What makes this surprising is that it represents an exponential reduction
compared to full quantum state tomography. Furthermore, the prediction strategy is extremely simple.
Informally, we merely need to find any “hypothesis state” ! that satisfies Tr(Ei!) ⇡ Tr(Ei⇢) for
all the sample measurements E1, . . . , Em. Then with high probability over the choice of sample
measurements, that hypothesis ! necessarily “generalizes”, in the sense that Tr(E!) ⇡ Tr(E⇢) for
most additional E’s drawn from D. The learning theorem led to followup work including a full
characterization of quantum advice (Aaronson and Drucker [2014]); efficient learning for stabilizer
states (Rocchetto [2017]); the “shadow tomography” protocol (Aaronson [2018]); and recently, the
first experimental demonstration of quantum state PAC-learning (Rocchetto et al. [2017]).

A major drawback of the learning theorem due to Aaronson is the assumption that the sample
measurements are drawn independently from D—and moreover, that the same distribution D governs
both the training samples, and the measurements on which the learner’s performance is later tested.
It has long been understood, in computational learning theory, that these assumptions are often
unrealistic: they fail to account for adversarial environments, or environments that change over
time. This is precisely the state of affairs in current experimental implementations of quantum
information processing. Not all measurements of quantum states may be available or feasible in a
specific implementation, which measurements are feasible is dictated by Nature, and as we develop
more control over the experimental set-up, more sophisticated measurements become available. The
task of learning a state prepared in the laboratory thus takes the form of a game, with the theorist
on one side, and the experimentalist and Nature on the other: the theorist is repeatedly challenged
to predict the behaviour of the state with respect to the next measurement that Nature allows the
experimentalist to realize, with the opportunity to refine the hypothesis as more measurement data
become available.

It is thus desirable to design learning algorithms that work in the more stringent online learning model.
Here the learner is presented a sequence of input points, say x1, x2, . . ., one at a time. Crucially, there
is no assumption whatsoever about the xt’s: the sequence could be chosen adversarially, and even
adaptively, which means that the choice of xt might depend on the learner’s behavior on x1, . . . , xt�1.
The learner is trying to learn some unknown function f(x), about which it initially knows only that f
belongs to some hypothesis class H—or perhaps not even that; we also consider the scenario where
the learner simply tries to compete with the best predictor in H, which might or might not be a good
predictor. The learning proceeds as follows: for each t, the learner first guesses a value yt for f(xt),
and is then told the true value f(xt), or perhaps only an approximation of this value. Our goal is
to design a learning algorithm with the following guarantee: regardless of the sequence of xt’s, the
learner’s guess, yt, will be far from the true value f(xt) at most k times (where k, of course, is as
small as possible). The xt’s on which the learner errs could be spaced arbitrarily; all we require is
that they be bounded in number.

This leads to the following question: can the learning theorem established by Aaronson [2007] be
generalized to the online learning setting? In other words: is it true that, given a sequence E1, E2, . . .
of yes/no measurements, where each Et is followed shortly afterward by an approximation of
Tr(Et⇢), there is a way to anticipate the Tr(Et⇢) values by guesses yt 2 [0, 1], in such a way that
|yt � Tr(Et⇢)| > " at most, say, O(n) times (where " > 0 is some constant, and n again is the
number of qubits)? The purpose of this paper is to provide an affirmative answer.

Throughout the paper, we consider only two-outcome measurements of an n qubit mixed state ⇢, and
we specify such a measurement by a 2n ⇥ 2n Hermitian matrix E with eigenvalues in [0, 1]. We say
that E “accepts” ⇢ with probability Tr(E⇢) and “rejects” ⇢ with probability 1� Tr(E⇢). We prove
that:
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Theorem 1. Let ⇢ be an n-qubit mixed state, and let E1, E2, . . . be a sequence of 2-outcome
measurements that are revealed to the learner one by one, each followed by a value bt 2 [0, 1]
such that |Tr(Et⇢)� bt|  "/3. Then there is an explicit strategy for outputting hypothesis states
!1,!2, . . . such that |Tr(Et!t)� Tr(Et⇢)| > " for at most O

�
n
"2

�
values of t.

