
A Proof of Theorem 1

Before going to the proof, we discuss the following (adopted) lemma,
Lemma 4 (Adopted from [34]). Let a1, a2, . . . , ar be reals in (0,1]. Let X1, X2, . . . , Xn be in-
dependent Bernoulli trails with E[Xj] = pj . For the random variable Ψ =

∑n
j=1 ajXj and for

δ ∈ (0, 1],

Pr[Ψ < (1− δ)EΨ] < e
−δ2Eψ

2 (8)

This lemma is particularly interesting since the multilinear extensionLf (x) = EA∼Dxf(A) is a result
of sampling. The relationship is more clear when we consider modular m(A) = w · 1A. Although, it
is easy to show that Lm(x) = w ·x, we can think it differently. Ignore for the moment Lm(x) = w ·x.
By definition, Lm(x) = EA∼Dxm(A) = EA∼Dxw · 1A and 1A is actually independent Bernoulli
trails. From lemma 4, we know there is a high probability of having “good” 1A from A ∼ Dx. By
“good”, we mean the following:
Definition 3. In the context of A ∼ Dx, for any DSF f , let the event Bf (δ) be f(A) ≥ (1− δ)F (x),
where F is the DSF concave extension of f . Let B(δ) = ∧v∈V1

Bmv1 (δ).

When calculating the lower bound of Lm(x), we simply throw away all “bad” instance and still,
the summation of “good” instance can be high, i.e., Lm(x) ≥ (1 − δ) Pr(Bm(δ))F (x), where
F (x) = w · x is the DSF concave extension of m.

Now we begin to prove theorem 1 by generalizing the above discussion to DSFs.
Theorem 1. For all f ∈ DSF, its DSF concave extension F , and for all x ∈ [0, 1]n, we have

(1− δ)
[
1− |V (1)|e−

δ2∆(x)
2

]
F (x) ≤ Lf (x) ≤ F (x) where ∆(x) = minv1∈V (1)

w
(1)

v1 ·x
maxv∈V wv1 (v)

First we show the upper bound of the multilinear extension. By definition, F (x) is an extension of
f(x) so they agree on the integer values, which means for all A ∼ Dx, f(A) = F (1A). Therefore,
Lf = EA∼Dxf(A) = EA∼DxF (1A). On the other hand, F (x) = F (EA∼Dx1A) and F (x) is
concave. By Jensen’s inequality, we have Lf = EA∼DxF (1A) ≤ F (EA∼Dx1A) = F (x).

The proof of lower bound is more complex. We notice that, given the definition, a DSF has
the form of multiple concave over a sum of modular functions, as stated in Equation (2). Let
mv1

(A) =
∑
a∈A w

(1)
v1 (a) = w

(1)
v1 · 1A. Immediately, we see that f(A) is depends on the values of

mv1(A) for all v1 ∈ V (1)

f(A) = φvK

 ∑
vK−1∈V (k−1)

w
(K)

vK
(vk−1)φvK−1

. . . ∑
v2∈V (2)

w
(3)
v3 (v2)φv2

 ∑
v1∈V (1)

w
(2)
v2 (v1)φv1 (mv1(A))

(9)

We know that Lf = EA∼Dxf(A) and, ultimately, we want to show that Lf ≥ C · F (x) for
some C > 0. The intuition is that if we could calculate Pr [f(A) ≥ C1F (x)], then we will have
Lf ≥ Pr [f(A) ≥ C1F (x)] · C1 · F (x). Like the discussion at the beginning of this section, we
began by analyzing modular functions mv1(A) for v1 ∈ V1. Notice that in mv1(A) = w

(1)
v1 · 1A,

coordinates of 1A are independent Bernoulli trails and applying Lemma 4 to mv1(A), we claim that
for v1 ∈ V1 and for A ∼ Dx,

Pr [mv1(A) < (1− δ)EA∼Dxmv1(A)] < e
−
δ2EA∼Dxmv1 (A)

2 max(w
(1)
v1

) (10)

Pr
[
mv1

(A) < (1− δ)w(1)
v1
· x
]
< e
−

δ2w
(1)
v1
·x

2 max(w
(1)
v1

) (11)

Pr
[
B̄mv1 (δ)

]
< e
−

δ2w
(1)
v1
·x

2 max(w
(1)
v1

) (12)

since the DSF concave extension of a modular function is the same as the multilinear extension.

