
Supplement: Cluster Variational Approximations for Structure Learning of
Continuous-Time Bayesian Networks from Incomplete Data

In this supplementary, we give detailed descriptions on algorithms, data processing and derivations.
Further, we provide an additional comparison to other methods for network reconstruction. All
equation references point to the main text.

A Algorithms

Algorithm 1 Marginal CTBN dynamics
1: Input: Propose set of initial trajectories Qn(x, t),

observations Y , prior assumption on sufficient statistics α and β, initial guess for R̄un(x, x′).
2: repeat
3: Set current R̄un(x, x′) as current CIM.
4: Solve marginal dynamic equation with R̄un(x, x′) using Algorithm 1.
5: Use expected sufficient statistics to update R̄un(x, x′) via (8).
6: until Convergence
7: Output: Set of Qn(x, t) and ρn(x).

B Derivations

B.1 Expansion formula

Note that for
∏N
n=1Qn with Qn = an + εbn for any an, bn ∈ R holds

N∏
n=1

Qn =

N∑
m=1

Qm

N∏
n 6=m,n=1

an − (N − 1)

N∏
n=1

an +O(ε2)

Proof:

N∏
n=1

Qn =

N∏
n=1

an + ε

N∑
m=1

bm

N∏
n6=m,n=1

an +

N∑
m=1

am

N∏
n 6=m,n=1

an −
N∑
m=1

am

N∏
n 6=m,n=1

an +O(ε2)

=

N∑
m=1

[am + εbm]

N∏
n 6=m,n=1

an +

N∏
n=1

an −
N∑
m=1

N∏
n=1

an +O(ε2)

=

N∑
m=1

Qm

N∏
n6=m,n=1

an − (N − 1)

N∏
n=1

an +O(ε2).

B.2 Continuous-time variational lower bound in star approximation

In order to perform the continuous-time limit, we represent Q as an expansion in h in a set of
marginals

Qtn(x′, x, u) = δx,x′Qn(x, t)Qun + hτun (x, x′, t) + o(h),

with τun (x, x, t) = −
∑
x′ 6=x τ

u
n (x, x′, t). We note, that this corresponds to an additional mean-field

assumption of marginal independence Q(s, t) =
∏
nQn(xn, t), however in contrast to the naive

mean-field approximation in previous works [3, 2], we do not have to constrain τun (x, x′, t) in order
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to yield tractable results. By inserting Q′s representation into F we get

F = −
∑
n

lim
h→0

1

h

∫ T

0

dt
∑

x,x′ 6=x,u

hτun (x, x′, t)

[
lnh

τun (x, x′, t)

Qn(x, t)Qun
− lnhRun(x, x′)

]

−
∑
n

lim
h→0

1

h

∫ T

0

dt
∑
x,u

QunQn(x, t)− h
∑
x′ 6=x

τun (x, x′, t)


×
[
ln

(
1− h

∑
x′ 6=x τ

u
n (x, x′, t)

Qn(x, t)Qun

)
− ln (1 + hRun(x, x))

]
where we also inserted Phn (x′ | x, u) = δx,x′+hR

u
n(x, x′). With the asymptotic identity ln(1+hx) =

hx we can simplify

F = −
∑
n

lim
h→0

1

h

∫ T

0

dt
∑

x,x′ 6=x,u

hτun (x, x′, t)

[
ln
τun (x, x′, t)

Qn(x, t)Qun
− lnRun(x, x′)

]

+
∑
n

lim
h→0

1

h

∫ T

0

dt
∑
x,u

QunQn(x, t)− h
∑
x′ 6=x

τun (x, x′, t)

[h∑x′ 6=x τ
u
n (x, x′, t)

Qn(x, t)Qun
+ hRun(x, x)

]
which becomes in the continuous-time limit h→ 0

F =
∑
n

∫ T

0

dt
∑

x,x′ 6=x,u

τun (x, x′, t)[1− ln τun (x, x′, t) + ln(QunQn(x, t))]

+
∑
n

∫ T

0

dt

∑
x,u

Qn(x, t)QunR
u
n(x, x) +

∑
x,x′ 6=x,u

τun (x, x′, t) lnRun(x, x′)

 .
The contribution of the likelihood term can be derived to be

F0 =
∑
t

h
∑
i

E[lnP (Y i | x)]
δt,ti

h
=
h→0

∫ T

0

dt
∑
i

E[lnP (Y i | x)]δ(t− ti),

E[f(x)] =
∑
x∈X

f(x)

N∏
k=1

Qk(xk), xk ∈ Xk.