We also prove a theorem for the so-called regret minimization model (i.e., the “non-realizable case”),
where we make no assumption about the input data arising from an actual quantum state, and our
goal is simply to do not much worse than the best hypothesis state that could be found with perfect
foresight. In this model, the measurements E1, E2, . . . are presented to a learner one-by-one. In
iteration t, after seeing Et, the learner is challenged to output a hypothesis state !t, and then suffers
a “loss” equal to `t(Tr(Et!t)) where `t is a real function that is revealed to the learner. Important
examples of loss functions are L1 loss, when `t(z) := |z � bt|, and L2 loss, when `t(z) := (z � bt)

2,
where bt 2 [0, 1]. The number bt may be an approximation of Tr(Et⇢) for some fixed but unknown
quantum state ⇢, but is allowed to be arbitrary in general. In particular, the pairs (Et, bt) may not
be consistent with any quantum state. Define the regret RT , after T iterations, to be the amount by
which the actual loss of the learner exceeds the loss of the best single hypothesis:

RT :=
TX

t=1

`t(Tr(Et!t))�min
'

TX

t=1

`t(Tr(Et')) .

The learner’s objective is to minimize regret. We show that:
Theorem 2. Let E1, E2, . . . be a sequence of two-outcome measurements on an n-qubit state
presented to the learner, and `1, `2, . . . be the corresponding loss functions revealed in successive
iterations in the regret minimization model. Suppose `t is convex and L-Lipschitz; in particular,
for every x 2 R, there is a sub-derivative `0t(x) such that |`0t(x)|  L. Then there is an explicit
learning strategy that guarantees regret RT = O(L

p
Tn ) for all T . This is so even assuming the

measurement Et and loss function `t are chosen adaptively, in response to the learner’s previous
behavior.

Specifically, the algorithm applies to L1 loss and L2 loss, and achieves regret O(
p
Tn ) for both.

The online strategies we present enjoy several advantages over full state tomography, and even over
“state certification”, in which we wish to test whether a given quantum state is close to a desired
state or far from it. Optimal algorithms for state tomography (O’Donnell and Wright [2016], Haah
et al. [2017]) or certification (Bădescu et al. [2017]) require joint measurements of an exponential
number of copies of the quantum state, and assume the ability to perform noiseless, universal quantum
computation. On the other hand, the algorithms implicit in Theorems 1 and 2 involve only single-copy
measurements, allow for noisy measurements, and capture ground reality more closely. They produce
a hypothesis state that mimics the unknown state with respect to measurements that can be performed
in a given experimental set-up, and the accuracy of prediction improves as the set of available
measurements grows. For example, in the realizable case, i.e., when the data arise from an actual
quantum state, the average L1 loss per iteration is O(

p
n/T ). This tends to zero, as the number of

measurements becomes large. Note that L1 loss may be as large as 1/2 per iteration in the worst
case, but this occurs at most O(

p
nT ) times. Finally, the algorithms have run time exponential in the

number of qubits in each iteration, but are entirely classical. Exponential run time is unavoidable, as
the measurements are presented explicitly as 2n ⇥ 2n matrices, where n is the number of qubits. If
we were required to output the hypothesis states, the length of the output—also exponential in the
number of qubits—would again entail exponential run time.

It is natural to wonder whether Theorems 1 and 2 leave any room for improvement. Theorem 1 is
asymptotically optimal in its mistake bound of O(n/"2); this follows from the property that n-qubit
quantum states, considered as a hypothesis class, have "-fat-shattering dimension ⇥(n/"2) (see, for
example, Aaronson [2007]). On the other hand, there is room to improve Theorem 2. The bounds
of which we are aware are ⌦(

p
Tn ) for the L1 loss (see, e.g., [Arora et al., 2012, Theorem 4.1]) in

the non-realizable case and ⌦(n) for the L2 loss in the realizable case, when the feedback consists
of the measurement outcomes. (The latter bound, as well as an ⌦(

p
Tn ) bound for L1 loss in the

same setting, come from considering quantum mixed states that consist of n independent classical
coins, each of which could land heads with probability either 1/2 or 1/2 + ". The paramater " is set
to

p
n/T .)
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We mention an application of Theorem 1, that appears in simultaneous work. Aaronson [2018]
has given an algorithm for the so-called shadow tomography problem. Here we have an unknown
D-dimensional pure state ⇢, as well as known two-outcome measurements E1, . . . , Em. Our goal is
to approximate Tr(Ei⇢), for every i, to within additive error ". We would like to do this by measuring
⇢⌦k, where k is as small as possible. Surprisingly, Aaronson [2018] showed that this can be achieved
with k = eO((logM)4(logD)/"5), that is, a number of copies of ⇢ that is only polylogarithmic in
both D and M . One component of his algorithm is essentially tantamount to online learning with
eO(n/"3) mistakes—i.e., the learning algorithm we present in Section 4 of this paper. However, by
using Theorem 1 from this paper in a black-box manner, we can improve the sample complexity of
shadow tomography to eO((logM)4(logD)/"4). Details appear in (Aaronson [2018]).

