
A Example 3 (continued)

Denote by Γ the game depicted in Figure 2. Table 3 shows the value of the realization function,
evaluated in each pure normal-form plans of Player T . Each row is a realization vector, and the
realization polytope ΩΓ

T is the convex hull of all these vectors.

1 2 3 4 5 6 7 8

ACE 1 0 0 0 1 0 0 0
ACF 0 1 0 0 0 1 0 0
ADE 1 0 0 0 0 0 1 0
ADF 0 1 0 0 0 0 0 1
BCE 0 0 1 0 1 0 0 0
BCF 0 0 0 1 0 1 0 0
BDE 0 0 1 0 0 0 1 0
BDF 0 0 0 1 0 0 0 1

Table 3: Mapping between pure normal-form plans and their images under the realization function.

B Proofs

Lemma 1. fΓ
i is a linear function and ΩΓ

i is a convex polytope.

Proof. We start by proving that fi is linear. Fix a terminal node z ∈ Z, and define Σ∗i (z) as
the subset of pure normal-form plans Σi of player i for which there exists at least a choice of pure
normal-form plans, one for each of the other players, such that under that choice the game terminates
in z. Given a normal-form strategy x ∈ Xi, the contribution of player i to the probability of the game
ending in z is computed as

ρxi (z) =
∑

σ∈Σ∗i (z)

xσ,

which is linear in x.

Now, we show that ΩΓ
i is a convex polytope. By definition, ΩΓ

i = fi(Xi) is the image of a convex
polytope under a linear function, and therefore it is a convex polytope itself.

Theorem 2. Consider a game Γ. If player i is not absent-minded, then ΩΓ
i = co

(
Ω̃Γ
i

)
.

Proof.

(⊆) We know as a direct consequence of Lemma 1 that ΩΓ
i = co{fi(σ) : σ ∈ Σi}. Since every

pure normal-form plan is also a behavioral strategy, fi(σ) ∈ Ω̃Γ
i for all σ ∈ Σi. Hence,

ΩΓ
i = co{fi(σ) : σ ∈ Σi} ⊆ co(Ω̃Γ

i).

(⊇) Finally, we prove that that ΩΓ
i ⊇ co(Ω̃Γ

i). Since ΩΓ
i is convex, it is enough to show that

ΩΓ
i ⊇ Γ̃Γ

i . In other words, it is enough to prove that every behavioral-realization is also a
realization in the sense of Definition 2, provided that player i is not absent-minded. This
is a well-known fact, and we refer the reader to Theorem 6.11 in the book by Maschler et
al. [15].

Lemma 3. For any Γ, ΩΓ
T = co

(⋃
σ∈Σ1

ΩΓσ
T

)
.

Proof.

12

(⊇) We start by proving that, for all σ1 ∈ Σ1, Ω
Γσ1

T ⊆ ΩΓ
T . Indeed, as a direct consequence of

Lemma 1,

Ω
Γσ1

T = co
(
{fΓ
T (σ1, σ2) : σ2 ∈ Σ2}

)

⊆ co
(
{fΓ
T (σ′1, σ2) : σ′1 ∈ Σ1, σ2 ∈ Σ2}

)

= ΩΓ
T .

Thus, ⋃

σ1∈Σ1

Ω
Γσ1

T ⊆ ΩΓ
T

and therefore, using the monotonicity of the convex hull function,

co

(⋃

σ1∈Σ1

Ω
Γσ1

T

)
⊆ co(ΩΓ

T) = ΩΓ
T ,

where the last equality holds by convexity of ΩΓ
T (Lemma 1).

(⊆) Take ω ∈ ΩΓ
T ; we will show that ω ∈ co

(⋃
σ∈Σ1

ΩΓσ
T

)
by exhibiting a convex combina-

tion of points in the polytopes {ΩΓσ
T : σ ∈ Σ} that equals ω. By definition of realization

function (Definition 1), ω is the image of a normal-form strategy α ∈ ∆|Σ1×Σ2| for the
team. Hence, by linearity of the realization function fT (Lemma 1),

ω =
∑

σ1∈Σ1
σ2∈Σ2

ασ1,σ2 f
Γ
T (σ1, σ2). (1)

Now, define
νσ1

:=
∑

σ2∈Σ2

ασ1,σ2

for each σ1 ∈ Σ1. Clearly, each νσ1 is non-negative, and the sum of all νσ1 ’s is 1. Hence,
from (1) we find that

ω =
∑

σ1∈Σ1

νσ1>0

νσ1
ξσ1

, where ξσ1
:=

∑

σ2∈Σ2

ασ1,σ2

νσ1

fΓ
T (σ1, σ2).

