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Abstract

Detecting test samples drawn sufficiently far away from the training distribution
statistically or adversarially is a fundamental requirement for deploying a good
classifier in many real-world machine learning applications. However, deep neu-
ral networks with the softmax classifier are known to produce highly overconfident
posterior distributions even for such abnormal samples. In this paper, we propose
a simple yet effective method for detecting any abnormal samples, which is appli-
cable to any pre-trained softmax neural classifier. We obtain the class conditional
Gaussian distributions with respect to (low- and upper-level) features of the deep
models under Gaussian discriminant analysis, which result in a confidence score
based on the Mahalanobis distance. While most prior methods have been evalu-
ated for detecting either out-of-distribution or adversarial samples, but not both,
the proposed method achieves the state-of-the-art performances for both cases in
our experiments. Moreover, we found that our proposed method is more robust
in harsh cases, e.g., when the training dataset has noisy labels or small number of
samples. Finally, we show that the proposed method enjoys broader usage by ap-
plying it to class-incremental learning: whenever out-of-distribution samples are
detected, our classification rule can incorporate new classes well without further
training deep models.

1 Introduction

Deep neural networks (DNNs) have achieved high accuracy on many classification tasks, e.g.,
speech recognition [[1]], object detection [9] and image classification [12]. However, measuring the
predictive uncertainty still remains a challenging problem [20, 21]. Obtaining well-calibrated pre-
dictive uncertainty is indispensable since it could be useful in many machine learning applications
(e.g., active learning [8] and novelty detection [18]) as well as when deploying DNNss in real-world
systems [2], e.g., self-driving cars and secure authentication system [6} 30].

The predictive uncertainty of DNNss is closely related to the problem of detecting abnormal sam-
ples that are drawn far away from in-distribution (i.e., distribution of training samples) statistically
or adversarially. For detecting out-of-distribution (OOD) samples, recent works have utilized the
confidence from the posterior distribution [[13} 21]. For example, Hendrycks & Gimpel [13]] pro-
posed the maximum value of posterior distribution from the classifier as a baseline method, and it
is improved by processing the input and output of DNNs [21]]. For detecting adversarial samples,
confidence scores were proposed based on density estimators to characterize them in feature spaces
of DNNs [[7]. More recently, Ma et al. [22] proposed the local intrinsic dimensionality (LID) and
empirically showed that the characteristics of test samples can be estimated effectively using the
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LID. However, most prior works on this line typically do not evaluate both OOD and adversarial
samples. To best of our knowledge, no universal detector is known to work well on both tasks.

Contribution. In this paper, we propose a simple yet effective method, which is applicable to
any pre-trained softmax neural classifier (without re-training) for detecting abnormal test samples
including OOD and adversarial ones. Our high-level idea is to measure the probability density of test
sample on feature spaces of DNNGs utilizing the concept of a “generative” (distance-based) classifier.
Specifically, we assume that pre-trained features can be fitted well by a class-conditional Gaussian
distribution since its posterior distribution can be shown to be equivalent to the softmax classifier
under Gaussian discriminant analysis (see Section for our justification). Under this assumption,
we define the confidence score using the Mahalanobis distance with respect to the closest class-
conditional distribution, where its parameters are chosen as empirical class means and tied empirical
covariance of training samples. To the contrary of conventional beliefs, we found that using the
corresponding generative classifier does not sacrifice the softmax classification accuracy. Perhaps
surprisingly, its confidence score outperforms softmax-based ones very strongly across multiple
other tasks: detecting OOD samples, detecting adversarial samples and class-incremental learning.

We demonstrate the effectiveness of the proposed method using deep convolutional neural networks,
such as DenseNet [[14] and ResNet [12]] trained for image classification tasks on various datasets
including CIFAR [15], SVHN [28]], ImageNet [5] and LSUN [32]. First, for the problem of detecting
OOD samples, the proposed method outperforms the current state-of-the-art method, ODIN [21]], in
all tested cases. In particular, compared to ODIN, our method improves the true negative rate (TNR),
i.e., the fraction of detected OOD (e.g., LSUN) samples, from 45.6% to 90.9% on ResNet when
95% of in-distribution (e.g., CIFAR-100) samples are correctly detected. Next, for the problem
of detecting adversarial samples, e.g., generated by four attack methods such as FGSM [10], BIM
[L6], DeepFool [26] and CW [3], our method outperforms the state-of-the-art detection measure,
LID [22]. In particular, compared to LID, ours improves the TNR of CW from 82.9% to 95.8% on
ResNet when 95% of normal CIFAR-10 samples are correctly detected.