B.3 Relation to naive mean-field approximation

We recover the variational lower bound in naive mean-field approximation by only consider the zeroth
order expansion in the correlations ε, meaning

Qhn(x′ | x, u) = Qhn(x′ | x)

Then for the energy E(t) from the main text holds

E(t) ≡
∑
s′,s

Q(s, t)Qh(s′ | s) lnPh(s′ | s)

=
∑
s′,s

∏
n

Qtn(xn)Qhn(x′n | xn) ln

[∏
m

Phm(x′m | xm, um)

]
.

Thus for the variational lower bound we arrive at the naive mean-field approximation

F =
∑
n

lim
h→0

1

h

∫ T

0

dt
∑
x′,x

Qhn(x′ | x)
∑
u

∏
k∈pa(n)

Qk(uk, t) ln
Phn (x′ | x, u)

Qhn(x′ | x)

Finally considering the marginals of the transitions

Q(x′ | x) = δx,x′ + h
τn(x, x′, t)

Qn(x, t)
+ o(h),
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and using an identical derivation as given in Appendix B.2

F =
∑
n

lim
h→0

1

h

∫ T

0

dt
∑
x′n,xn

Qn(x, t)

[
δxn,x′n + h

τn(x, x′, t)

Qn(x, t)

]

×
∑
u

∏
k∈pa(n)

Qk(uk, t) ln
δxn,x′n + hRun(x, x′)

δxn,x′n + h τn(x,x
′,t)

Qn(x,t)

=
∑
n

lim
h→0

1

h

∫ T

0

dt
∑

xn,x′n 6=xn

hτn(x, x′, t)
∑
u

∏
k∈pa(n)

Qk(uk, t) ln
Qn(x, t)Run(x, x′)

τn(x, x′, t)

+
∑
n

lim
h→0

1

h

∫ T

0

dt
∑
xn

Qn(x, t)

[
1 + h

τn(x, x, t)

Qn(x, t)

]
×
∑
u

∏
k∈pa(n)

Qk(uk, t) ln
1 + hRun(x, x)

1 + h τn(x,x,t)Qn(x,t)

.

We can low evaluate limh→0. Further we use the definition of the expectation from the main text and
write

F =
∑
n

∫ T

0

dt
∑

xn,x′n 6=xn

τn(x, x′, t)

[
En[lnRun(x, x′)]− ln

τn(x, x′, t)

Qn(x, t)

]

+
∑
n

∫ T

0

dt
∑

xn,x′n 6=xn

Qn(x, t)h

[
En[Run(x, x′)]− τn(x, x, t)

Qn(x, t)

]
.

After reordering terms and we recover the variational lower bound for CTBNs in naive mean-field
approximation from literature [3, 2]

F =
∑
n

∫ T

0

dt
∑
x,x′ 6=x

[Qn(x, t)En[Run(x, x)] + τn(x, x′, t)En[lnRun(x, x′)]]

+
∑
n

∫ T

0

dt
∑
x,x′ 6=x

τn(x, x′, t)

[
1− ln

τn(x, x′, t)

Qn(x, t)

]
.

B.4 CTBN dynamics in star approximation

We are now going to derive the dynamics of CTBNs in star approximation, defined by fulfilling the
Euler–Lagrange equations

∂xL[t, x, ẋ]− ∂t[∂ẋL[t, x, ẋ]] = 0.

