
APPENDIX: Geometrically Coupled Monte Carlo Sampling

7 Measure-theoretic considerations regarding K-optimality

In this section, we briefly address the measure-theoretic issues arising from the definition of K-
optimality in Section 2.1, and establish several important integrability results that will be used in the
proofs of the results appearing in Section 2. We re-emphasize here that, as stated in Section 2 of
the main paper, we restrict to the case where the Gaussian process GP(0,K) has continuous sample
paths in order to avoid unnecessary technical complications. More precisely, we restrict to Gaussian
processes for which a continuous modification of the process exists, and assume in the following
that it is always this modification that we are working with. The vast majority of commonly used
GP kernels in machine learning lead to continuous GP sample paths, with the exception of special
cases such as the white noise kernel. For further discussion of the properties of kernels that lead to
continuous sample paths in GPs (see e.g. Marcus and Shepp, 1972; Talagrand, 1987; Gin and Nickl,
2015).

We begin by recalling the form of the objective for K-optimality, defined in the main paper in
Expression (2):

argmin
µ∈Λm(η)

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 .

Firstly, we establish joint measurability of the random variable (m−1
∑m
i=1 f(Xi) − If )

2. We
consider the Gaussian process f taking values in the measurable space (C(Rd;R),Σ), where
C(Rd,R) is the space of continuous functions from Rd to R, and Σ is the product sigma-algebra,
and (X1, . . . , Xm) taking values in the measurable space ((Rd)m,B((Rd)m)), where B((Rd)m)
is the usual Borel sigma algebra on (Rd)m. We aim to establish that (m−1

∑m
i=1 f(Xi) − If )

2

is measurable on (C(Rd;R) × (Rd)m,Σ ⊗ B((Rd)m)). Considering the types of terms that re-
sult from expanding (m−1

∑m
i=1 f(Xi) − If )

2, we note that it is sufficient to prove joint mea-
surability of terms of the form f(Xi) and f(Xi)f(Xj). We deal explicitly with the term f(Xi)
here; the treatment of the term f(Xi)f(Xj) is analogous. To do this, we show that the evaluation
function ψ : (C(Rd;R) × (Rd)m,Σ ⊗ B((Rd)m)) → (R,B(R)) defined by ψ(g, x) = g(x), is
measurable, and since f(Xi) is given by the composition ψ(f,Xi), we have that f(Xi) is mea-
surable, as required. To reach this conclusion, we will show that (i) for all x ∈ Rd, the func-
tion ψ(·, x) : (C(Rd;R),Σ) → R is measurable, and (ii) for all g ∈ C(Rd;R), the function
ψ(g, ·) : Rd → R is continuous. ψ is then said to be a Carathéodory function, and joint measur-
ability follows (see Aliprantis and Border, 2006, Lemma 4.51). For (i), simply note that for all
A ∈ B(R), x ∈ Rd, the set {g ∈ C(Rd;R)|g(x) ∈ A} is a cylinder set, and hence in Σ. In ad-
dition, (ii) follows immediately by continuity of g ∈ C(Rd;R). Putting all this together, we have
established joint measurability of the random variable (m−1

∑m
i=1 f(Xi)− If )

2, which means that
the K-optimality objective appearing in Definition 2.2 is well-defined.

Finally, we make several remarks on pathwise integrability of the Gaussian process GP(0,K).
Firstly, we show that f ∈ L2(η) almost surely, via the following calculation:

EX∼η
[
Ef∼GP(0,K)

[
f(X)2

]]
= EX∼η [K(X,X)] <∞ ,

with the bound following from stationarity of the kernel K. Thus, we may apply Fubini’s theorem
to obtain

Ef∼GP(0,K)

[
EX∼η

[
f(X)2

]]
= EX∼η

[
Ef∼GP(0,K)

[
f(X)2

]]
.

It therefore follows that f ∈ L2(η) almost surely (under the law of the Gaussian process). The joint
integrability with respect to η and the law of the Gaussian process established above is important in
justifying the use of Fubini’s theorem in exchanging orders of expectation in the analysis presented
in Section 9.

8 Examples and counterexamples relating to Section 2

In this section, we present several examples that serve to further illustrate results from the main text.
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8.1 Convexity of the kernel is needed in Theorem 2.9

We present a counterexample illustrating that the convexity assumption on the kernel is required in
theorem 2.9. LetK(x,y) = e−||x−y||2 be the Gaussian kernel and let η ∈ P(Rd) be the spherically
symmetric distribution such that if X ∼ η then ||X|| ∼ U([0, b]) for some b > 0. Note that the
kernel is not convex. Depending on the value of b, two different couplings of the norms will be
optimal: either ||X2|| = ||X1|| or ||X2|| = F−1

R (1 − FR(||X1||)). Indeed it is easy to compute
numerically the following expectations for this choice of η and to note that

E[K(X1,−X1)] < E
[
K

(
X1,

X1

||X1||
F−1
R (1− FR(||X1||)

)]
⇐⇒ b <

3

4
.

This illustrates that in the absence of convexity of the kernel the optimal choice of coupling for two
samples also depends on η: if η assigns a lot of mass to a small area around 0 (b small) then the
coupling of Theorem 2.9 suffers a lot in conjunction with the Gaussian kernel. On the other hand
if η spreads out mass more evenly further from 0 (b large) then the antithetic coupling giving equal
norms to both samples performs better.

8.2 Examples illustrating non-existence of uniformly optimal couplings

Below, we give two examples that expand on the remarks in Section 2 stating that in general, there
does not exist a coupling of Monte Carlo samples (X1, . . . , Xm) that achieves optimal MSE simul-
taneously for a range of functions f for the objective appearing in Expression (1).

Example 8.1. Suppose we want to estimate the value of the following expectation:

EX∼N(0,I) [f(X)] ,

where f : R2 → R is specified in polar coordinates by

f(r, θ) = 1θ∈[0,π) .

The exact value of this integral is 1/2. An optimal coupling for two samples marginally distributed
as N(0, I) in this case can be shown to be any distribution for which X1 and X2 point in opposite
directions almost surely (e.g. taking X2 = −X1). It is readily checked that the corresponding
Monte Carlo estimator is in fact exact, having a mean squared error (MSE) of 0.

Example 8.2. Consider the same setup as Example 8.1, but now with the function

f(r, θ) = 1θ∈[0,π/2)∪[π,3π/2) .

In this case, it is straightforward to show that the two coupled samples of Example 8.1 obtain the
same MSE as a single Gaussian sample, whereas two i.i.d. Gaussian samples obtain half this MSE.

Examples 8.1 and 8.2 illustrate that it is not always possible for one coupling to outperform all others
(in terms of MSE) across a given function class.