We also found that our proposed method is more robust in the choice of its hyperparameters as well
as against extreme scenarios, e.g., when the training dataset has some noisy, random labels or a
small number of data samples. In particular, Liang et al. [21] tune the hyperparameters of ODIN
using validation sets of OOD samples, which is often impossible since the knowledge about OOD
samples is not accessible a priori. We show that hyperparameters of the proposed method can be
tuned only using in-distribution (training) samples, while maintaining its performance. We further
show that the proposed method tuned on a simple attack, i.e., FGSM, can be used to detect other
more complex attacks such as BIM, DeepFool and CW.

Finally, we apply our method to class-incremental learning [29]: new classes are added progressively
to a pre-trained classifier. Since the new class samples are drawn from an out-of-training distribution,
it is natural to expect that one can classify them using our proposed metric without re-training the
deep models. Motivated by this, we present a simple method which accommodates a new class at
any time by simply computing the class mean of the new class and updating the tied covariance of all
classes. We show that the proposed method outperforms other baseline methods, such as Euclidean
distance-based classifier and re-trained softmax classifier. This evidences that our approach have a
potential to apply to many other related machine learning tasks, such as active learning [8]], ensemble
learning [[19] and few-shot learning [I31]].

2 Mahalanobis distance-based score from generative classifier

Given deep neural networks (DNNs) with the softmax classifier, we propose a simple yet effective
method for detecting abnormal samples such as out-of-distribution (OOD) and adversarial ones. We
first present the proposed confidence score based on an induced generative classifier under Gaussian
discriminant analysis (GDA), and then introduce additional techniques to improve its performance.
We also discuss how the confidence score is applicable to incremental learning.

2.1 Why Mahalanobis distance-based score?

Derivation of generative classifiers from softmax ones. Let x € X be an input and y €
Y = {1,---,C} be its label. Suppose that a pre-trained softmax neural classifier is given:
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Figure 1: Experimental results under the ResNet with 34 layers. (a) Visualization of final features
from ResNet trained on CIFAR-10 by t-SNE, where the colors of points indicate the classes of the
corresponding objects. (b) Classification test set accuracy of ResNet on CIFAR-10, CIFAR-100 and
SVHN datasets. (c) Receiver operating characteristic (ROC) curves: the x-axis and y-axis represent
the false positive rate (FPR) and true positive rate (TPR), respectively.
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max classifier for class ¢, and f(-) denotes the output of the penultimate layer of DNNs. Then,
without any modification on the pre-trained softmax neural classifier, we obtain a generative clas-
sifier assuming that a class-conditional distribution follows the multivariate Gaussian distribu-
tion. Specifically, we define C' class-conditional Gaussian distributions with a tied covariance 3:
P(f(x)|ly=c) =N (f(x)|tte, ), where . is the mean of multivariate Gaussian distribution of
class ¢ € {1, ...,C}. Here, our approach is based on a simple theoretical connection between GDA
and the softmax classifier: the posterior distribution defined by the generative classifier under GDA
with tied covariance assumption is equivalent to the softmax classifier (see the supplementary mate-
rial for more details). Therefore, the pre-trained features of the softmax neural classifier f(x) might
also follow the class-conditional Gaussian distribution.

where w,. and b, are the weight and the bias of the soft-

To estimate the parameters of the generative classifier from the pre-trained softmax neural classifier,

we compute the empirical class mean and covariance of training samples {(x1,91), ..., (Xn,yn)}:
5 1 a 1 —~ A \T
Me = ﬁ Z f(xi)> Y= Nz Z (f(xi)_,uc) (f(xi)_,uc) ) (1)
¢ 1:y;=c c 1y;=c

where N, is the number of training samples with label c. This is equivalent to fitting the class-
conditional Gaussian distributions with a tied covariance to training samples under the maximum
likelihood estimator.