First lets consider the derivative with respect to Qn(x, t):

∂Qn(x,t)Hn =
∑
u

∑
x′ 6=x

τun (x, x′, t)

Qn(x, t)
, ∂Qn(x,t)Ej = En[Run(x, x)],

Further if node n has a child j

∂Qn(x,t)Hj =
∑

x,u|Xn(t)=xn=x

∑
x′ 6=x

τuj (x, x′)

Qn(x, t)
, ∂Qn(x,t)Ej =

∑
x

Qj(x)En[Run(x, x) | Xn(t) = x].

With respect to the derivative Q̇n(x, t) we get

∂Q̇n(x,t)
L = −λn(x, t).

We derive with respect to the transitions

∂τu
n (x,x′,t)Hn = ln[Qn(x, t)Qun]− ln τun (x, x′, t), ∂τu

n (x,x′,t)En = lnRun(x, x′).
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thus

∂τu
n (x,x′,t)L = ln[Qn(x, t)Qun]− ln τun (x, x′, t) + lnRun(x, x′)− λn(x, t) + λn(x′, t).

The derivative with respect to the Lagrange-multipliers yields:

∂λn(x,t)L = −

Q̇n(x, t)−

 ∑
x′ 6=x,u

τun (x′, x, t)− τun (x, x′, t)


And lastly assuming a factorized noise model P (Y i|X(t) = s) =

∏
n Pn(Y i|Xn(t) = x) we have

for the derivative of F0

∂Qn(x,t)F0 =
∑
i

lnPn(Y i|x)δ(t− ti)

These can then be combined as the following Euler-Lagrange equations:

(I) 0 =
∑
u

∑
x′ 6=x

τun (x, x′, t)

Qn(x, t)
+ En[Run(x, x′)] + λ̇n(x) +

∑
i

lnPn(Y i|x)δ(t− ti)

+
∑

j∈child(n)

∑
x,u|Xn(t)=x

∑
x′ 6=x

τun (x, x′, t)

Qn(x, t)
+
∑
x

Qj(x)Ej [ruj (x, x) | Xn(t) = x]

(II) 0 = ln[Qn(x, t)Qun]− ln τun (x, x′, t) + lnRun(x, x′)− λn(x, t) + λn(x′, t)

(III) Q̇n(x, t) =
∑
x′ 6=x,u

τun (x′, x)− τun (x, x′, t).

Exponentiating (II) gives

(II∗) τun (x, x′, t) = Qn(x, t)QunR
u
n(x, x′)ρn(x′, t)/ρn(x, t),

where ρn(x, t) ≡ exp(λn(x, t)). Assuming that R is irreducible, ρn(x, t) and Qn(x, t) are non-zero
in (0, T ) and we can thus eliminate τun (x, x′, t) in (I) and (II). Thus

(I∗) ρ̇n(x, t) =
∑
x′ 6=x

En[Run(x, x′)]ρn(x′, t) + {En[Run(x, x)] + ψn(x, t)} ρn(x, t)

(III∗) Q̇n(x, t) =
∑
x′ 6=x

{Qn(x′, t)En[Run(x′, x)]ρn(x, t)/ρn(x′, t)

−Qn(x, t)En[Run(x, x′)]ρn(x′, t)/ρn(x, t)} ,

where we used λ̇n(x, t) = 1
ρn(x,t)

ρ̇n(x, t). We further summarized

ψn(y, t) =
∑

j∈child(n)

∑
x

Qj(x)

∑
x′ 6=x

ρj(x
′, t)

ρj(x, t)
En[ruj (x, x′) | y] + En[ruj (x, x) | y]


+
∑
i

lnPn(Y i|x)δ(t− ti).

The driving term lnPn(Y i|x)δ(t − ti) then conditions the dynamics on the observations by
limt→ti− ρn(x, t) = limt→ti+ Pn(Y i|x)ρn(x, t).

B.5 Variational marginal score

Using Run(x, x) = −
∑
x′ 6=xR

u
n(x, x′) we can write

En =

∫
dt
∑
x,u

∑
x′ 6=x

[τun (x, x′, t) lnRun(x, x′)−Qn(x, t)QunR
u
n(x, x′)] .