9 Proofs of results in Section 2

Theorem 2.4. The optimisation problem defining K-optimality in Equation (2) is equivalent to the
following multi-marginal transport problem:

argmin
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 .
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Proof. We calculate as follows, beginning with the K-optimality objective:

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


=Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− EX∼η[f(X)]

)2


=Ef∼GP(0,K)

EX1:m∼µ

 1

m2

m∑
i=1

f2(Xi) +
1

m2

∑
i≠j

f(Xi)f(Xj)

− 2

m
EX∼η[f(X)]

m∑
i=1

f(Xi) + EX∼η[f(X)]2

 .
Removing terms which depend only on the fixed marginal distribution η, and not the joint distribu-
tion µ, the observe that up to a function of η only, the objective above is equivalent to

Ef∼GP(0,K)

EX1:m∼µ

∑
i ̸=j

f(Xi)f(Xj)

 .
By Fubini’s theorem, we obtain

Ef∼GP(0,K)

EX1:m∼µ

∑
i ̸=j

f(Xi)f(Xj)

 = EX1:m∼µ

Ef∼GP(0,K)

∑
i̸=j

f(Xi)f(Xj)


= EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 ,
as required.

Proposition 2.7. Suppose that the function class F is the unit ball in some RKHS given by a kernel
K : Rd × Rd → R. Then the component

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


of the minimax coupling objective in Equation (3) may be upper-bounded by the following objective:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK

 , (4)

where θK : P(Rd) → HK is the kernel mean embedding into the RKHS HK associated with K.

Proof. We begin by observing that for f ∈ HK ,

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 = EX1:m

(∫
Rd

f(x)

(
1

m

m∑
i=1

δXi − η

)
(dx)

)2


= EX1:m

⟨f, θK ( 1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK

 .
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Using this observation, we next observe that

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 = sup

f∈F
EX1:m∼µ

⟨f, θK ( 1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK


≤ EX1:m∼µ

 sup
f∈F

⟨
f, θK

(
1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK

 .
We can now evaluate the supremum; it is realised when f ∈ HK is the unit vector in the di-
rection of θK

(
m−1

∑m
i=1 δXi

)
− θK (η), in which case the squared inner product evaluates to

∥θK
(
m−1

∑m
i=1 δXi

)
− θK (η) ∥2HK

. Substituting this in yields the result.

Theorem 2.8. Given a probability distribution η ∈ P(Rd) and a kernel K : Rd × Rd → R, a
coupling µ ∈ Λm(η) is K-optimal iff it is solves the optimisation problem in Expression (4).

Proof. The optimisation objective

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK


can be rewritten in the following form:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK


=EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)− θK (η)

∥∥∥∥∥
2

HK


=EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)

∥∥∥∥∥
2

HK

− 2

⟨
1

m

m∑
i=1

K(Xi, ·), θK (η)

⟩
HK

+ ∥θK (η)∥2HK

 .
Since the marginal distributions of X1, . . . , Xm are fixed, the only term above that depends on the
coupling between the random variables X1, . . . , Xm is the first term. Thus, minimising the original
objective is equivalent to minimising

EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)

∥∥∥∥∥
2

HK

 .
Expanding this term yields:

EX1:m∼µ

 1

m2

m∑
i=1

K(Xi, Xi) +
1

m2

∑
i ̸=j

K(Xi, Xj)

 .
Again, the only term depending on the coupling is the final term, so minimising the original objective
is equivalent to the following optimisation problem:

min
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 ,
over all joint distribution of X1:m with marginals given by η.

Theorem 2.9. Let η ∈ P(Rd) be isotropic, and let K : Rd × Rd → R be a stationary isotropic
kernel, such that K(x,y) is a strictly decreasing, strictly convex function of ∥x− y∥. Then the K-
optimal coupling of 2 samples (X1, X2) from η is given by first drawing X1 ∼ η, and then setting
the direction of X2 to be opposite to that of X1, and setting the norm of ∥X2∥ so that

FR(∥X2∥) + FR(∥X1∥) = 1 , (5)
where FR is the CDF associated with the norm of a random vector distributed according to η.
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Proof. To demonstrate that the optimal coupling takes the form given in the statement of Theorem,
we proceed in two steps: (i) we show that there exists an optimal coupling µ∗ such that if (X1, X2) ∼
µ∗, then X1/∥X1∥ = −X2/∥X2∥ almost surely, i.e. X1 and X2 point in opposite directions almost
surely, and (ii) that the norms of X1 and X2 satisfy ∥X2∥ = F−1

R (1 − FR(∥X1∥)) almost surely.
We begin with (i).

Let µ ∈ Λ2(η) be optimal for the following optimisation problem:

min
µ∈Λ2(η)

E(X1,X2)∼µ [K(X1, X2)] , (7)

Then note that if we let (X1, X2) ∼ µ, then if R is a random matrix draw independently from
Haar measure on the orthogonal group Od, then µ′ = Law((RX1,−RX1/∥X1∥ × ∥X2∥)) still
lies in Λ2(η), and moreover yields an objective value for (7) at least as small as that achieved by µ.
The former claim comes from observing that since η is radially symmetric, we have Law(RX1) =
Law(X1) = η, and Law(−RX1 × ∥X2∥/∥X1∥) is the law of a random vector with uniformly
random direction (given by −RX1/∥X1∥), and independent norm given by ∥X2∥, and so is again
distributed according to η. For the latter claim, note that we have

∥X1 −X2∥ ≤
∥∥∥∥X1 −

(
−X1

∥X2∥
∥X1∥

)∥∥∥∥ =

∥∥∥∥RX1 −
(
−RX1

∥X2∥
∥X1∥

)∥∥∥∥ ,
and so by the assumption of the theorem that K(x,y) is a decreasing function of ∥x− y∥, we have

K(X1, X2) ≥ K

(
RX1,−RX1

∥X2∥
∥X1∥

)
,

as required. We have therefore demonstrated that there exists an optimal coupling of X1, X2 ∼ η
for (7) such that the vectors X1 and X2 point in opposite directions almost surely.

To establish claim (ii), we note that in order for the coupling to be optimal, under the condition
of convexity of K, we must have ∥X2∥ decreasing monotonically as ∥X1∥ increases. It therefore
follows that the optimal coupling must of the form stated in the theorem.

Theorem 2.10. Let η ∈ P(Rd) be isotropic and let K : Rd × Rd → R be a stationary
isotropic kernel, such that K(x,y) = Φ(||x − y||2), where Φ is a decreasing, convex function.
If Law(X1, . . . , X2m), with m ≤ d, is a solution to the constrained optimal coupling problem

argmin
µ∈Λanti

2m(η)

EX1:2m∼µ

 2m∑
i,j=1

Φ
(
||Xi −Xj ||2

) ,
then it satisfies ⟨Xi, Xj⟩ = 0 a.s. for all 1 ≤ i < j ≤ m.