Mabhalanobis distance-based confidence score. Using the above induced class-conditional Gaus-
sian distributions, we define the confidence score M (x) using the Mahalanobis distance between
test sample x and the closest class-conditional Gaussian distribution, i.e.,

M(x) = max — (f(x) = i)' £ (f(x) — i) 2

Note that this metric corresponds to measuring the log of the probability densities of the test sample.
Here, we remark that abnormal samples can be characterized better in the representation space of
DNNSs, rather than the “label-overfitted” output space of softmax-based posterior distribution used
in the prior works [13| 21]] for detecting them. It is because a confidence measure obtained from the
posterior distribution can show high confidence even for abnormal samples that lie far away from
the softmax decision boundary. Feinman et al. [7] and Ma et al. [22] process the DNN features for
detecting adversarial samples in a sense, but do not utilize the Mahalanobis distance-based metric,
i.e., they only utilize the Euclidean distance in their scores. In this paper, we show that Mahalanobis
distance is significantly more effective than the Euclidean distance in various tasks.

Experimental supports for generative classifiers. To evaluate our hypothesis that trained features
of DNNs support the assumption of GDA, we measure the classification accuracy as follows:

J(x) = argmin (£(x) — fic) " S (£(x) — Jic) 3)



Algorithm 1 Computing the Mahalanobis distance-based confidence score.
Input: Test sample x, weights of logistic regression detector o, noise € and parameters of Gaus-
sian distributions {fig ¢, X¢ : V¢, ¢}

Initialize score vectors: M(x) = [M, : V/]
for each layer £ € 1,..., L do
Find the closest class: ¢ = argmin,. (f¢(x) — fir.e) ' 2, ' (fe(x) — fie,e)
Add small noise to test sample: X = x — esign (Vx (fe(x) — ﬁg}g)—r f]zl (fe(x) — ﬁg@))

~

Computing confidence score: M, = max — (f¢(X) — ﬁg,c)T S (fo(X) — fiee)

end for
return Confidence score for test sample >, oy M,
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Figure 2: AUROC (%) of threshold-based detector using the confidence score in computed at
different basic blocks of DenseNet trained on CIFAR-10 dataset. We measure the detection perfor-
mance using (a) TinyImageNet, (b) LSUN, (c) SVHN and (d) adversarial (DeepFool) samples.

We remark that this corresponds to predicting a class label using the posterior distribution from gen-
erative classifier with the uniform class prior. Interestingly, we found that the softmax accuracy (red
bar) is also achieved by the Mahalanobis distance-based classifier (blue bar), while conventional
knowledge is that a generative classifier trained from scratch typically performs much worse than a
discriminative classifier such as softmax. For visual interpretation, Figure[I(a) presents embeddings
of final features from CIFAR-10 test samples constructed by t-SNE [23]], where the colors of points
indicate the classes of the corresponding objects. One can observe that all ten classes are clearly
separated in the embedding space, which supports our intuition. In addition, we also show that
Mahalanobis distance-based metric can be very useful in detecting out-of-distribution samples. For
evaluation, we obtain the receiver operating characteristic (ROC) curve using a simple threshold-
based detector by computing the confidence score M (x) on a test sample x and decide it as positive
(i.e., in-distribution) if M (x) is above some threshold. The Euclidean distance, which only utilizes
the empirical class means, is considered for comparison. We train ResNet on CIFAR-10, and Tiny-
ImageNet dataset [3]] is used for an out-of-distribution. As shown in Figure [I(c), the Mahalanobis
distance-based metric (blue bar) performs better than Euclidean one (green bar) and the maximum
value of the softmax distribution (red bar).

2.2 Calibration techniques

Input pre-processing. To make in- and out-of-distribution samples more separable, we consider
adding a small controlled noise to a test sample. Specifically, for each test sample x, we calculate
the pre-processed sample X by adding the small perturbations as follows:

% = x + esign (VM (x)) = x — ssign (Vx () = i)' 7 (/) ~ i) . &

where ¢ is a magnitude of noise and ¢ is the index of the closest class. Next, we measure the confi-
dence score using the pre-processed sample. We remark that the noise is generated to increase the
proposed confidence score (2) unlike adversarial attacks [10]. In our experiments, such perturba-
tion can have stronger effect on separating the in- and out-of-distribution samples. We remark that
similar input pre-processing was studied in [21], where the perturbations are added to increase the
softmax score of the predicted label. However, our method is different in that the noise is generated
to increase the proposed metric.



