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Abstract

Analyzing the structure and function of proteins is a key part of understanding
biology at the molecular and cellular level. In addition, a major engineering
challenge is to design new proteins in a principled and methodical way. Current
computational modeling methods for protein design are slow and often require hu-
man oversight and intervention. Here, we apply Generative Adversarial Networks
(GANs) to the task of generating protein structures, toward application in fast de
novo protein design. We encode protein structures in terms of pairwise distances
between ↵-carbons on the protein backbone, which eliminates the need for the gen-
erative model to learn translational and rotational symmetries. We then introduce a
convex formulation of corruption-robust 3D structure recovery to fold the protein
structures from generated pairwise distance maps, and solve these problems using
the Alternating Direction Method of Multipliers. We test the effectiveness of our
models by predicting completions of corrupted protein structures and show that the
method is capable of quickly producing structurally plausible solutions.

1 Introduction

The ability to determine and design protein structures has deepened our understanding of biology.
Advancements in computational modeling methods have led to remarkable outcomes in protein
design including the development of new therapies [1, 2], enzymes [3, 4, 5], small-molecule binders
[6], and biosensors [7]. These efforts are largely limited to modifying naturally occurring, or “native,”
proteins. To fully control the structure and function of engineered proteins, it is ideal in practice to
create proteins de novo [8]. A fundamental question is discovering new, non-native folds or structural
elements that can be used for designing these novel proteins. The protein design problem remains a
major engineering challenge because the current design process relies heavily on heuristics, requiring
subjective expertise to negotiate pitfalls that result from optimizing imperfect scoring functions.

We demonstrate the potential of deep generative modeling for fast generation of new, viable protein
structures for use in protein design applications. We use Generative Adversarial Networks (GANs)
to generate novel protein structures [9, 10] and use our trained models to predict missing sections
of corrupted protein structures. We use a data representation restricted to structural information–
pairwise distances of ↵-carbons on the protein backbone. Despite this reduced representation, our
method successfully learns to generate new structures and, importantly, can be used to infer solutions
for completing corrupted structures. We use the Alternating Direction Method of Multipliers (ADMM)
algorithm to “fold” 2D pairwise distances into 3D Cartesian coordinates [11]. The algorithm presented
is a new method to do 3D structure generation and recovery using deep generative models, which is
invariant to transformations in the Lie group of rotations and translations (SE(3)).

This paper is a step toward learning the protein design and folding process. Ultimately, our goal is to
extend the generative model described, with subsequent steps of reinforcement learning or imitation
learning to produce realistic protein structure at atomic resolution.
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Figure 1: a) Data representation. Proteins are made up of chains of amino acids and have
secondary structure features such as alpha helices and beta sheets. We represent protein structures
using pairwise distances in angstroms between the ↵-carbons on the protein backbone. b) Pipeline.
GAN generates a pairwise distance matrix, which is “folded” into a 3D structure by ADMM to
get ↵-carbon coordinate positions; a fast ‘trace” script then traces a reasonable protein backbone
through the ↵-carbon positions. We also fold structures directly from pairwise distances using Rosetta
(fragment sampling subject to distance constraints) c) Model. DCGAN model architecture used for
generating pairwise distance maps. The generator takes in random vector z ! N (0, I ) and outputs a
fake distance map to fool the discriminator. The discriminator predicts whether inputs are real (data
samples) or fake (generator output).

The main contributions of this paper are (i) a generative model of proteins that estimates the distribu-
tion of their structures in a way that is invariant to rotational and translational symmetry and (ii) a
convex formulation for the resulting reconstruction problem that we show scales to large problem
instances.

2 Background

2.1 Protein structure and design

Proteins are macromolecules made up of chains of amino acids, with side-chain groups branching off
a connected backbone (Figure 1a). Interactions between the side-chains, the protein backbone, and
the environment give rise to local secondary structure elements – such as helices, strands, or random
coils – and to the ultimate 3D structure of the protein. The large number of possible conformations of
the peptide backbone, as well as the requirement to satisfy correct chemical bonding geometry and
interactions, makes the protein structural modeling problem challenging.

In this paper, we study sequence-agnostic structure generation; this is different from the task of protein
structure prediction, in which the structure of the protein is predicted given the amino acid sequence.
Although protein structures are determined by their primary amino acid sequence, in recent years,
it has become more apparent that protein structures and protein-protein interfaces conform largely
to structural motifs [12]. A well known example is helical coiled-coils, where the angles between
two interacting and sequence diverse helices fall within a range to facilitate knobs-into-holes packing
[13]. These observations emphasize the importance of understanding sequence agnostic backbone
behaviors. Here, our goal is to try to sample from the distribution of viable protein backbones.

The conventional protein design process starts with designing a peptide backbone structure, which
can either be derived from a native protein or artificially created (i.e. de novo design); this is followed
by finding the sequence of amino acids or side-chain residues which will fold into the backbone
structure. Often, a structure is only partially modified such that one or more segments are manipulated
while the rest of the structure is kept intact; this is referred to as a loop modeling or loop closure
problem. Ensuring that the resulting structure has a fully connected and plausible backbone can be
difficult.
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