Proof. Because Xi = −Xi+m a.s., the objective function can be rewritten as follows:

2m∑
i,j=1

Φ
(
||Xi −Xj ||2

)
=

2m∑
i=1

Φ
(
||Xi −Xi||2

)
+ 2

2m−1∑
i=1

2m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
= 2mΦ(0) + 2

m−1∑
i=1

m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

2m−1∑
i=m+1

2m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

m∑
i=1

2m∑
j=m+1

Φ
(
||Xi −Xj ||2

)
= 2mΦ(0) + 4

m−1∑
i=1

m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

m∑
i,j=1

Φ
(
||Xi +Xj ||2

)
= 2mΦ(0) + 2

m∑
i=1

Φ
(
||2Xi||2

)
+ 4

∑
1≤i<j≤m

Φ
(
||Xi −Xj ||2

)
+Φ

(
||Xi +Xj ||2

)
.
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Hence it becomes equivalent to minimise with ||Xi|| fixed

E

 ∑
1≤i<j≤m

Φ
(
||Xi −Xj ||2

)
+Φ

(
||Xi +Xj ||2

)
= E

 ∑
1≤i<j≤m

Φ
(
||Xi||2 + ||Xj ||2 − 2⟨Xi, Xj⟩

)
+Φ

(
||Xi||2 + ||Xj ||2 + 2⟨Xi, Xj⟩

) . (8)

Using convexity note that

2Φ
(
||x||2 + ||y||2

)
= 2Φ

(
||x||2 + ||y||2 − 2⟨x,y⟩+ ||x||2 + ||y||2 + 2⟨x,y⟩

2

)
≤ Φ

(
||x||2 + ||y||2 − 2⟨x,y⟩

)
+Φ

(
||x||2 + ||y||2 + 2⟨x,y⟩

)
and equality is attained whenever ⟨x,y⟩ = 0. Therefore, the expectation in equation (8) is mini-
mized when ⟨Xi, Xj⟩ = 0 a.s. for 1 ≤ i < j ≤ m. This is a set of valid constraints as long as
d ≥ m. Also, if X1 ∼ η and the Xj’s are generated under η conditioned on being orthogonal to
X1, . . . , Xj−1 then Xj also has marginal η because drawing a uniform distribution conditional on
being orthogonal to a uniform axis results in a uniform direction. Hence any optimal coupling must
satisfy this condition.

10 Proofs of results in Section 3

For the reader’s convenience we restate our main result that we prove here.

Theorem 3.1. [Local discrepancy & regular distributions] Denote by Siid a set of independent
samples, each taken from a regular distribution λ and by Sort the set of orthogonal samples for that
distribution. Let s = |Siid| = |Sort|. Then for any fixed u ∈ [0, 1] and a ∈ R+ the following holds:
P[|disrFλ(Siid)(u)| > a] ≤ 2e−

sa2

8
def
= piid(a) and for some port satisfying port < piid it holds point-

wise: P[|disrFλ(Sort)(u)| > a] ≤ port(a) . Also: V ar(disrFλ(Sort)(u)) < V ar(disrFλ(Siid)(u)).

Proof. Consider a set of samples S = {X1, ..., X|S|} with elements of marginal distributions
Unif[0, 1]d. Denote s = |S|. Note that for any given u = (u1, . . . , ud) ∈ [0, 1]d we have:

E[disrS(u)] =
d∏
j=1

uj−
E[|{i : Xi ∈ Ju}|]

s
=

d∏
j=1

uj −
∑
i=1,...,s P[Xi ∈ Ju]

s

=

d∏
j=1

uj −
s ·Vol(Ju)

s
= 0

Thus we conclude that the expected value of disrS(u) is 0. Let η ∈ P(Rd) be some isotropic
distribution and denote by λ the distribution corresponding to the random variable X = z⊤g, where
z ∈ Rd is some fixed deterministic vector and g is sampled from η.

Now consider a set of samples Siid of the form: Siid = {z⊤giid
1 , ..., z⊤giid

s }, where random vectors
giid
1 , ...,giid

s are chosen independently from η. Similarly, consider a set of samples Sort of the form:
Sort = {z⊤gort

1 , ..., z⊤gort
s }, where the marginal distributions of the random vectors gort

1 , ...,gort
s

is η, but this time different gort
i are conditioned to be orthogonal.

For any given u ∈ [0, 1] we have the following:

disrψ(Siid)(u) = u−
∑
i∈S I[ψ(z

⊤giid
i ) < u]

s
,

where ψ def
= Fλ and I is an indicator random variable.
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Note that equivalently, we can rewrite disrψ(Siid)(u) as:

disrψ(Siid)(u) = u−
−
∑
i∈S I[ψ(z

⊤giid
i ) ≥ u] + s

s
= u− 1 +

−
∑
i∈S I[ψ(z

⊤giid
i ) ≥ u]

s
.

From our previous analysis and standard properties of the cdf we conclude that
∑

i∈S I[ψ(z
⊤giid

i )≥u]
s

is an unbiased estimator of u− 1.

Similarly, we obtain:

disrψ(Sort)(u) = u− 1 +
−
∑
i∈S I[ψ(z

⊤gort
i ) ≥ u]

s
.

Again, as before we note that
∑

i∈S I[ψ(z
⊤gort

i )≥u]
s is an unbiased estimator of u − 1 (since the

marginal distributions of the gorti are the same as those of the giidi ). Denote Y iid
i = I[ψ(z⊤giid

i ) ≥ u]
and Y ort

i = I[ψ(z⊤gort
i ) ≥ u]. Note that Y iid

i , Y ort
i ∈ {0, 1} for i = 1, . . . , s. Notice also that even

though the random variables (Y iid
i )si=1 are independent, this is not true of (Y ort

i )si=1.

We will use the following Cramer’s Theorem:

Theorem 10.1. Let Y1, ..., Ys be random variables. Denote: Ws =
Y1+...+Ys

s . Then P[Ws ≥ a] ≤
minθ>0

E[esθWs ]
esθa

.

Denote: Z iid
i = 1− Y iid

i and similarly: Zort
i = 1− Y ort

i . Denote: W iid
s =

Y iid
1 +...+Y iid

s

s , W iid,−
s =

Ziid
1 +...+Ziid

s

s and similarly: W ort
s =

Y ort
1 +...+Y ort

s

s , W ort,−
s =

Zort
1 +...+Zort

s

s . Note that for any
0 < c < 1:

P[|W iid
s − E[W iid

s ]| > c] = P[W iid
s > E[W iid

s ] + c] + P[W iid
s < E[W iid

s ]− c].

Denote: µ = E[W iid
s ]. We get:

P[|W iid
s − E[W iid

s ]| > c] = P[W iid
s > µ+ c] + P[W iid,−

s > µ− + c],

where µ− = 1− µ = E[W iid,−
s ].

Therefore, using Cramer’s Theorem, we get:

P[|W iid
s − E[W iid

s ]| > c] ≤ min
θ>0

E[esθW iid
s ]

esθa1
+min

θ>0

E[esθW iid,−
s ]

esθa2
,

where: a1 = µ + c and a2 = µ− + c. Thus, from independence and the fact that all Y iid
j have the

same distribution, we have:

P[|W iid
s − E[W iid

s ]| > c] ≤ min
θ>0

(E[eθY iid
1 ])s

esθa1
+min

θ>0

(E[eθZiid
1 ])s

esθa2
. (9)

Notice that: |disrψ(Siid)(u)| = |W iid
s − E[W iid

s ]|. Straightforward calculation of the RHS of Equa-
tion (9) leads to the upper bound on |disrψ(Siid)(u)| from Theorem 3.1.

Now notice, that by the same analysis as before, we get:

P[|W ort
s − E[W ort

s ]| > c] ≤ min
θ>0

E[esθW ort
s ]

esθa1
+min

θ>0

E[esθW ort,−
s ]

esθa2
.