Algorithm 2 Updating Mahalanobis distance-based classifier for class-incremental learning.

Input: set of samples from anew class {x; : Vi = 1... Noy1}, mean and covariance of observed
classes {jic : Ve =1...C}, X

Compute the new class mean: jic41 < Ncl+1 . f (xl)

Compute the covariance of the new class Ec+1 — Nc+1 S (f(xi) = Fie1) (f(xi) — Tic+1) T
Update the shared covariance: R c 1 NS o +1 EC+1

return Mean and covariance of all classes {ji. : Ve =1...C + 1}, ¥

Feature ensemble. To further improve the performance, we consider measuring and combining the
confidence scores from not only the final features but also the other low-level features in DNNs.
Formally, given training data, we extract the ¢-th hidden features of DNNSs, denoted by fy(x), and

compute their empirical class means and tied covariances, i.e., fi¢. and X,. Then, for each test
sample x, we measure the confidence score from the ¢-th layer using the formula in (2). One can
expect that this simple but natural scheme can bring an extra gain in obtaining a better calibrated
score by extracting more input-specific information from the low-level features. We measure the
area under ROC (AUROC) curves of the threshold-based detector using the confidence score in
computed at different basic blocks of DenseNet [[14] trained on CIFAR-10 dataset, where the
overall trends on ResNet are similar. Figure[2]shows the performance on various OOD samples such
as SVHN [28]], LSUN [32], TinyImageNet and adversarial samples generated by DeepFool [26],
where the dimensions of the intermediate features are reduced using average pooling (see Section
[3] for more details). As shown in Figure [2] the confidence scores computed at low-level features
often provide better calibrated ones compared to final features (e.g., LSUN, TinyImageNet and
DeepFool). To further improve the performance, we design a feature ensemble method as described
in Algorithm [I} We first extract the confidence scores from all layers, and then integrate them by
weighted averaging: »_, ayM,(x), where M,(-) and o is the confidence score at the (-th layer
and its weight, respectively. In our experiments, following similar strategies in [22], we choose
the weight of each layer ay by training a logistic regression detector using validation samples. We
remark that such weighted averaging of confidence scores can prevent the degradation on the overall
performance even in the case when the confidence scores from some layers are not effective: the
trained weights (using validation) would be nearly zero for those ineffective layers.

2.3 Class-incremental learning using Mahalanobis distance-based score

As a natural extension, we also show that the Mahalanobis distance-based confidence score can be
utilized in class-incremental learning tasks [29]: a classifier pre-trained on base classes is progres-
sively updated whenever a new class with corresponding samples occurs. This task is known to be
challenging since one has to deal with catastrophic forgetting [24] with a limited memory. To this
end, recent works have been toward developing new training methods which involve a generative
model or data sampling, but adopting such training methods might incur expensive back-and-forth
costs. Based on the proposed confidence score, we develop a simple classification method without
the usage of complicated training methods. To do this, we first assume that the classifier is well
pre-trained with a certaln amount of base classes, where the assumption is quite reasonable in many
practical scenamos ' In this case, one can expect that not only the classifier can detect OOD samples
well, but also might be good for discriminating new classes, as the representation learned with the
base classes can characterize new ones. Motivated by this, we present a Mahalanobis distance-based
classifier based on (3)), which tries to accommodate a new class by simply computing and updating
the class mean and covariance, as described in Algorithm[2] The class-incremental adaptation of our
confidence score shows its potential to be applied to a wide range of new applications in the future.

"For example, state-of-the-art CNNs trained on large-scale image dataset are off-the-shelf [[12}14], so they
are a starting point in many computer vision tasks [9, 18} 25].