To maximize insight, in this paper we give three very different approaches to proving Theorems 1
and 2 (although we do not prove every statement with all three approaches). Our first approach is to
adapt techniques from online convex optimization to the setting of density matrices, which in general
may be over a complex Hilbert space. This requires extending standard techniques to cope with
convexity and Taylor approximations, which are widely used for functions over the real domain, but
not over the complex domain. We also give an efficient iterative algorithm to produce predictions.
This approach connects our problem to the modern mainstream of online learning algorithms, and
achieves the best parameters (as stated in Theorems 1 and 2).

Our second approach is via a postselection-based learning procedure, which starts with the maximally
mixed state as a hypothesis and then repeatedly refines it by simulating postselected measurements.
This approach builds on earlier work due to Aaronson [2005], specifically the proof of BQP/qpoly ✓

PP/poly. The advantage is that it is almost entirely self-contained, requiring no “power tools” from
convex optimization or learning theory. On the other hand, the approach does not give optimal
parameters, and we do not know how to prove Theorem 2 with it.

Our third approach is via an upper-bound on the so-called sequential fat-shattering dimension of
quantum states, considered as a hypothesis class (see, e.g., Rakhlin et al. [2015]). In the original
quantum PAC-learning theorem by Aaronson, the key step was to upper-bound the so-called "-fat-
shattering dimension of quantum states considered as a hypothesis class. Fat-shattering dimension is
a real-valued generalization of VC dimension. One can then appeal to known results to get a sample-
efficient learning algorithm. For online learning, however, bounding the fat-shattering dimension
no longer suffices; one instead needs to consider a possibly-larger quantity called sequential fat-
shattering dimension. However, by appealing to a lower bound due to Nayak [1999], Ambainis et al.
[2002] for a variant of quantum random access codes, we are able to upper-bound the sequential
fat-shattering dimension of quantum states. Using known results—in particular, those due to Rakhlin
et al. [2015]—this implies the regret bound in Theorem 2, up to a multiplicative factor of log3/2 T .
The statement that the hypothesis class of n-qubit states has "-sequential fat-shattering dimension
O(n/"2) might be of independent interest: among other things, it implies that any online learning
algorithm that works given bounded sequential fat-shattering dimension, will work for online learning
of quantum states. We also give an alternative proof for the lower bound due to Nayak for quantum
random access codes, and extend it to codes that are decoded by what we call measurement decision
trees. We expect these also to be of independent interest.

1.1 Structure of the paper

We start by describing background and the technical learning setting as well as notations used
throughout (Section 2). In Section 3 we give the algorithms and main theorems derived using
convexity arguments and online convex optimization. In Section 4 we state the main theorem using
a postselection algorithm. In Section 5 we give a sequential fat-shattering dimension bound for
quantum states and its implication for online learning of quantum states. Proofs of the theorems and
related claims are presented in the appendices.

2 Preliminaries and definitions

We define the trace norm of a matrix M as kMkTr := Tr
p

MM†, where M† is the adjoint of M . We
denote the ith eigenvalue of a Hermitian matrix X by �i(X), its minimum eigenvalue by �min(X),
and its maximum eigenvalue by �max(X). We sometimes use the notation X • Y to denote the trace
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inner-product Tr(X†Y ) between two complex matrices of the same dimensions. By ‘log’ we denote
the natural logarithm, unless the base is explicitly mentioned.

An n-qubit quantum state ⇢ is an element of Cn, where Cn is the set of all trace-1 positive semi-
definite (PSD) complex matrices of dimension 2n:

Cn = {M 2 C2n⇥2n , M = M† , M ⌫ 0 , Tr(M) = 1} .