12

Note that {Bv1}s may or may not be independent events, but the following is always true,

Pr
[
B̄(δ)

]
≤
∑
v1∈V1

Pr
[
B̄mv1 (δ)

]
(13)

where B(δ) = ∧v∈V1
Bmv1 (δ). Then we show the properties Bf (δ) are preserved by weighted sums

and concave functions.
Lemma 5. When sampling A ∼ Dx, for any two DSF f1 and f2, let f = f1 + f2, we have
Bf1

(δ) ∧Bf2
(δ)→ Bf (δ).

Proof. When Bf1(δ)∧Bf2(δ) is True, we have f1(A) ≥ (1− δ)F1(A) and f2(A) ≥ (1− δ)F2(A).
Notice that F (A) = F1(A) + F2(A), so immediately, we have f(A) ≥ (1− δ)F (A).

Lemma 6. When sampling A ∼ Dx, for monotone non-decreasing concave function φ and DSF f ,
we have Bf (δ)→ Bφ(f)(δ).

Proof. Immediately, we notice that the DSF concave extension of φ(f(A)) is φ(F (x)).

Looking at the curve of φ(x), if we connect (0,0) and (y, φ(y)) with a line, then the curve is above it
for x ∈ [0, y]. Therefore φ(x)

x is a decreasing function.

If Bf (δ) is True, we have f(A) ≥ (1 − δ)F (x). then φ(f(A))
φ(F (x)) ≥ (1 − δ)φ((1−δ)F (x))

(1−δ)φ(F (x)) ≥ (1 −
δ)φ(F (x))
φ(F (x)) = 1− δ. Therefore Bφ(f)(δ) is True.

As the basic structure of DSF f , we can get f by recursively applying concave functions or weighted
sums over mv1

[3]. Therefore, applying Lemmas 5 and 6, we claim that, when sampling A ∼ Dx, if
B(δ) is True then Bf (δ) is True, which means

Pr [Bf (δ)] ≥ Pr [B(δ)] (14)

≥ 1−
∑
v1∈V1

Pr
[
B̄mv1 (δ)

]
(15)

≥ 1−
∑
v1∈V1

e
−

δ2w
(1)
v1
·x

2 max(w
(1)
v1

) (16)

Therefore,

Lf (x) = EA∼Dxf(A) (17)
≥ (1− δ) Pr [Bf (δ)]F (x) (18)

≥ (1− δ)

1−
∑
v1∈V1

e
−

δ2w
(1)
v1
·x

2 max(w
(1)
v1

)

F (x) (19)

since f(A) is always non-negative, thus finished the proof of the lower bound of L.

B Proof of Lemma 2

Lemma 2. Any concave problem solver that finds a solution x̂ such that F (x̂) ≥ (1− ε)F (x∗F) will

satisfy Lf (x̂) ≥ (1− ε)(1− δ)
[
1− |V (1)|e−

δ2∆(x̂)
2

]
L(x∗L), where x∗F and x∗L are the maximizer

of the corresponding function subject to the matroid polytope membership.

Proof. Given Theorem 1, we have Lf (x̂) ≥ (1 − δ)
[
1− |V (1)|e−

δ2∆(x̂)
2

]
F (x̂) ≥ (1 −

δ)
[
1− |V (1)|e−

δ2∆(x̂)
2

]
F (x̂) ≥ (1 − ε)(1 − δ)

[
1− |V (1)|e−

δ2∆(x̂)
2

]
F (x∗L) ≥ (1 − ε)(1 −

δ)
[
1− |V (1)|e−

δ2∆(x̂)
2

]
Lf (x∗L)

13

C Proof of Lemma 3

Lemma 3. For any 0 < ε < 1, Algorithm 1 will obtain a fractional x̂ s.t. f(x̂) ≥ (1 −
ε) maxx∈P f(x) with running time T = O(n2ε−2).

Proof. Given Theorem 2, we have

f(x̂) ≥ max
x∈P

f(x)−RB
√

2

T
(20)

≥

(
1− RB

maxx∈P f(x)

√
2

T

)
max
x∈P

f(x) (21)

Let ε = RB
f(x∗)

√
2
T and x∗ ∈ argmaxx∈P f(x). Therefore, T = 2R2B2

ε2f2(x∗) .