Thus to complete the proof of Theorem 3.1, it suffices to show that: E[esθW ort
s ] < E[esθW iid

s ] and:
E[esθW ort,−

s ] < E[esθW iid,−
s ] for any θ > 0. We will show the first inequality. The proof of the

second inequality is completely analogous.
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Lemma 10.2. The following holds for any fixed θ > 0:

E[esθW
ort
s ] < E[esθW

iid
s ].

Proof. Notice first that:

E[esθW
ort
s ] = E[eθ

∑s
i=1 Y

ort
i ] =

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1<...<ik

E[(Y ort
i1 )j1 ...(Y ort

ik
)jk ]

=

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1<...<ik

E[Y ort
i1 ...Y ort

ik
],

where the sum over j1, ...jk is the sum over all partitioning of j into positive integers j1, ..., jk, the
sum over i1 < ... < ik is the sum over all increasing nonempty sequences (i1, ..., ik) such that
i1, ...ik ∈ {1, ..., s} (thus k ∈ {1, ..., s}) and furthermore the last equality is true since each Y ort

i is
an indicator random variable (note that the infinite sum above is well-defined since random variables
under consideration are indicators). Similarly,

E[esθW
iid
s ] = E[eθ

∑s
j=1 Y

iid
j ] =

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1,...,ik

E[Y iid
i1 ...Y iid

ik
],

Thus, since θ > 0, it suffices to show that:

E[Y ort
i1 ...Y ort

ik
] < E[Y iid

i1 ...Y iid
ik

]

or equivalently:

P[Aort
i1 ∧ ... ∧ Aort

ik
] < P[Aiid

i1 ∧ ... ∧ Aiid
ik
],

where Aiid
i and Aort

i stand for events corresponding to indicators Y iid
i and Y ort

i respectively. For
clarity, we present the proof for the inequality above for k = 2, for k > 2 the analysis is analogous.
Notice also that the inequality for k = 2 immediately leads to the inequality regarding the variance
from the statement of the theorem.

Note that it suffices to show that for any t and any z ∈ Rd the following is true:

P[z⊤gort
i ≥ t ∧ z⊤gort

j ≥ t] < P[z⊤giid
i ≥ t ∧ z⊤giid

j ≥ t]

for i ̸= j.

Since t is arbitrary, we can assume without loss of generality that ∥z∥ = 1. Note that then the
following holds:

P[z⊤gort
i ≥ t ∧ z⊤gort

j ≥ t] = P

[
g1√

g21 + ...+ g2d
l1 ≥ t ∧ g2√

g21 + ...+ g2d
l2 ≥ t

]
,

where g = (g1, ..., gn)
⊤ is a multivariate Gaussian vector taken from a distribution N (0, Id) and

l1, l2 are taken independently from the distribution of the length of gort
i (or giid

i since the marginal
distributions of samples are the same). The last equality immediately follows from the fact that gort

i
are taken from the isotropic distribution.

We also have:

P[z⊤giid
i ≥ t ∧ z⊤giid

j ≥ t] = P[z⊤giid
i ≥ t]P[z⊤giid

j ≥ t]

= P

[
g1√

g21 + ...+ g2d
l1 ≥ t

]
· P

[
g2√

g21 + ...+ g2d
l2 ≥ t

]
,

where we use the independence assumption. Thus it suffices to show that:

P
[
g1 ≥ t

l1

√
g21 + ...+ g2d ∧ g2 ≥ t

l2

√
g21 + ...+ g2d

]
< P

[
g1 ≥ t

l1

√
g21 + ...+ g2d

]
· P
[
g2 ≥ t

l2

√
g21 + ...+ g2d

]
.
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Therefore we want to prove that:

P
[
g2 ≥ t

l2

√
g21 + ...+ g2d

∣∣∣∣g1 ≥ t

l1

√
g21 + ...+ g2d

]
< P

[
g2 ≥ t

l2

√
g21 + ...+ g2d

]
.

Note that: t
l1

, t
l2

, g1, g2 and g23 + ...+ g
2
d are independent random variables. Thus it suffices to show

that for any c > 0 and any a, b the following is true:

P
[
g2 ≥ b

√
g21 + g22 + c

∣∣∣∣g1 ≥ a
√
g21 + g22 + c

]
< P

[
g2 > b

√
g21 + g22 + c

]
.

Denote g+i = gi|gi > 0 and g−i = gi|gi < 0. We will prove the inequality above by conditioning
on four possible events" E1 = {g1, g2 > 0}, E2 = {g1, g2 < 0}, E3 = {g1 > 0, g2 < 0},
E4 = {g1 < 0, g2 > 0}. Consider all four cases, one can easily see that in order to prove the
inequality it suffices to prove the following: for any x, y:

P[(g+2 )
2 > x|(g+2 )2 ≤ y] < P[(g+2 )

2 > x],

and similarly:

P[(g+2 )
2 < x|(g+2 )2 ≥ y] < P[(g+2 )

2 < x].

We will prove the first inequality. The proof for the second one is completely analogous.

Denote: A1 = P[(g+2 )2 < x], A2 = P[x < (g+2 )
2 < y] and A3 = P[(g+2 )2 > y]. We want to prove

that: A2

A1+A2
< A2 + A3, which is trivially true since 0 < A1, A2, A3 < 1 and A1 + A2 + A3 = 1.

That completes the proof of Lemma 10.2.

As we have noticed, the proof of Lemma 10.2 completes the proof of Theorem 3.1.

10.1 From low discrepancy to low approximation error

As mentioned in the main body of the paper, sharper concentration results regarding local discrep-
ancies translate to sharper concentration results for the star discrepancy function D∗

η and ultimately
also to sharper results regarding approximation error of MC estimators. We show it in this section.

Define the error coming from the approximation Îf of If that uses the set of samples S as: ϵS(f) =
|If − Îf |.
The following theorem establishes the connection between the discrepancy of a sequence S used for
estimation and the above approximation error ϵS(f).
Theorem 10.3 (Koksma-Hlawka inequality). For any function f with bounded variation and a se-
quence S, the approximation error ϵS(f) satisfies:

ϵS(f) ≤ D∗
λ(S)VHK(f) = sup

u∈[0,1]d
|disrψ(S)(u)|VHK(f),

where VHK stands for the Hardy-Krause variation of f (Niederreiter, 1992) defined as follows:

VHK(f) =
∑

I⊂[d],I ̸=∅

∫
[0,1]d

∣∣∣∣ ∂f∂uI |uj=1,j /∈I

∣∣∣∣ duI .
and ψ = Fλ.

Thus we can conclude that sequences S of lower discrepancies lead to tighter upper bounds on the
approximation error of If .