Note that Cn is a convex set. A two-outcome measurement of an n-qubit state is defined by a 2n ⇥ 2n

Hermitian matrix E with eigenvalues in [0, 1]. The measurement E “accepts” ⇢ with probability
Tr(E⇢), and “rejects” with probability 1 � Tr(E⇢). For the algorithms we present in this article,
we assume that a two-outcome measurement is specified via a classical description of its defining
matrix E. In the rest of the article, unless mentioned otherwise, a “measurement” refers to a “two-
outcome measurement”. We refer the reader to the book by Watrous [2018] for a more thorough
introduction to the relevant concepts from quantum information.

Online learning and regret. In online learning of quantum states, we have a sequence of itera-
tions t = 1, 2, 3, . . . of the following form. First, the learner constructs a state !t 2 Cn; we say that
the learner “predicts” !t. It then suffers a “loss” `t(Tr(Et!t)) that depends on a measurement Et,
both of which are presented by an adversary. Commonly used loss functions are L2 loss (also called
“mean square error”), given by

`t(z) := (z � bt)
2 ,

and L1 loss (also called “absolute loss”), given by

`t(z) := |z � bt| ,

where bt 2 [0, 1]. The parameter bt may be an approximation of Tr(Et⇢) for some fixed quantum
state ⇢ not known to the learner, obtained by measuring multiple copies of ⇢. However, in general,
the parameter is allowed to be arbitrary.

The learner then “observes” feedback from the measurement Et; the feedback is also provided by the
adversary. The simplest feedback is the realization of a binary random variable Yt such that

Yt =

⇢
1 with probability Tr(Et⇢) , and
0 with probability 1� Tr(Et⇢) .

Another common feedback is a number bt as described above, especially in case that the learner
suffers L1 or L2 loss.

We would like to design a strategy for updating !t based on the loss, measurements, and feedback in
all the iterations so far, so that the learner’s total loss is minimized in the following sense. We would
like that over T iterations (for a number T known in advance), the learner’s total loss is not much
more than that of the hypothetical strategy of outputting the same quantum state ' at every time step,
where ' minimizes the total loss with perfect hindsight. Formally this is captured by the notion of
regret RT , defined as

RT :=
TX

t=1

`t(Tr(Et!t))� min
'2Cn

TX

t=1

`t(Tr(Et')) .

The sequence of measurements Et can be arbitrary, even adversarial, based on the learner’s previous
actions. Note that if the loss function is given by a fixed state ⇢ (as in the case of mean square error),
the minimum total loss would be 0. This is called the “realizable” case. However, in general, the loss
function presented by the adversary need not be consistent with any quantum state. This is called the
“non-realizable” case.

A special case of the online learning setting is called agnostic learning; here the measurements Et

are drawn from a fixed and unknown distribution D. The setting is called “agnostic” because we still
do not assume that the losses correspond to any actual state ⇢ (i.e., the setting may be non-realizable).

Online mistake bounds. In some online learning scenarios the quantity of interest is not the mean
square error, or some other convex loss, but rather simply the total number of “mistakes” made. For
example, we may be interested in the number of iterations in which the predicted probability of
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acceptance Tr(Et!t) is more than "-far from the actual value Tr(Et⇢), where ⇢ is again a fixed state
not known to the learner. More formally, let

`t(Tr(Et!t)) := |Tr(Et!t)� Tr(Et⇢)|

be the absolute loss function. Then the goal is to bound the number of iterations in which
`t(Tr(Et!t)) > ", regardless of the sequence of measurements Et presented by the adversary.
We assume that in this setting,the adversary provides as feedback an approximation bt 2 [0, 1] that
satisfies |Tr(Et⇢)� bt| 

"
3 .

3 Online learning of quantum states

In this section, we use techniques from online convex optimization to minimize regret. The same
algorithms may be adapted to also minimize the number of mistakes made.

3.1 Regularized Follow-the-Leader

We first follow the template of the Regularized Follow-the-Leader algorithm (RFTL; see, for example,
[Hazan, 2015, Chapter 5]). The algorithm below makes use of von Neumann entropy, which relates
to the Matrix Exponentiated Gradient algorithm (Tsuda et al. [2005]).

Algorithm 1 RFTL for Quantum Tomography
1: Input: T , K := Cn, ⌘ < 1

2
2: Set !1 := 2�n .
3: for t = 1, . . . , T do
4: Predict !t. Consider the convex and L-Lipschitz loss function `t : R ! R given by measure-

ment Et : `t(Tr(Et')). Let `0t(x) be a sub-derivative of `t with respect to x. Define

rt := `0t(Tr(Et!t))Et .