Feature Input TNR Detection AUPR AUPR

Method ensemble pre-processing at TPR 95% AUROC accuracy in out
Baseline [13] - - 32.47 89.88 85.06 8540  93.96
ODIN [21] - - 86.55 96.65 91.08 92.54 98.52
- - 54.51 93.92 89.13 91.56 9595
Mahalanobis - v 92.26 98.30 93.72 96.01  99.28
(ours) v - 91.45 98.37 93.55 96.43  99.35
v v 96.42 99.14 95.75 98.26  99.60

Table 1: Contribution of each proposed method on distinguishing in- and out-of-distribution test
set data. We measure the detection performance using ResNet trained on CIFAR-10, when SVHN
dataset is used as OOD. All values are percentages and the best results are indicated in bold.

3 Experimental results

In this section, we demonstrate the effectiveness of the proposed method using deep convolutional
neural networks such as DenseNet [14]] and ResNet [[12] on various vision datasets: CIFAR [15],
SVHN [28], ImageNet [5] and LSUN [32]. Due to the space limitation, we provide the more detailed
experimental setups and results in the supplementary material. Our code is available at https:
//github.com/pokaxpoka/deep_Mahalanobis_detector.

3.1 Detecting out-of-distribution samples

Setup. For the problem of detecting out-of-distribution (OOD) samples, we train DenseNet with 100
layers and ResNet with 34 layers for classifying CIFAR-10, CIFAR-100 and SVHN datasets. The
dataset used in training is the in-distribution (positive) dataset and the others are considered as OOD
(negative). We only use test datasets for evaluation. In addition, the TinyImageNet (i.e., subset of
ImageNet dataset) and LSUN datasets are also tested as OOD. For evaluation, we use a threshold-
based detector which measures some confidence score of the test sample, and then classifies the
test sample as in-distribution if the confidence score is above some threshold. We measure the
following metrics: the true negative rate (TNR) at 95% true positive rate (TPR), the area under the
receiver operating characteristic curve (AUROC), the area under the precision-recall curve (AUPR),
and the detection accuracy. For comparison, we consider the baseline method [13]], which defines
a confidence score as a maximum value of the posterior distribution, and the state-of-the-art ODIN
[21]], which defines the confidence score as a maximum value of the processed posterior distribution.

For our method, we extract the confidence scores from every end of dense (or residual) block of
DenseNet (or ResNet). The size of feature maps on each convolutional layers is reduced by average
pooling for computational efficiency: F x H x W — F X 1, where F is the number of channels
and H x WV is the spatial dimension. As shown in Algorithm [T} the output of the logistic regres-
sion detector is used as the final confidence score in our case. All hyperparameters are tuned on a
separate validation set, which consists of 1,000 images from each in- and out-of-distribution pair.
Similar to Ma et al. [22]], the weights of logistic regression detector are trained using nested cross
validation within the validation set, where the class label is assigned positive for in-distribution sam-
ples and assigned negative for OOD samples. Since one might not have OOD validation datasets in
practice, we also consider tuning the hyperparameters using in-distribution (positive) samples and
corresponding adversarial (negative) samples generated by FGSM [10].

Contribution by each technique and comparison with ODIN. Table|l|validates the contributions
of our suggested techniques under the comparison with the baseline method and ODIN. We measure
the detection performance using ResNet trained on CIFAR-10, when SVHN dataset is used as OOD.
We incrementally apply our techniques to see the stepwise improvement by each component. One
can note that our method significantly outperforms the baseline method without feature ensembles
and input pre-processing. This implies that our method can characterize the OOD samples very
effectively compared to the posterior distribution. By utilizing the feature ensemble and input pre-
processing, the detection performance are further improved compared to that of ODIN. The left-hand
column of Table 2] reports the detection performance with ODIN for all in- and out-of-distribution
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In-dist Validation on OOD samples Validation on adversarial samples
(m;dlc:l) OO0D TNR at TPR 95% AUROC Detection acc. TNR at TPR 95% AUROC Detection acc.
Baseline [13]/ ODIN [21] / Mahalanobis (ours) Baseline [13]/ ODIN [21] / Mahalanobis (ours)