Consequently, if we can show that ξσ1 ∈ Ω
Γσ1

T for all σ1 ∈ Σ1 : νσ1 > 0, the proof is
complete. Note that for all relevant σ1, ξσ1 is a convex combination of points in the set
{fΓ
T (σ1, σ2) : σ2 ∈ Σ2} ⊆ Ω

Γσ1

T . Finally, using the fact that Ω
Γσ1

T is convex (Lemma 1),
we find ξσ1

∈ Ω
Γσ1

T , concluding the proof.

Corollary 1. The set of payoffs reachable in Γ coincides with the set of payoffs reachable in Γ∗.
Specifically, any strategy {λσ}σ∈Σ1 , {ωσ}σ∈Σ1 over Γ∗ is payoff-equivalent to the realization-form
strategy ω =

∑
σ∈Σ1

λσωσ in Γ.

Proof. The payoff for the team in Γ is equal to 〈∑σ∈Σ1
λσωσ, y〉, where y ∈ R|·| is a generic loss

vector.

On the other hand, in Γ∗, A does not observe the initial move in Γ∗, and therefore the loss vector y
remains valid in each Γσ . Therefore, the team’s payoff in Γ∗ is

∑
σ∈Σ1

λσ〈ωσ, y〉. The two payoffs
clearly coincide.

C Action sampling from Γ∗

Given a strategy profile ({λσ1
}σ1∈Σ1

, {ωσ1
}σ1∈Σ1

) over Γ∗, the goal is to draw a joint normal-form
plan for the team (for the original game).

13

Proposition 1. Letting ω =
∑
σ1∈Σ1

λσ1ωσ1 and ξωσ1
∈ f−1(ωσ1), then

ξω ,
∑

σ1∈Σ1

λσ1
ξωσ1

∈ f−1(ω).

Proof. f(ξω) =
∑
σ1∈Σ1

λσ1
f(ξωσ1

) by linearity. This is equal to
∑
σ1∈Σ1

λσ1
ωσ1

= ω.

The immediate way of sampling a joint normal-form action of Γ from a realization ω over Γ∗ is the
following. First, compute the set of joint actions required to form a normal-form strategy equivalent
to ω (it is enough to adopt a simple greedy algorithm). Then, recommend each plan (σ1, σ2) with
probability ξω(σ1, σ2) since ξω , f−1(ω) ∈ ∆|Σ1×Σ2|.

Alternative method. For Lemma 1, the normal-form plan (σ1, σ2) is played with probability
λσ1

ξωσ1
(σ2). Therefore, we can first sample an action for Player 1 according to λσ1

. Then, we
are left with the problem of finding ξωσ1

∈ f−1(ωσ1
). It is enough to sample an element from

1σ1
× ξ2,ωσ1

, where 1σ1
∈ ∆|Σ1| and ξ2,ωσ1

∈ ∆|Σ2|.

D TMECor as a hybrid linear programming formulation

This section reviews prior techniques to compute team-maxmin equilibria with coordination devices.
The leading paradigm to compute a TMECor is the Hybrid Column Generation algorithm introduced
by Celli and Gatti [6]. This technique makes use of hybrid linear programs, which are based on the
idea of letting team members play a joint normal-form strategy while the adversary still employs the
sequence form. The idea of the algorithm is to proceed in a classical column generation fashion (see,
e.g., [16]), generating progressively the set of joint normal-form plans of the team. The rationale is
that there exists at least one TMECor with at most |QA| joint normal-form plans played with strictly
positive probability by the team.

Consider P = {1, 2,A}, where A denotes the adversary (opponent) of the team. The algorithm
progressively adds joint normal-form plans from Σ1 × Σ2 to the set the set Σcur

1×2. A hybrid utility
matrix Uh is built along with Σcur

1×2. For each σ1×2 ∈ Σcur
1×2 a QA-dimensional column vector is

added toUh. At each iteration of the algorithm, a hybrid-maxmin and a hybrid-minmax are employed
to compute the equilibrium strategy profile for the current Uh. The hybrid-maxmin problem has
|QA|+ 1 constraints and |Σcur

1×2|+ |IA| variables, the hybrid-minmax is obtained by strong duality.
Then, a new joint normal-form plan of the team is selected trough a best response oracle. These
steps are iterated until the oracle returns a best response that is already contained in Σcur

1×2.