The following is our main result of this section:
Theorem 10.4. For any N ∈ N, a > 1

N , set of samples S, λ ∈ P([0, 1]) and a function f of
bounded variation the following holds for ϵS(f) = |Îf − If |, where If = EX∼η[f(X)]:

P[ϵS(f) > a] ≤ Np

(
a− 1

N

)
VHK(f),
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if p is such that: P[|disrψ(S))(x)| > a] ≤ p(a) for any fixed x ∈ [0, 1]. In particular, if λ is a

regular distribution and if we take: a = log(|S|)
|S| and N =

2
√

|S|
log(|S|) , then we obtain: P[ϵSiid

(f) >

a] ≤ 4
√

|S|
log(|S|)e

− log2(|S|)
32 = neg(|S|), and for Siid replaced by Sort the bounds are even tighter. In

the above statement neg(|S|) is defined as neg(|S|) = 1
superpoly(|S|) and superpoly stands for some

superpolynomial function.

Proof. Let s = |S|. Consider D∗
λ(S) = supx∈[0,1] |disrψ(S)(x)| for some one-dimensional dis-

tribution λ. We partition interval [0, 1] into N subintervals: [xj , xj+1] of length 1
N each for

j = 0, ..., N − 1. Note that for a fixed a > 0:{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}
=
{
∃x∗ ∈ [0, 1] : |disrψ(S)(x∗)| > a

}
.

Denote: Xx
j = I[sj < x], where sj is the jth sample from ψ(S). Assume that x∗ is in the

subinterval with endpoints: xj∗ and xj∗+1. Note that we have:

X
xj∗

1 + ...+X
xj∗
s

s
≤ Xx∗

1 + ...+Xx∗

s

s
≤ X

xj∗+1

1 + ...+X
xj∗+1
s

s

Thus we get:

disrψ(S)(x
∗) =

∣∣∣∣Xx∗

1 + ...+Xx∗

s

s
− x∗

∣∣∣∣ ≤ max(A,B),

where A =

∣∣∣∣Xxj∗
1 +...+X

xj∗
s

s − x∗
∣∣∣∣ and B =

∣∣∣∣Xxj∗+1
1 +...+X

xj∗+1
s

s − x∗
∣∣∣∣.

Therefore, using triangle inequality, we obtain:

{|disrψ(S)(x∗)| > a} ⊆ {|disrψ(S)(xj∗)|+ |x∗ − xj∗ | > a} ∪ {|disrψ(S)(xj∗+1)|+ |x∗ − xj∗+1| > a}.

Therefore we obtain:

{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}
⊆
{
∃j : |disrψ(S)(xj)| > a− 1

N

}
.

Thus, by the union bound, we conclude that:

P

[{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}]
≤

N∑
j=1

P
[{

|disrψ(S)(xj)| > a− 1

N

}]
.

The statement of Theorem 10.4 follows now from Koksma-Hlawka inequality, and Theorem 3.1.

11 Proofs of results in Section 4

11.1 Exponential concentration

In this section we present the proofs of the results in 4. For completeness we start by reviewing the
classical defnitions of sub-Gaussianity for random variables and random vectors.
Definition 11.1 (Sub-Gaussian Random Variables). A random variable X with mean µ = E[X] is
sub-Gaussian if there is a positive number σ such that:

E[eλ(X−µ)] ≤ eσ
2λ2/2 for all λ ∈ R.
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A standard Gaussian random variable is sub-Gaussian with parameter σ equal to the said variable’s
standard deviation.
Lemma 11.2 (Concentration for sub-Gaussian random variables). LetX be a sub-Gaussian random
variable with parameter σ and mean µ. It satisfies the following concentration inequality:

P[X − µ ≥ t] ≤ e−
t2

2σ2 .

Paying a factor of 2 we can get an equivalent two sided bound for |X − µ| ≥ t.

The following alternative characterization of sub-Gaussianity will prove useful:
Lemma 11.3 (Alternative characterization of sub-Gaussianity ). A centered random variable X is
sub-Gaussian if there is a constant c and a Gaussian random variable Z ∼ N(0, τ2) such that:

P [|X| ≥ s] ≤ cP [|Z| ≥ s] , for all s ≥ 0.

Additionally, we can switch from the definition in 11.1 to the characterization in Lemma 11.3 in the
following way:

• If X is zero mean sub-Gaussian with parameter σ, then taking τ2 = 2σ2 and c =
√
8e is

enough for Lemma 11.3 to hold for X .
• If X is zero mean sub-Gaussian with sub-Gaussian parameters τ2 and c in Lemma 11.3,

then σ2 = 2c2τ2 is a valid sub-Gaussian parameter for for X , as in Definition 11.1.

The concept of sub-Gaussianity extends to vector valued random variables:
Definition 11.4 (Sub-Gaussian Vector). A random vectorX is sub-Gaussian with parameter at most
σ if for every v ∈ Sd−1 (where Sd−1 is the unit d−dimensional sphere.)

E
[
eλ⟨v,X⟩

]
≤ e

λ2σ2

2 for all λ ∈ R.

We will be using these facts heavily in the following sections.

The following facts will prove useful. For a detailed survey of these results consult (Boucheron et al.,
2013).

Fact 1 If X is sub-Gaussian with parameter σ, X + c is sub-Gaussian with parameter σ for all
c ∈ R.

Fact 2 If X1 and X2 are independent with parameters σ1, σ2 respectively, then X1 + X2 is sub-
Gaussian with parameter

√
σ2
1 + σ2

2 .
Fact 3 Even without assuming independence, if X1 and X2 are sub-Gaussian with parameters

σ1, σ2 respectively, then X1 +X2 is sub-Gaussian with parameter
√
2
√
σ2
1 + σ2

2 .

Fact 4 If X is sub-Gaussian with parameter σ2, cX is sub-Gaussian with parameter c2σ2.

We need the following result showing that the product of a sub-Gaussian random variable and a
bounded random variable is again sub-Gaussian.
Theorem 11.5 (Sub-Gaussian products). Let Y be a bounded random variable such that
Y ∈ [−R1, R2] for R1, R2 ≥ 0 with R1 + R2 = R for some constant R, and let X
be sub-Gaussian with parameter σ and mean µ. Then XY is sub-Gaussian with parameter√
2
√
2g(σ)2R2 + µ2R2/2 + σ2R2

1 where g(σ) = 24eσ.

Theorem 11.5 allows us to prove fast concentration rates for the vanilla ES estimator. We believe
this result is of independent interest, as it tackles a fundamental question regarding concentration of
products of sub-Gaussian variables.

Proof. The proof has two steps, we first show it holds for non-negative and discrete Y . Then we
generalize.

1 Case 1: Y only attains discrete values Y ∈ {0, 1} and X is zero mean.
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We will make use of lemma 11.3 to prove this result. Since X is mean zero and sub-Gaussian there
is τ2 and constant c such that:

P (|X| ≥ s) ≤ cP (|Z| ≥ s),

where Z ∼ N(0, τ2). In fact we can take τ2 = 2σ2, and c =
√
8e.

Let X ′ be an independent copy of X . By Fact 2, X − X ′ is sub-Gaussian with parameter
√
2σ.

SinceX−X ′ has mean zero by Lemma 11.3 we conclude there are constants τ1 such that τ21 = 4σ2

and c1 =
√
8e such that P (|X −X ′| ≥ s) ≤ c1P (|Z ′| ≥ s), where Z ′ ∼ N(0, τ21 ).