5: Update decision according to the RFTL rule with von Neumann entropy:

!t+1 := argmin
'2K

(
⌘

tX

s=1

Tr(rs') +
2nX

i=1

�i(') log �i(')

)
. (1)

6: end for

Remark 1: The mathematical program in Eq. (1) is convex, and thus can be solved in polynomial
time in the dimension, which is 2n.

Theorem 3. Setting ⌘ =
q

(log 2)n
2TL2 , the regret of Algorithm 1 is bounded by 2L

p
(2 log 2)Tn .

Remark 2: In the case where the feedback is an independent random variable Yt, where Yt = 0
with probability 1� Tr(Et⇢) and Yt = 1 with probability Tr(Et⇢) for a fixed but unknown state ⇢,
we define rt in Algorithm 1 as rt := 2(Tr(Et!t) � Yt)Et. Then E[rt] is the gradient of the L2

loss function where we receive precise feedback Tr(Et⇢) instead of Yt. It follows from the proof of
Theorem 3 that the expected L2 regret of Algorithm 1, namely

E
"

TX

t=1

(Tr(Et!t)� Tr(Et⇢))
2

#
,

is bounded by O(
p
Tn ).

The proof of Theorem 3 appears in Appendix B. The proof is along the lines of [Hazan, 2015,
Theorem 5.2], except that the loss function does not take a raw state as input, and our domain for
optimization is complex. Therefore, the mean value theorem does not hold, which means we need
to approximate the Bregman divergence instead of replacing it by a norm as in the original proof.
Another subtlety is that convexity needs to be carefully defined with respect to the complex domain.

6



3.2 Matrix Multiplicative Weights

The Matrix Multiplicative Weights (MMW) algorithm [Arora and Kale, 2016] provides an alternative
means of proving Theorem 2. The algorithm follows the template of Algorithm 1 with step 5 replaced
by the following update rule:

!t+1 :=
exp(� ⌘

L

Pt
⌧=1 r⌧ )

Tr(exp(� ⌘
L

Pt
⌧=1 r⌧ ))

. (2)

In the notation of Arora and Kale [2016], this algorithm is derived using the loss matrices Mt =
1
Lrt = 1

L`
0
t(Tr(Et!t))Et. Since kEtk  1 and |`0t(Tr(Et!t))|  L, we have kMtk  1, as

requred in the analysis of the Matrix Multiplicative Weights algorithm. We have the following regret
bound for the algorithm (proved in Appendix C):

Theorem 4. Setting ⌘ =
q

(log 2)n
4T , the regret of the algorithm based on the update rule (2) is

bounded by 2L
p
(log 2)Tn.

3.3 Proof of Theorem 1

Consider either the RFTL or MMW based online learning algorithm described in the previous
subsections, with the 1-Lipschitz convex absolute loss function `t(x) = |x � bt|. We run the
algorithm in a sub-sequence of the iterations, using only the measurements presented in those
iterations. The subsequence of iterations is determined as follows. Let !t denote the hypothesis
maintained by the algorithm in iteration t. We run the algorithm in iteration t if `t(Tr(Et!t)) >

2"
3 .

Note that whenever |Tr(Et!t) � Tr(Et⇢)| > ", we have `t(Tr(Et!t)) > 2"
3 , so we update the

hypothesis according to the RFTL/MMW rule in that iteration.

As we explain next, the algorithm makes at most O( n
"2 ) updates regardless of the number of measure-

ments presented (i.e., regardless of the number of iterations), giving the required mistake bound. For
the true quantum state ⇢, we have `t(Tr(Et⇢)) <

"
3 for all t. Thus if the algorithm makes T updates

(i.e., we run the algorithm in T of the iterations), the regret bound implies that 2"
3 T 

"
3T+O(

p
Tn ).

Simplifying, we get the bound T = O( n
"2 ), as required.

4 Learning Using Postselection

In this section, we give a direct route to proving a slightly weaker version of Theorem 1: one that
does not need the tools of convex optimization, but only tools intrinsic to quantum information.