For the approximated evidence

P (Y | R,G) ≈
∏
n

exp [En +Hn] .

4



we get

P (Y | R,G) ≈ eH
∏
n

∏
x,u

∏
x′ 6=x

Run(x, x′)E[M
u
n (x,x′)]e−E[T

u
n (x)]Ru

n(x,x
′).

Assuming an independent Gamma prior

P (R | α,β,G) =
∏
n

∏
x,u

∏
x′ 6=x

γ [run(x, x′) | αun(x, x′), βun(x)]

=
∏
n

∏
x,u

∏
x′ 6=x

βun(x)
αu

n(x,x
′)

Γ(αun(x, x′))
Run(x, x′)

αu
n(x,x

′)−1
e−β

u
n(x)Ru

n(x,x
′).

Thus we can express the graph posterior

P (G|Y,α,β) ∝P (G)

∫ ∞
0

P (Y | R,G)P (R | α,β,G) dR

≈eH
∏
n

∏
x,u

∏
x′ 6=x

βun(x)
αu

n(x,x
′)

Γ(αun(x, x′))

×
∫ ∞
0

Run(x, x′)
E[Mu

n (x,x′)]+αu
n(x,x

′)−1
e−[E[T

u
n (x)]+βu

n(x)]Ru
n(x,x

′)dRun(x, x′),

which has an analytic solution ∫ ∞
0

xae−bxdx = b−aΓ(a).

Thus we get

P (G | Y,α,β) ∝ eH
∏
n

∏
x,u

∏
x′ 6=x

(
βun(x)

(E[Tun (x)] + βun(x))E[M
u
n (x,x′)]

)αu
n(x,x

′)
Γ(E[Mu

n (x, x′)] + αun(x, x′))

Γ(αun(x, x′))
.

B.6 Marginal dynamics for CTBNs

In the following we are going to derive the dynamic equations of the marginal process for which
we have to expand the Gamma-function. Assuming the sum of recorded transitions and prior
transition number to be sufficiently large we can approximate the Gamma-function using Stirling’s

approximation Γ(z) ≈
√

2π
z

(
z
e

)z
+O

(
1
z

)
we get the approximate marginal score function

lnP (G | Y,α,β) ∝
∑
n

Hn + En,

with

En =
∑
x,u

∑
x′ 6=x

(
E[Mu

n (x, x′)] + αun(x, x′)− 1

2

)
ln (E[Mu

n (x, x′)] + αun(x, x′))

−
(
αun(x, x′)− 1

2

)
ln (αun(x, x′)) + αun(x, x′) ln (βun(x))

− (E[Mu
n (x, x′)] + αun(x, x′)) ln (E[Tun (x)] + βun(x))− E[Mu

n (x, x′)],

∂Qn(x,t)En = −
∑
x′ 6=x

∑
u

En
[
E[Mu

n (x, x′)] + αun(x, x′)

E[Tun (x)] + βun(x)

]
,

∂Qn(x,t)Ej = −
∑
x

∑
x′ 6=x

Qj(x)En

[
E[Mu

j (x, x′)] + αuj (x, x′)

E[Tuj (x)] + βuj (x)
| Xn(t) = x

]
1[j ∈ child(n)],

∂τu
n (x,x′,t)En ≈ ln

(
E[Mu

n (x, x′)] + αun(x, x′)

E[Tun (x)] + βun(x)

)
,
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where we approximated E[Mu
n (x,x′)]+αu

n(x,x
′)− 1

2

E[Mu
n (x,x′)]+αu

n(x,x
′) − 1 ≈ 0. The derivatives with respect to Hn and the

constraint remain unchanged, see Appendix B.4. Finally defining the posterior-rate

R̄un(x, x′) ≡ E[Mu
n (x, x′)] + αun(x, x′)

E[Tun (x)] + βun(x)
,

we arrive at the same set of equations as in Appendix B.4.