The problem of finding a joint normal-form plan of the team in best response to a given sequence-
form strategy of the opponent is shown to be APX-hard (i.e., it does not admit a PTAS). The oracle
of [6] employs a binary variable for each terminal node of the game. It produces two pure sequence-
form strategies for the team members by forcing, for each z ∈ Z, the corresponding binary variable
to be equal to 1 iff all team’s sequences on the path to z are selected with probability 1.

The main concern with this approach is that, with the growth of Σcur
1×2, LP’s computations easily

become an infeasible computational burden as the hybrid representation is exponential in the number
of information sets of team members (2|I1|+|I2|).

E Team best-response subroutine

Our subroutine looks for a pair (σt, ωtT), with σ ∈ Σ1, and ωtT ∈ ΩΓσ
T , in best-response to a given

ω̄A. In order to compute (σt, ωtT), we employ the sequence-form strategies of the team defined
over Γ. Specifically, the pure sequence-form strategy r1 corresponds to selecting a σ ∈ Σ1 at φ in
Γ∗. Determining the (potentially mixed) sequence-form strategy for the other team member (r2) is
equivalent to computing ωtT in the subtree selected by r1.

Without loss of generality, we assume all payoffs of the team to be non-negative; indeed, payoffs
can always be shifted by a constant without affecting the BR problem. In the following, sequence
form constraints (see Section 2) are written, as customary, in matrix form as Firi = fi, where Fi is
an appropriate |Hi| × |Qi| matrix and f>i = (1, 0, . . . , 0) is a vector of dimension |Hi|.

14

The BRT (ω̄A) subroutine consists of the following MILP:

arg max
w,r1,r2

∑

q1∈Q1

w(q1) (2)

s.t. w(q1) ≤
∑

q2∈Q2

uω̄Aq1,q2r2(q2) ∀q1 ∈ Q1 (3)

w(q1) ≤Mr1(q1) ∀q1 ∈ Q1 (4)
F1r1 = f1 (5)
F2r2 = f2 (6)
r2(q2) ≥ 0 ∀q2 ∈ Q2 (7)

r1 ∈ {0, 1}|Q1| (8)

where uω̄A is the |Q1| × |Q2| utility matrix of the team obtained by marginalizing with respect to
the given realization of the opponent ω̄A. r1 is a |Q1|-dimensional vector of binary variables. The
formulation can be derived starting from the problem of maximizing r>1 ur2 under constraints (5)–
(8). Let aq1 ,

∑
q2
uω̄Aq1,q2r2(q2), and w(q1) , r1(q1)aq1 . Then, the objective function becomes∑

q1∈Q1
w(q1). In order to ensure that, whenever r1(q1) = 0, w(q1) = 0, the following constraints

are necessary: w(q1) ≤ Mr1(q1) and w(q1) ≥ 0, where M is the maximum payoff of the team.
Moreover, in order to ensure that w(q1) = aq1 holds whenever r1(q1) = 1, we introduce w(q1) ≤
aq1 and w(q1) ≥ aq1 − M(1 − r1(q1)). It is enough to enforce upper bounds on w’s values
(Constraints (3) and (4)) because of the objective function that we are maximizing and since we
assume a positive utility for each terminal node.

In settings with more than two team members, our formulation enables one to pick any one team
player’s strategy and represent it using continuous variables instead of having binary variables for
her in the best-response oracle MILP.

F Experimental evaluation

F.1 Kuhn3-k

In Kuhn3-k there are three players and k possible cards. Each player initially pays one chip to the
pot, and is dealt a single private card. Then, players act in turns. The first player may check or
bet—put one additional chip in the pot. The second player either decides whether to check or bet
after first player’s check, or whether to fold/call the bet. If no bet was previously made, the third
player decides between checking or betting. Otherwise, she has to fold or call. If the second player
bet, the first player still has to decide between fold/call. If the third player bet, then both the first and
the second have to choose between folding or calling the bet. At the showdown, the player with the
highest card who has not folded wins all the chips in the pot.