CIFAR-10 SVHN 40.2/86.2/90.8 89.9/955/98.1 83.2/91.4/93.9 | 40.2/70.5/89.6 89.9/92.8/97.6 83.2/86.5/92.6
(DenseI:Ie{) TinylmageNet 58.9/92.4/95.0 94.1/98.5/98.8 88.5/93.9/95.0 | 58.9/87.1/949 94.1/97.2/98.8 88.5/92.1/95.0
LSUN 66.6/962/97.2 954/99.2/99.3 90.3/957/96.3 | 66.6/929/97.2 954/985/99.2 90.3/94.3/96.2
CIFAR-100 SVHN 26.7/70.6/825 82.7/93.8/97.2 75.6/86.6/91.5 | 26.7/39.8/62.2 82.7/88.2/91.8 75.6/80.7/84.6
(DenseNet) TinylmageNet 17.6/42.6/86.6 71.7/852/97.4 657/77.0/92.2 | 17.6/432/87.2 71.7/853/97.0 657/77.2/91.8
] LSUN 16.7/41.2/91.4 70.8/855/98.0 649/77.1/939 | 16.7/42.1/91.4 70.8/857/97.9 649/77.3/93.8
SVHN CIFAR-10 69.3/71.7/96.8 91.9/91.4/98.9 86.6/858/959 | 69.3/69.3/97.5 91.9/91.9/98.8 86.6/86.6/96.3
(DenseNet) TinylmageNet  79.8/84.1/99.9 94.8/95.1/99.9 90.2/90.4/98.9 | 79.8/79.8/99.9 94.8/94.8/99.8 90.2/90.2/98.9
] LSUN 77.1/81.1/100 94.1/945/99.9 89.1/892/99.3 | 77.1/77.1/100 94.1/94.1/99.9 89.1/89.1/99.2
CIFAR-10 SVHN 32.5/86.6/96.4 89.9/96.7/99.1 85.1/91.1/958 | 32.5/40.3/758 89.9/86.5/95.5 85.1/77.8/89.1
(ResNet) TinylmageNet 44.7/72.5/97.1 91.0/94.0/99.5 85.1/86.5/96.3 | 44.7/69.6/95.5 91.0/93.9/99.0 85.1/86.0/95.4
; LSUN 454/73.8/989 91.0/94.1/99.7 853/86.7/97.7 | 454/70.0/98.1 91.0/93.7/99.5 853/85.8/97.2
CIFAR-100 SVHN 203/62.7/91.9 79.5/93.9/984 73.2/88.0/93.7 | 203/122/41.9 79.5/72.0/844 732/67.7/76.5
(ResNet) TinyImageNet 20.4/49.2/90.9 77.2/87.6/98.2 70.8/80.1/93.3 | 20.4/33.5/70.3 77.2/83.6/87.9 70.8/759/84.6
; LSUN 18.8/456/909 758/85.6/982 69.9/78.3/93.5 | 18.8/31.6/56.6 75.8/81.9/823 69.9/74.6/79.7
SVHN CIFAR-10 78.3/79.8/98.4 929/92.1/99.3 90.0/89.4/96.9 | 783/79.8/941 929/92.1/97.6 90.0/89.4/94.6
(ResNet) TinyImageNet  79.0/82.1/99.9 93.5/92.0/99.9 90.4/89.4/99.1 | 79.0/80.5/99.2 93.5/92.9/99.3 90.4/90.1/98.8
" LSUN 743/713/999 91.6/89.4/99.9 89.0/87.2/99.5 | 743/76.3/99.9 91.6/90.7/99.9 89.0/88.2/99.5

Table 2: Distinguishing in- and out-of-distribution test set data for image classification under various
validation setups. All values are percentages and the best results are indicated in bold.
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Figure 3: Comparison of AUROC (%) under extreme scenarios: (a) small number of training data,
where the x-axis represents the number of training data. (b) Random label is assigned to training
data, where the x-axis represents the percentage of training data with random label.

dataset pairs. Our method outperforms the baseline and ODIN for all tested cases. In particular,
our method improves the TNR, i.e., the fraction of detected LSUN samples, compared to ODIN:
41.2% — 91.4% using DenseNet, when 95% of CIFAR-100 samples are correctly detected.