In the following, by a “register” we mean a designated sequence of qubits. Given a two-outcome
measurement E on n-qubits states, we define an operator M that “postselects” on acceptance
by E. (While a measurement results in a random outcome distributed according to the probability
of acceptance or rejection, postselection is a hypothetical operation that produces an outcome of
one’s choice with certainty.) Let U be any unitary operation on n + 1 qubits that maps states of
the form | i|0i to

p
E | i|0i +

p
� E | i|1i. Such a unitary operation always exists (see, e.g.,

[Watrous, 2018, Theorem 2.42]). Denote the (n+ 1)th qubit by register B. Let ⇧ := ⌦ |0ih0| be
the orthogonal projection onto states that equal |0i in register B. Then we define the operator M as

M(') :=
1

Tr(E')
TrB

�
U�1⇧U ('⌦ |0ih0|)U�1⇧U

�
, (3)

if Tr(E') 6= 0, and M(') := 0 otherwise. Here, TrB is the partial trace operator over qubit B [Wa-
trous, 2018, Section 1.1]. This operator M has the effect of mapping the quantum state ' to the
(normalized) post-measurement state when we perform the measurement E and get outcome “yes”
(i.e., the measurement “accepts”). We emphasize that we use a fresh ancilla qubit initialized to
state |0i as register B in every application of the operator M. We say that the postselection succeeds
with probability Tr(E').

We need a slight variant of a well-known result, which Aaronson called the “Quantum Union Bound”
(see, for example, Aaronson [2006, 2016], Wilde [2013]).
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Theorem 5 (variant of Quantum Union Bound; Gao [2015]). Suppose we have a sequence of two-
outcome measurements E1, . . . , Ek, such that each Ei accepts a certain mixed state'with probability
at least 1�". Consider the corresponding operators M1,M2, . . . ,Mk that postselect on acceptance
by the respective measurements E1, E2, . . . , Ek. Let e' denote the state (MkMk�1 · · ·M1)(')
obtained by applying each of the k postselection operations in succession. Then the probability that
all the postselection operations succeed, i.e., the k measurements all accept ', is at least 1� 2

p
k".

Moreover, ke'� 'kTr  4
p
k".

We may infer the above theorem by applying Theorem 1 from (Gao [2015]) to the state ' augmented
with k ancillary qubits B1, B2, . . . , Bk initialized to 0, and considering k orthogonal projection
operators U�1

i ⇧iUi, where the unitary operator Ui and the projection operator ⇧i are as defined for
the postselection operation Mi for Ei. The ith projection operator U�1

i ⇧iUi acts on the registers
holding ' and the ith ancillary qubit Bi.

We prove the main result of this section using suitably defined postselection operators in an online
learning algorithm (proof in Appendix D):
Theorem 6. Let ⇢ be an unknown n-qubit mixed state, let E1, E2, . . . be a sequence of two-outcome
measurements, and let " > 0. There exists a strategy for outputting hypothesis states !0,!1, . . .,
where !t depends only on E1, . . . , Et and real numbers b1, . . . , bt in [0, 1], such that as long as
|bt � Tr(Et⇢)|  "/3 for every t, we have

|Tr(Et+1!t)� Tr(Et+1⇢)| > "

for at most O
�

n
"3 log

n
"

�
values of t. Here the Et’s and bt’s can otherwise be chosen adversarially.

5 Learning Using Sequential Fat-Shattering Dimension

In this section, we prove regret bounds using the notion of sequential fat-shattering dimension. Let
S be a set of functions f : U ! [0, 1], and " > 0. Then, following Rakhlin et al. [2015], let the
"-sequential fat-shattering dimension of S, or sfat"(S), be the largest k for which we can construct a
complete binary tree T of depth k, such that

• each internal vertex v 2 T has associated with it a point xv 2 U and a real av 2 [0, 1], and
• for each leaf vertex v 2 T there exists an f 2 S that causes us to reach v if we traverse T

from the root such that at any internal node w we traverse the left subtree if f(xw)  aw � "
and the right subtree if f(xw) � aw+". If we view the leaf v as a k-bit string, the function f
is such that for all ancestors u of v, we have f(xu)  au � " if vi = 0, and f(xu) � au + "
if vi = 1, when u is at depth i� 1 from the root.