Let µXY denote the mean of XY . Let X ′ and Y ′ be independent copies of X and Y ′ respectively.
We proceed to invoke a symmetrization argument. We first show that in order to bound the MGF of
XY it is enough to bound the MGF of XY −X ′Y ′. For any λ ∈ R:

E
[
eλ(XY−µXY )

]
= E

[
eλ(XY−E[X′Y ′])

]
≤ E

[
eλ(XY−X′Y ′)

]
.

The inequality follows from Jensen’s inequality. This means that sub-Gaussianity of XY − X ′Y ′

implies sub-Gaussianity of XY − µXY .

We will show sub-Gaussianity of XY − X ′Y ′. Since Y and Y ′ only take values in {0, 1} we can
write:

|XY −X ′Y ′| =


|X −X ′| if Y = 1, Y ′ = 1,

|X| if Y = 1, Y ′ = 0,

|X ′| if Y = 0, Y ′ = 1,

0 o.w.

Let s > 0. By the union bound:

P(|XY −X ′Y ′| ≥ s) ≤ P(|X −X ′| ≥ s) + P(|X| ≥ s) + P(|X ′| ≥ s).

By sub-Gaussianity of X and X ′ −X and using their Gaussian tail bounds:

P(|XY −X ′Y ′| ≥ s) ≤ c1P(|Z ′| ≥ s) + 2cP(|Z| ≥ s),

where Z ∼ N(0, τ2) and Z ′ ∼ N(0, τ21 ).

Let τ2 = max(τ, τ1) and c2 = 3max(c, c1, 1). Let c2 = 3
√
8e and τ22 = 4σ2. We conclude that for

all s ≥ 0:

P(|XY −X ′Y ′| ≥ s) ≤ c2P(|Z ′′| ≥ s),

where Z ′′ ∼ N(0, τ22 ). The inequality also holds for s = 0 since we have ensured c2 ≥ 1. By the
series of observations right below Lemma 11.3, this implies thatXY is sub-Gaussian with parameter√
2c3τ2 =

√
2 ∗ 3 ∗

√
8 ∗ e ∗ 2 ∗ σ = 24eσ

def
= g(σ).

1 Case 2: X centered, Y ≥ 0 and supported on a finite set a1 < a2 < · · · < am.

Denote by µXY the mean of XY . In order to show XY is sub-Gaussian we have to bound its MGF
E
[
eλ(XY−µXY )

]
. For i ≥ 1 letXi = X1(Y ≤ ai). Define a0 = 0 thenXY =

∑n
i=1Xi(ai−ai−1)
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and therefore E [XY ] =
∑n
i=1(ai − ai−1)E[Xi]. Notice that

∑n
i=1 ai − ai−1 = an − a0. Let

pi =
an−a0
ai−ai−1

. Let σ be the sub-Gaussianity parameter of X .

E
[
eλ(XY−µXY )

]
= E

[
e
∑n

i=1 λ(ai−ai−1)(Xi−E[Xi])
]

≤
∏
i

E

[(
eλ(ai−ai−1)(Xi−E[Xi])

) an−a0
ai−ai−1

] ai−ai−1
an−a0

=
∏
i

E
[
eλ(an−a0)(Xi−E[Xi])

] ai−ai−1
an−a0

≤
∏
i

(
e

λ2(an−a0)2g(σ)2

2

) ai−ai−1
an−a0

= e
λ2g(σ)2(an−a0)2

2 ,

where g(σ) is defined as in Case 1. The first inequality follows by Hölder’s inequality with pa-
rameters pi. The second inequality follows from the sub-Gaussianity bound from Case 1 since
Xi = X1(Y ≤ ai).

2 Case 2. Y is non-negative but not necessarily discrete. X has mean zero.

Assume Y ∈ [0, R]. If Y ≥ 0 there is a sequence of simple random variables (all of which are
discrete) Yn with Yn → Y almost surely. Furthermore, all Yn ∈ [0, R], so that the maximal element
in the domain of Yn is at most R.

For any λ ∈ R the previous observation implies λXYn → λXY almost surely. Let f1(x, y) =
|λRX|. Since |X| is integrable, E [f1(X)] < ∞. Notice that pointwise |λXYn| ≤ f1(X,Y ). By
the dominated convergence theorem (Halmos, 2013) we can conclude E [λXYn]

n→∞−−−−→ E [λXY ].
By continuity of the exponential function h(x) = ex this also implies eE[λXYn] n→∞−−−−→ eE[λXY ].

The random variables eλXYn converge to eλXY almost surely. The function f2(x, y) = ef1(x,y)

satisfies:

1. |eλXYn | = eλXYn ≤ f2(X,Y ) pointwise.

2. E [f2(X,Y )] < ∞. Indeed: E [f2(X,Y )] ≤ E[eλRX ] + E
[
e−λRX

]
≤ 2eλ

2R2σ2/2 < ∞.
The first inequality holds by nonnegativity of the exponential function and because for
any point x, one of λRx or −λRx equals |λRx|. The second inequality holds by sub-
Gaussianity of X .

By the dominated convergence theorem again we conclude that E
[
eλXYn

]
→ E

[
eλXY

]
. Since by

Case 2, E
[
eλXYn

]
≤ eλ

2g(σ)2R2/2 we conclude E
[
eλXYn

]
≤ eλ

2g(σ)2R2/2.

Case 3 X has mean µ and Y ∈ [−R1, R2] can attain negative values.

Define R := R1 + R2 and let −R1 be the smallest element in the support of Y . Let Y1 = Y + R1

and X1 = X − µ. Notice Y1 ∈ [0, R] and X1 has mean zero and sub-Gaussianity parameter σ, like
X . By Case 3 we conclude X1Y1 is sub-Gaussian with parameter g(σ)R.

Since Y is bounded, Y is sub-Gaussian with parameterR/2, (see Boucheron et al., 2013). Therefore
µY is sub-Gaussian with parameter |µ|R/2.

Since X is sub-Gaussian with parameter σ, R1X is sub-Gaussian with parameter σR1.

Notice that X1Y1 = XY +R1X − µY −R1µ. Therefore:
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1. X1Y1 + R1µ is sub-Gaussian with parameter g(σ)R since it is the translate of a g(σ)R
sub-Gaussian random variable.

2. X1Y1 +R1µ+ µY is sub-Gaussian with parameter
√
2
√
g(σ)2R2 + µ2R2/4 by Fact 3.

3. X1Y1 +R1µ+ µY −R1X = XY is sub-Gaussian with parameter

√
2
√
2(g(σ)2R2 + µ2R2/4) + σ2R2

1 =
√
2
√
2g(σ)2R2 + µ2R2/2 + σ2R2

1.

This shows thatXY is sub-Gaussian with parameter
√
2
√

2g(σ)2R2 + µ2R2/2 + σ2R2
1 which con-

cludes the proof.

11.2 The vanilla ES estimator

In this section we focus on proving Theorem 4.1. Recall that given F : Θ → R, the Vanilla ES
estimator is defined as:

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi,

where ϵi ∼ N (0, I) are all i.i.d. and σ is the variance of the length of the sensing direction.