Comparison of robustness. In order to evaluate the robustness of our method, we measure the
detection performance when all hyperparameters are tuned only using in-distribution and adversarial
samples generated by FGSM [10]. As shown in the right-hand column of Table[2] ODIN is working
poorly compared to the baseline method in some cases (e.g., DenseNet trained on SVHN), while our
method still outperforms the baseline and ODIN consistently. We remark that our method validated
without OOD but adversarial samples even outperforms ODIN validated with OOD. We also verify
the robustness of our method under various training setups. Since our method utilizes empirical
class mean and covariance of training samples, there is a caveat such that it can be affected by the
properties of training data. In order to verify the robustness, we measure the detection performance
when we train ResNet by varying the number of training data and assigning random label to training
data on CIFAR-10 dataset. As shown in Figure [3] our method (blue bar) maintains high detection
performances even for small number of training data or noisy one, while baseline (red bar) and ODIN
(yellow bar) do not. Finally, we remark that our method using softmax neural classifier trained by
standard cross entropy loss typically outperforms the ODIN using softmax neural classifier trained
by confidence loss [20] which involves jointly training a generator and a classifier to calibrate the
posterior distribution even though training such model is computationally more expensive (see the
supplementary material for more details).

3.2 Detecting adversarial samples

Setup. For the problem of detecting adversarial samples, we train DenseNet and ResNet for classi-
fying CIFAR-10, CIFAR-100 and SVHN datasets, and the corresponding test dataset is used as the



Dataset Detection of known attack Detection of unknown attack

Model o del) Score FGSM BIM DeepFool CW | FGSM (scen) BIM DeepFool ~CW
KD+PU [1) 8596 9680 6805 5872 | 8596 310 6834 5321

CIFAR-10 LID [22] 9820 9974 8514 8005 | 9820 9455  70.86  71.50
Mahalanobis (ours) | 99.94 9978 8341  87.31 |  99.94 9951 8342  87.95

KD+PU[7] 90.13 89.60 6829 5751 90.013 6686 6530 S8.08

DenseNet  CIFAR-100 LID [22] 9935 9817 7017  7337| 9935 6862  69.68 7236
Mahalanobis (ours) | 99.86 9917 7757  87.05| 99.86 9827 7563 8620

KD+PU [1] 8695 8206 89.51 8568 86.95 8328 8438 8294

SVHN LID [22] 9935 9487 9179 9470 | 9935 9221  80.14  85.09

Mabhalanobis (ours) | 99.85  99.28 95.10 97.03 99.85 99.12 93.47 96.95

KD+PU [1] 8121 8228 8107 5593 8351 1616 7680 5630

CIFAR-10 LID [22] 9969 9628 8851 8223 | 99.60 9538  71.86  77.53
Mahalanobis (ours) | 99.94 9957 9157 9584 |  99.94 9891  78.06  93.90

KD+PU 1] 8900 83.67 8022 7737 8900 6885 5778 T3.72

ResNet  CIFAR-100 LID [22] 9873 9689 7195 78.67 | 9873 5582 6315  75.03
Mahalanobis (ours) | 9977 96.90 8526 9177 | 9977 9638 8195  90.96

KD+PU[7] 8267 6619 8971 7657 8267 4321 8430 67.55

SVHN LID [22] 9786 9074 9240 8824 | 9786 8488 6728 7658

Mahalanobis (ours) | 99.62 9715 9573  92.15 | 99.62 9539 7220  86.73

Table 3: Comparison of AUROC (%) under various validation setups. For evaluation on unknown
attack, FGSM samples denoted by “seen” are used for validation. For our method, we use both
feature ensemble and input pre-processing. The best results are indicated in bold.

positive samples to measure the performance. We use adversarial images as the negative samples
generated by the following attack methods: FGSM [10], BIM [16]], DeepFool [26] and CW [3],
where the detailed explanations can be found in the supplementary material. For comparison, we
use a logistic regression detector based on combinations of kernel density (KD) [7] and predictive
uncertainty (PU), i.e., maximum value of posterior distribution. We also compare the state-of-the-
art local intrinsic dimensionality (LID) scores [22]. Following the similar strategies in [7, 22], we
randomly choose 10% of original test samples for training the logistic regression detectors and the
remaining test samples are used for evaluation. Using nested cross-validation within the training set,
all hyper-parameters are tuned.