F.2 Leduc3-k

Leduc hold’em poker [21] is a widely-used benchmark in the imperfect-information game-solving
community. In order to better evaluate the scalability of our technique, we employ a larger three-
player variant of the game. In our enlarged variant, the deck contains three suits and k ≥ 3 card
ranks, that is, it consists of triples of cards 1, . . . , k for a total of 3k cards.

Each player initially pays one chip to the pot, and is dealt a single private card. After a first round
of betting (with betting parameter p = 2, see below), a community card is dealt face up. Then, a
second round of betting is played (with betting parameter p = 4, see below). Finally, a showdown
occurs and players that did not fold reveal their private cards. If a player pairs her card with the
community card, she wins the pot. Otherwise, the player with the highest private card wins. In the
event that all players have the same private card, they draw and split the pot.

Each round of betting with betting parameter p goes as follows:

(1) Player 1 can check or bet p. If Player 1 checks, the betting round continues with Step (2);
otherwise, the betting round continues with Step (8).

15

(2) Player 2 can check or bet p. If Player 2 checks, the betting round continues with Step (3);
otherwise, the betting round continues with Step (6).

(3) Player 3 can check or bet p. If Player 3 checks, the betting round ends; otherwise, the
betting round continues with Step (4).

(4) Player 1 can fold or call. If Player 1 folds, the betting round continues with Step (5);
otherwise, Player 1 adds p to the pot and the betting round continues with Step (5).

(5) Player 2 can fold or call. In either case the betting round ends. If Player 2 calls, she adds p
to the pot.

(6) Player 3 can fold or call. If Player 3 folds, the betting round continues with Step (7);
otherwise, Player 3 adds p to the pot and the betting round continues with Step (7).

(7) Player 1 can fold or call. If Player 1 calls, she adds p to the pot. After Player 1’s choice the
betting round ends.

(8) Player 2 can fold or call. If Player 2 folds, the betting round continues with Step (9);
otherwise, Player 2 adds p to the pot and the betting round continues with Step (9).

(9) Player 3 can fold or call. If Player 3 calls, she adds p to the pot. The betting round
terminates after her choice.

F.3 Worst case team utility

Table 4 shows the utility that the team is guaranteed to achieve in each game instance, with varying
position of the opponent. These values are the worst case utilities, obtained when the opponent is
best responding against the average team strategy. Specifically, let ω̄′T ∈ ΩΓ

T be the team realization
over Γ induced by the average team strategy (λ̄, (ω̄T ,σ)σ∈Σ1

) (computed through Algorithm 1), and
let ω∗A = BRA(λ̄, (ω̄T ,σ)σ∈Σ1

). Then, the values are computed as, ω̄′>T Uω
∗
A, where U is a suitably

defined (diagonal) |Z| × |Z| payoff matrix.

Game Team Utility
Adv 1 Adv 2 Adv 3

K3 -0.0002 -0.0002 -0.0001
K4 0.0369 0.0215 -0.0474
K5 0.0405 0.0137 -0.0274
K6 0.0499 0.0262 -0.0267
K7 0.0569 0.0271 -0.0254

L3 0.1533 0.0529 -0.0412
L4 0.0829 -0.029 -0.1901

Table 4: Worst case utilities for the team.

F.4 Comparison between ex ante coordinated strategies and behavioral strategies

The results obtained on parametric Kuhn game instances with fictitious team-play are compared
with the results obtained by computing the team-maxmin equilibrium [25], which is the best NE
attainable without ex ante coordination of team members.

We employ fictitious team-play with 5000 iterations and a time limit of 15 seconds on the oracles’
compute times (see also Table 2). A team-maxmin equilibrium is computed by solving a non-linear,
non-convex optimization problem [6]. We employ AMPL 20181005, with the global optimization
solver BARON 18.8.23 [22], and we set a time threshold of 15 hours.

Table 5 describes the results obtained in games where the opponent plays as the second player. Col-
umn team-maxmin displays the utility obtained when the opponent best-responds to the incumbent
team strategies computed by the solver (BARON never reaches an optimal solution within the time
limit).

16

Game team-maxmin TMECor

K3 −6.03 · 10−8 0.0004
K4 0.0237 0.0335
K5 0.0116 0.0205
K6 0.0207 0.0329
K7 0.0198 0.0333

Table 5: Comparison between the utility of the team at the team-maxmin equilibrium and at the TMECor.

Ex ante coordination always makes team members better off with respect to playing behavioral
strategies.

17