In what follows we assume that F is uniformly bounded over its domain by F . If F is a sum of
discounted rewards, an upper bound of R for the reward function yields an upper bound of 1

1−γR
for F , where γ is the discount factor.

We show that whenever F is bounded in absolute value the random vector ∇̂V
NFσ(θ) is sub-

Gaussian.

Theorem 11.6. If F is a bounded function such that |F | ≤ R1, the vanilla ES estimator is a sub-
Gaussian vector with parameter

√
2R1

√
8c2+1√

Nσ
for c = 24e.

Proof. Let v ∈ Sd−1 be an arbitrary d−dimensional unit vector. We start by showing sub-
Gaussianity of the vector F (θ + σϵ)ϵ.

Notice that ⟨v, F (θ + σϵ)ϵ⟩ = F (θ + σϵ)⟨ϵ, v⟩. Since linear combinations of jointly Gaussian
random variables are Gaussian, and ||v|| = 1, the random variable ⟨ϵ, v⟩ is a N (0, 1) Gaussian
random variable and therefore ⟨ϵ, v⟩ is 1-sub-Gaussian.

By Theorem 11.5, since F is assumed to be in the range [−R1, R1], it follows that ⟨v, F (θ+ ϵ)ϵ⟩ is√
2R1

√
8c2 + 1 sub-Gaussian, where c = g(1).

By noting that each ϵi is independent from all others, we can obtain that ⟨v, ∇̂V
NFσ(θ)⟩ is

√
2R1

√
8g(1)2+1√
Nσ

sub-Gaussian. Since v was arbitrary this concludes the proof.

Corollary 11.7 (Exponential Concentration for the Vanilla ES estimator). If F is a bounded function
such that |F | ≤ R1:

P
(

max
j=1,··· ,d

∣∣∣∣(∇̂V
NFσ(θ)

)
j
−
(
E
[
∇̂V
NFσ(θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

2R2
1(8g(1)2+1)

For any t ≥ 0.

The combination of Theorem 11.6 and Corollary 11.7 conclude the proof of Theorem 4.1.
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11.3 Orthogonal Bounds

In this section we prove Theorem 4.3. We prove concentration bounds for orthogonal gradient
estimators of the form:

∇̂Ort
d F (θ) =

1

dσ

d∑
i=1

νibiF (θ + σνibi) ,

where the random vectors νi ∈ Sd−1 are in the unit sphere and are sampled uniformly from the unit
sphere using a sequentially orthogonal process, the function F is bounded supx |F (x)| ≤ R < ∞,
and bi are zero mean signed lengths, sampled from sub-Gaussian distributions each with parameter
βi and independent from each other and from all other sources of randomness.
Theorem 11.8. Let B = maxi E [|bi|], β = maxi βi, |F | ≤ R, the orthogonal gradient estimator

∇̂Ort
d F (θ) is sub-Gaussian with parameter

√
β2c2R2

σ2d2 + R2B2

4σ2d . Where c = 2
√

(24e)2 + 1
2 , and

ln(e) = 1.

Proof. We start by lumping in 1
σ with F so that |F |/σ ≤ R/σ. We proceed with the proof, and at

the end subsitute R by R/σ.

In order to show the concentration of the random vector ∇̂Ort
d F (θ), it is enough to show that for any

fixed u ∈ Sd−1, ⟨u, ∇̂Ort
d F (θ)⟩ is a sub-Gaussian random variable.

Given u ∈ Sd−1, define αi = ⟨u, νi⟩. Notice that
∑d
i=1 α

2
i = 1 and that:

⟨u, d∇̂Ort
d F (θ)⟩ =

d∑
i=1

αibiF (θ + σ2νibi)

We wish to control:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

.

We start by decomposing the MGF above as follows:

E

[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]+

E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]− E

[
⟨u, d∇̂Ort

d F (θ)⟩
] ))]

.

And first bounding the conditional MGF:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]))∣∣∣ν1, · · · , νd] .

Notice that conditional on ν1, · · · , νd, the sum ⟨u, ∇̂Ort
d F (θ)⟩ =

∑
i=1 αibiF (θ + σ2νibi) is made

of d (conditionally) independent random variables {αibiF (θ + σ2νibi)}di=1, and therefore, by The-
orem 11.5 and Fact 2, the conditional MGF is bounded by:

e
λ2

2

∑d
i=1 α

2
iβ

2
i c

2R2

.
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For c = maxi

√
2
√

2g(βi)2+E[bi]2/2+β2
i

βi
derived from applying Theorem 11.5 to this case, where βi

are the sub-Gaussian parameters of the random variables bi. Since
∑d
i=1 α

2
i = 1 the bound reduces

to:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]))∣∣∣ν1, · · · , νd] ≤ e

λ2

2 β
2c2R2

,

where β is an uppper bound to βi for all i. Notice that this bound has no dependence on dimension.

To provide a bound for the MGF:

E
[
exp

(
λ
(
E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]− E

[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

.

The random variable:

E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd] = d∑

i=1

E [αibif(θ + σνibi)|ν1, · · · , νd]

=

d∑
i=1

αiE [bif(θ + σνibi)|ν1, · · · , νd]

is bounded. Indeed by Hölder:

∣∣∣∣∣
d∑
i=1

αiE [bif(θ + σνibi)|ν1, · · · , νd]

∣∣∣∣∣ ≤ RB∥α∥1,

where E [|bi|] ≤ B, ∀i and α ∈ Rd with α ∈ Sd−1. The later implies ∥α∥1 ≤
√
d. And R is a

uniform upper bound for f .

The previous observations imply in turn that this random variable is bounded by RB
√
d, and there-

fore that it is sub-Gaussian because it is bounded (Boucheron et al., 2013). Therefore:

E
[
exp

(
λ
(
E
[
⟨u, d∇̂Ort

d F (θ)⟩|ν1, · · · , νd
]
− E

[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

≤ exp

(
λ2R2B2d

8

)
.

Plugging these two bounds together:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

≤ e
4λ2β2c2R2+λ2R2B2d

8 .

As a consequence:

E
[
exp

(
λ
(
⟨u, ∇̂Ort

d F (θ)⟩ − E
[
⟨u, ∇̂Ort

d F (θ)⟩
]))]

≤ e
λ2β2c2R2

2d2
+λ2R2B2

8d .

With c = maxi
√
2
√
2 ∗ g(βi)2 + E[bi]2/2 + β2

i with g the function defined in Theorem 11.5.

Assuming N = Td and therefore availability of T i.i.d. orthogonal estimators (indexed by j) define:

∇̂Ort
N F (θ) =

1

T

T∑
j=1

∇̂Ort,j
d F (θ).

The following corollary is immediate:
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Corollary 11.9. The gradient estimator ∇̂Ort
N F (θ) is sub-Gaussian with parameter

1√
T

√
β2c2R2

d2σ2 + R2B2

4σ2d = 1√
N

√
β2c2R2

dσ2 + R2B2

4σ2 .

