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1 Proof of Theorem 1

This supplemental material provides proof to Theorem 1 in the main paper. To enable better readability,
denote by z! = f, z> = g and R! = R¢ and R? = Ry. We first rewrite the randomized feature map
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Theorem 1. The expectation and variance of the inner products between the randomized feature
maps T (z) (1) generated by random matrices R, = 1,2 satisfy
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where C and C' are constants that do not depend on the random matrices Rt, 0 = 1, 2.

Theorem 1 reveals that the inner product between the randomized feature maps Tt (z) is an unbiased

estimate of the inner product between the original multilinear fusions based on tensor products Tz (z).
The variance of the inner product between the randomized feature maps Tt (z) is depending only on

the moments E[(Rfj)4], which are constants for many symmetric distributions with univariance, i.e.
E [R{;] = 0,E[(R{;)?] = 1. We can verify that: (1) for Bernoulli distribution, E(Rfj)4 = 1; (2) for
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standard normal distribution, E(Rfj) = 3; (3) for uniform distribution, ]E(Rfj) = 1.8. Therefore,
for continuous sampling distributions, uniform distribution will yield the lowest estimation variance.
The empirical study confirms that uniform distribution leads to the best multilinear fusion accuracy.
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Since the equations in this proof look quite lengthy, we simplify the notations by denoting any parts
of the equations independent on random matrices RZ, £ = 1,2 as constants, such as C; ~ C4, C, and

.
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