An n-qubit state ⇢ induces a function f on the set of two-outcome measurements E defined as f(E) :=
Tr(E⇢). With this correspondence in mind, we establish a bound on the sequential fat-shattering
dimension of the set of n-qubit quantum states. The bound is based on a generalization of “random
access coding” (Nayak [1999], Ambainis et al. [2002]) called “serial encoding”. We derive the
following bound on the length of serial encoding. Let H(x) := �x log2 x� (1� x) log2(1� x) be
the binary entropy function.
Corollary 7. Let k and n be positive integers. For each k-bit string y := y1 · · · yk, let ⇢y be an n-
qubit mixed state such that for each i 2 {1, 2, . . . , k}, there is a two-outcome measurement E0 that
depends only on i and the prefix v := y1y2 · · · yi�1, and has the following properties

(iii) if yi = 0 then Tr(E0⇢y)  av � ", and

(iv) if yi = 1 then Tr(E0⇢y) � av + ",

where " 2 (0, 1/2] and av 2 [0, 1] is a “pivot point” associated with the prefix v. Then

n �

✓
1�H

✓
1� "

2

◆◆
k .

In particular, k = O
�
n/"2

�
.
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(The proof is presented in Appendix E).

Corollary 7 immediately implies the following theorem:
Theorem 8. Let U be the set of two-outcome measurements E on an n-qubit state, and let S be the
set of all functions f : U ! [0, 1] that have the form f(E) := Tr(E⇢) for some ⇢. Then for all
" > 0, we have sfat"(S) = O

�
n/"2

�
.

Theorem 8 strengthens an earlier result due to Aaronson [2007], which proved the same upper
bound for the “ordinary” (non-sequential) fat-shattering dimension of quantum states considered as a
hypothesis class.

Now we may use existing results from the literature, which relate sequential fat-shattering dimension
to online learnability. In particular, in the non-realizable case, Rakhlin et al. [2015] recently showed
the following:
Theorem 9 (Rakhlin et al. [2015]). Let S be a set of functions f : U ! [0, 1] and for every
integer t � 1, let `t : [0, 1] ! R be a convex, L-Lipschitz loss function. Suppose we are sequentially
presented elements x1, x2, . . . 2 U , with each xt followed by the loss function `t. Then there exists a
learning strategy that lets us output a sequence of hypotheses f1, f2, . . . 2 S, such that the regret is
upper-bounded as:

TX

t=1

`t (ft(xt))  min
f2S

TX

t=1

`t (f(xt)) + 2LT inf
↵

(
4↵+

12
p
T

Z 1

↵

s

sfat�(S) log

✓
2eT

�

◆
d�

)
.

This follows from Theorem 8 in (Rakhlin et al. [2015]) as in the proof of Proposition 9 in the same
article.

Combining Theorem 8 with Theorem 9 gives us the following:
Corollary 10. Suppose we are presented with a sequence of two-outcome measurements E1, E2, . . .
of an n-qubit state, with each Et followed by a loss function `t as in Theorem 9. Then there exists a
learning strategy that lets us output a sequence of hypothesis states !1,!2, . . . such that the regret
after the first T iterations is upper-bounded as:

TX

t=1

`t (Tr(Et!t))  min
!2Cn

TX

t=1

`t (Tr(Et!)) + O
⇣
L
p

nT log3/2 T
⌘
.

Note that the result due to Rakhlin et al. [2015] is non-explicit. In other words, by following this
approach, we do not derive any specific online learning algorithm for quantum states that has the
stated upper bound on regret; we only prove non-constructively that such an algorithm exists.

We expect that the approach in this section, based on sequential fat-shattering dimension, could also
be used to prove a mistake bound for the realizable case, but we leave that to future work.

6 Open Problems

We conclude with some questions arising from this work. The regret bound established in Theorem 2
for L1 loss is tight. Can we similarly achieve optimal regret for other loss functions of interest, for
example for L2-loss? It would also be interesting to obtain regret bounds in terms of the loss of the
best quantum state in hindsight, as opposed to T (the number of iterations), using the techniques in
this article. Such a bound has been shown by [Tsuda et al., 2005, Lemma 3.2] for L2-loss using the
Matrix Exponentiated Gradient method.

In what cases can one do online learning of quantum states, not only with few samples, but also with
a polynomial amount of computation? What is the tight generalization of our results to measurements
with d outcomes? Is it the case, in online learning of quantum states, that any algorithm works, so
long as it produces hypothesis states that are approximately consistent with all the data seen so far?
Note that none of our three proof techniques seem to imply this general conclusion.
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