And therefore:

Corollary 11.10. The orthogonal gradient estimator ∇̂Ort
N F (θ) satisfies the following concentration

inequality:

P
(

max
j=1,···d

∣∣∣∣(∇̂Ort
N F (θ)

)
j
−
(
E
[
∇̂Ort
N F (θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

β2c2R2

d
+R2B2

4 .

This argument finalizes the proof of Theorem 4.3. Whenever the lengths of the scalings B, βi are
of order O(1), we recover a concentration rate of order O(d exp(−t2N)), which is comparable to
the rate for the vanilla estimator. The analysis of orthogonal estimators is substantially harder than
in the vanilla case due to the non i.i.d nature of the sampling process. This is to our knowledge the
first result of its type.

12 Experiments: further details for variational autoencoder implementation

In this section, we give further details on the setup of the variational autoencoder experiments on
MNIST appearing in Section 5.2 of the main paper.

12.1 Architectures

We use a 64-dimensional N(0, I) distribution for the prior over the latent state z. The generative
model pθ(x|z) is specified by a fully-connected neural network with 64 input units and two hidden
layers of 500 units. The hidden unit activation functions are ReLUs, and the final layer activations
are sigmoids. A Bernoulli likelihood is used to train the output of the network. Here, θ represents
the trainable parameters of the network. The recognition model qϕ(z|x) is also given by a fully con-
nected neural network with two hidden layers of 500 units. The hidden layer activation functions are
ReLUs, and the final layer is linear, outputting a mean vector µϕ(x) and a log-standard deviation vec-
tor log(σϕ(x)), which parametrise an approximate factorised Gaussian posterior N(µϕ(x), σ

2
ϕ(x))

for the latent encoding given x. Here, ϕ are the trainable parameters of the network. We initialise
all weights of the networks using the normalised initialisation of (Glorot and Bengio, 2010), and
initialise biases to 0.

12.2 Results

Table 1: Train and test ELBO achieved with various sampling algorithms. iid refers to independently
sampled directions, in contrast to ort, which refers to orthogonally constrained directions as in Al-
gorithm 2. anti-eq corresponds to antithetic pairs of samples with matching norms (as in Algorithm
2, and anti-inv corresponds to antithetic pairs with norm couplings as in Algorithm 1.

m = 2

iid iid-anti-eq iid-anti-inv ort ort-anti-eq ort-anti-inv

Train -99.59 -98.60 -98.64 -99.30 -98.56 -98.47

Test -99.96 -99.02 -99.05 -99.69 -98.97 -98.94

m = 8

iid iid-anti-eq iid-anti-inv ort ort-anti-eq ort-anti-inv

Train -98.88 -98.48 -98.55 -98.79 -98.41 -98.50

Test -99.26 -98.92 -98.98 -99.24 -98.89 -98.95
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We train on minibatches of 50 images, and use the Adam optimiser with a learning rate of 10−4,
and all other parameters set to default settings; the learning rate was softly optimized for the per-
formance of the i.i.d. method. It is thus possible that with further hyperparameter tuning for each
individual sampling method, further improvements in performance may be observed for GCMC
sampling schemes; intuitively, we might expect that the variance reduction in stochastic gradients
that GCMC methods achieve would allow a larger learning rate to be used. We report average test
and train log-likelihood after 50 epochs of training, to assess the impact of the considered sampling
schemes on the speed of learning for the model. We summarize full results for a variety of sampling
methods in Table 1. We note that GCMC methods always improve speed of training relative to i.i.d.,
and in general the most substantial improvement combines some variant of antithetic sampling with
orthogonality constraints.

13 Experiments: Learning efficient navigation policies with ES strategies

In this section we give additional information on the ES gradient estimators described in Section
5.1,as well as a description of the video library that we attach to the paper, and additional experi-
mental results.

13.1 Estimator specification

The vanilla ES gradient estimator is given by

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi, where ϵi ∼ N (0, I) are all i.i.d. .

We consider three variants of control variates: forward finite-difference, in which the estimator is
given by

1

Nσ

N∑
i=1

(F (θ + σϵi)− F (θ))ϵi ,

antithetic, in which the estimator is given by

1

2Nσ

N∑
i=1

(F (θ + σϵi)− F (θ − σϵi))ϵi ,

and antithetic-coupled, in which the estimator is given by

1

2Nσ

N∑
i=1

(F (θ + σϵi)ϵi + F (θ + σϵ′i)ϵ
′
i − F (θ)(ϵi + ϵ′i)) ,

where εi and ε′i are coupled as in Algorithm 1. Note the additional term dependent on F (θ) ap-
pearing in the antithetic− coupled estimator, in order to cancel the zeroth order term in the Taylor
expansion of the above objective.

13.2 Video library

We attach to the paper a collection of videos showing how policies learned with different tested MC
algorithms work in a simulator. Each file is in a .webm format and its name is using the following
template: sensing_mechanism-control_variate-samples_number, where: sensing_mechanism stands
for the sampling strategy and is chosen from the set: {MCGaussian, MCGaussianOrthogonal,
MCRandomHadamard}, control_variate-samples_number stands for the type of the control variate
term used and is chosen from the set: {vanilla, forward finite-difference, antithetic and antithetic-
coupled} and finally: samples_number stands for the number of samples used in the MC algorithm
at each iteration of the optimization routine to approximate current gradient vector. These videos
serve to illustrate the types of policies learnt under the variety of sampling mechanisms considered
in Section 5.1.
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13.3 RL experiments: additional results

We present here the results of all experiments conducted to learn good quality naviga-
tion policies for the Minitaur platform for the following sampling strategies: MCGaussian,
MCGaussianOrthogonal, MCRandomHadamard, the following control variate terms: vanilla,
forward finite-difference, antithetic and the following number of samples: m = 8, 48, 96.

(a) MCGaussian-antithetic-48 (b) MCGaussian-antithetic-96

(c) MCGaussian-forward_fd-8 (d) MCGaussian-forward_fd-48

(e) MCGaussian-forward_fd-96 (f) MCGaussian-vanilla-8

Figure 3: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussian-vanilla-48 (b) MCGaussian-vanilla-96

(c) MCGaussianOrthogonal-antithetic-16 (d) MCGaussianOrthogonal-antithetic-32

(e) MCGaussianOrthogonal-antithetic-48 (f) MCGaussianOrthogonal-antithetic-64

Figure 4: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussianOrthogonal-antithetic-96 (b) MCGaussianOrthogonal-forward_fd-8

(c) MCGaussianOrthogonal-forward_fd-48 (d) MCGaussianOrthogonal-forward_fd-96

(e) MCGaussianOrthogonal-vanilla-8 (f) MCGaussianOrthogonal-vanilla-48

Figure 5: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussianOrthogonal-vanilla-96 (b) MCRandomHadamard-vanilla-8

(c) MCRandomHadamard-vanilla-48 (d) MCRandomHadamard-vanilla-96

(e) MCRandomHadamard-forward_fd-8 (f) MCRandomHadamard-forward_fd-48

Figure 6: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.

34



(a) MCRandomHadamard-forward_fd-96 (b) MCRandomHadamard-antithetic-8

(c) MCRandomHadamard-antithetic-48 (d) MCRandomHadamard-antithetic-96

Figure 7: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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