Comparison with LID and generalization analysis. The left-hand column of Table [3|reports the
AUROC score of a logistic regression detectors for all normal and adversarial pairs. One can note
that the proposed method outperforms all tested methods in most cases. In particular, ours improves
the AUROC of LID from 82.2% to 95.8% when we detect CW samples using ResNet trained on
the CIFAR-10 dataset. Similar to [22], we also evaluate whether the proposed method is tuned on
a simple attack can be generalized to detect other more complex attacks. To this end, we measure
the detection performance when we train the logistic regression detector using samples generated by
FGSM. As shown in the right-hand column of Table[3] our method trained on FGSM can accurately
detect much more complex attacks such as BIM, DeepFool and CW. Even though LID can also
generalize well, our method still outperforms it in most cases. A natural question that arises is
whether the LID can be useful in detecting OOD samples. We indeed compare the performance of
our method with that of LID in the supplementary material, where our method still outperforms LID
in all tested case.

3.3 Class-incremental learning

Setup. For the task of class-incremental learning, we train ResNet with 34 layers for classifying
CIFAR-100 and downsampled ImageNet [4]. As described in Section[2.3] we assume that a classifier
is pre-trained on a certain amount of base classes and new classes with corresponding datasets are
incrementally provided one by one. Specifically, we test two different scenarios: in the first scenario,
half of CIFAR-100 classes are bases classes and the rest are new classes. In the second scenario,
all classes in CIFAR-100 are considered to be base classes and 100 of ImageNet classes are new
classes. All scenarios are tested five times and then averaged. Class splits are randomly generated
for each trial. For comparison, we consider a softmax classifier, which is fine-tuned whenever new
class data come in, and a Euclidean classifier [25]], which tries to accommodate a new class by only
computing the class mean. For the softmax classifier, we only update the softmax layer to achieve
near-zero cost training [25]], and follow the memory management in Rebuffi & Kolesnikov [29]: a
small number of samples from old classes are kept in the limited memory, where the size of the
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Figure 4: Experimental results of class-incremental learning on CIFAR-100 and ImageNet datasets.
In each experiment, we report (left) AUC with respect to the number of learned classes and, (right)
the base-new class accuracy curve after the last new classes is added.

memory is matched with that for keeping the parameters for Mahalanobis distance-based classifier.
Namely, the number of old exemplars kept for training the softmax classifier is chosen as the sum of
the number of learned classes and the dimension (512 in our experiments) of the hidden features. For
evaluation, similar to [18], we first draw base-new class accuracy curve by adjusting an additional
bias to the new class scores, and measure the area under curve (AUC) since averaging base and new
class accuracy may cause an imbalanced measure of the performance between base and new classes.

Comparison with other classifiers. Figure 4 compares the incremental learning performance of
methods in terms of AUC in the two scenarios mentioned above. In each sub-figure, AUC with re-
spect to the number of learned classes (left) and the base-new class accuracy curve after the last new
classes is added (right) are drawn. Our proposed Mahalanobis distance-based classifier outperforms
the other methods by a significant margin, as the number of new classes increases, although there
is a crossing in the right figure of Figure in small regimes (due to the catastrophic forgetting
issue). In particular, the AUC of our proposed method is 40.0% (22.1%), which is better than 32.7%
(15.6%) of the softmax classifier and 32.9% (17.1%) of the Euclidean distance classifier after all
new classes are added in the first (second) experiment. We also report the experimental results in
the supplementary material for the case when classes of CIFAR-100 are base classes and those of
CIFAR-10 are new classes, where the overall trend is similar. The experimental results additionally
demonstrate the superiority of our confidence score, compared to other plausible ones.

4 Conclusion

In this paper, we propose a simple yet effective method for detecting abnormal test samples including
both out-of-distribution and adversarial ones. In essence, our main idea is inducing a generative
classifier under LDA assumption, and defining new confidence score based on it. With calibration
techniques such as input pre-processing and feature ensemble, our method performs very strongly
across multiple tasks: detecting out-of-distribution samples, detecting adversarial attacks and class-
incremental learning. We also found that our proposed method is more robust in the choice of its
hyperparameters as well as against extreme scenarios, e.g., when the training dataset has some noisy,
random labels or a small number of data samples. We believe that our approach have a potential to
apply to many other related machine learning tasks, e.g., active learning [8], ensemble learning [[19]]
and few-shot learning [31].
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