We haveR2 = supx∈P ‖x‖
2
2 ≤ n . B2 = supx∈P ‖g(x)‖22 and g(x) is a supergradient of f(x) and

the maximizer of ‖g(x)‖ is x = 0 since f(x) is concave. Note than g(0)e is only related to the parent
nodes of e,

g(0)e = φ′vK (0)
∑

vK−1∈V (k−1)

. . .
∑

v2∈V (2)

∑
v1∈V (1)

φ′vK−1(0) . . . φ′v2(0)φ′v1(0)w
(K)

vK
(vk−1) . . . w

(2)
v2 (v1)w

(1)
v1 (e)

(22)

Therefore
∥∥∥ g(0)e1
g(0)e2

∥∥∥ ≤ wmax

wmin
for all coordinates e1 and e2. So B2 = supx∈P ‖g(x)‖22 ≤

wmax

wmin
ng(0)e = O(n). And for the last unknown term in T , f(x∗) is not decreasing with respect to n.

So we thus have that T ≤ O(n2ε−2).

D Cases for Fully Curved DSFs

The current best curvature bound for submodular maximization under a matroid constraint is 1 −
c/e [37] where c is the curvature of submodular f . We claim our bound (Theorem 3) is not curvature
related and have shown that it is better than 1− 1/e for large k in figure 1. But the readers may suspect
that there might be a hidden dependency on curvature, and the case that our bound beats 1− 1/e is all
for low curvature, where traditional methods also have near optimal performance. In response, we
show by the following lemma which states that our proposed guarantee can be maximized even for
fully curvature DSF functions.
Lemma 7 (Bound is maximized even if fully curved). There exists a fully curved 5 DSF f(A),
and Algorithm 1 with pipage rounding will give X̂ such that Ef(X̂) ≥ max0<δ<1(1 − ε)(1 −
δ)
[
1− e−δ2k

]
maxX⊆M f(X) with running time T = O(n2ε−2)

Proof. The example is fairly simple, f(A) = min(|A|, a) where 1 ≤ a ≤ |A|−1 is a constant number
and the matroid constraint is |A| ≤ k. Immediately, we notice that c ≡ 1−minv∈V

f(v|V \{v})
f(v) = 1

so that f is fully curved. Even though this is a very easy optimization problem and all algorithms can
find the optimal solution, [37] still classifies it as the hardest case by curvature and their bound is at
its worst 1− 1/e.

On the other hand, according to Theorem 3, our proposed bound is at its best as max0<δ<1(1 −
ε)(1− δ)

[
1− e−δ2k

]
and not affected by curvature. It is easy to find out that our bound surpasses

1− 1/e for k ≥ 54 if we set ε = 0.01 and for k ≥ 88 if ε = 0.1.

Theorem 1. Algorithm 1 with pipage rounding will give X̂ such that Ef(X̂) ≥ max0<δ<1(1 −

ε)(1− δ)
[
1− |V (1)|e−

δ2wmink

wmax

]
maxX⊆M f(X) with running time T = O(n2ε−2)

5c ≡ 1−minv∈V
f(v|V \{v})

f(v)
= 1

14

E Algorithm for pipage rounding

Algorithm 3 is the main procedure. During each iteration, a subroutine, Algorithm 2 HITCON-
STRAINT(y, i, j), is called to find the nearest constraint in the direction of ei − ej . It returns the
intersection and a smaller tight set6 containing i [6].

Algorithm 2: HITCONSTRAINT [5]
input :y, i, j
Let A ← {A ⊆ V |i ∈ A, j /∈ A};
Let δ ← minA∈A(rM(A)− y(A)) and A ∈ argminA∈A(rM(A)− y(A))
if yj < δ then

yi ← yj − δ, yj ← 0, A′ ← A;
else

yi ← yi + δ, yj ← yj − δ, A′ ← A;
return (y,A′)

Algorithm 3: Pipage rounding [5]
input :matroidM, fractional x
while x is not integral do

T ← X;
while T contains fractional variables do

Pick i, j ∈ T fractional;
(y+, A+)← HITCONSTRAINT(y, i, j);
(y−, A−)← HITCONSTRAINT(y, j, i);
if y+ = y− = y then

T ← A+;
else

p← ‖y+−y‖/‖y+−y−‖;
With probability p, {y ← y−, T ← T ∩A−};
Else {y ← y+, T ← T ∩A+};

end
end
return 1

T

∑T
t=1 x

(t)

6For y ∈ P(M), a set A ⊆ V is tight if the rank of A inM equals y(A).

15