C Processing IRMA data

In this section we present our approach of processing IRMA data. The IRMA dataset consists of
expression data of genes, measured in concentrations, which are continuous. We can not capture
continuous data using CTBNs, but need to map this data to a set of latent states. We identify two
states over-expressed (X = 1) and under-expressed (X = 0) with respect to the basal (equilibrium)
concentration cB . This motivates the following observation model given the basal concentration

P (Y | X = 1, cB) =

{
1/|Y0| , Y ≥ cB and Y ≤ Y0
0 , else

,

P (Y | X = 0, cB) =

{
1/|Y0| , Y < cB and Y ≥ −Y0
0 , else

,

where we have to choose some Y0, so that the likelihood is normalized. We set Y0 to some large value
Y0 ≥ argmax|Y |∈DATA as our method remains invariant under each choice.

We model the basal concentration itself is a random variable, which we assume is gaussian distributed.
We can estimate the parameters of the gaussian distribution µB and σB from the data. The marginal
observation model is then acquired by integration

P (Y | X) =

{
1− erf((Y − µB)/σB) , X = 1

erf((Y − µB)/σB) , X = 0
.

Given this observation model we can assign each measurement a likelihood and can process the data
using our method. We note that other models for IRMA data can be thought of that may return better
(or worse) results using our method.

D Comparsion to other methods for network reconstruction

We compare our method to the methods for network reconstruction from time-series expression
data considered in [4], see 1. These tests have, in contrast to [1], been performed on the full IRMA
network. We adopt the shorthands of this paper to refer to different methods. The methods are
based on dynamic Bayesian networks (DBNs), ODEs (TNSI), non-parametrics (NDS) and Granger
Causality (GC). For more details on these methods we refer to [4]. Our method (CTBN CVM)
outperforms all competing methods on the “switch on” dataset. On the “switch off” dataset the
non-parametric CSId method has a higher AUROC but a lower AUPR than our method.

Table 1: Comparison of AUROC (AUPR) of different methods on IRMA dataset. Results of top
performers are in bold.

method switch on switch off
steady state knockout 0.68 (0.42) 0.81 (0.50)
DBN G1DBN 0.78 (0.64) 0.61 (0.34)

VBSSM 0.79 (0.70) 0.76 (0.60)
ODE TNSI 0.68 (0.51) 0.68 (0.42)
NDS GP4GRN 0.73 (0.61) 0.76 (0.57)

CSId 0.63 (0.46) 0.86 (0.72)
CSIc 0.64 (0.39) 0.73 (0.59)

GC GCCA 0.71 (0.55) 0.74 (0.65)
CTBN CVM 0.82 (0.74) 0.84 (0.76)
random 0.65 (0.45) 0.65 (0.45)

6



References
[1] Irene Cantone, Lucia Marucci, Francesco Iorio, Maria Aurelia Ricci, Vincenzo Belcastro, Mukesh

Bansal, Stefania Santini, Mario Di Bernardo, Diego di Bernardo, and Maria Pia Cosma. A Yeast
Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches.
Cell, 137(1):172–181, apr 2009.

[2] Ido Cohn, Tal El-Hay, Nir Friedman, and Raz Kupferman. Mean field variational approximation
for continuous-time Bayesian networks. Journal Of Machine Learning Research, 11:2745–2783,
2010.

[3] Manfred Opper and Guido Sanguinetti. Variational inference for Markov jump processes.
Advances in Neural Information Processing Systems 20, pages 1105–1112, 2008.

[4] Christopher A. Penfold and David L. Wild. How to infer gene networks from expression profiles,
revisited. Interface Focus, 1(6):857–870, dec 2011.

7


	Algorithms
	Derivations
	Expansion formula
	Continuous-time variational lower bound in star approximation
	Relation to naive mean-field approximation
	CTBN dynamics in star approximation
	Variational marginal score
	Marginal dynamics for CTBNs

	Processing IRMA data
	Comparsion to other methods for network reconstruction

