
Supplementary Material for Representation Learning
for Treatment Effect Estimation from Observational

Data

1 Dataset

The following is the detailed description about the IHDP and Jobs datasets.

IHDP. The dataset is provided by Hill [3] based on the randomized controlled experiment conducted
by Infant Health and Development Program. The program aims to estimate the effect of specialist
home visits on infant’s future cognitive test scores. A biased subset of the treated group is removed in
order to create the selection bias. There are total 747 records with 139 treated records and 608 control
records in the dataset. Each record contains 25 pre-treatment covariates related to the children and
their mothers. The outcomes are simulated by the setting “A” of the NPCI package [1].

Jobs. This dataset comprises Lalonde randomized controlled experiment (297 treated records and
425 control records) and the PSID observational group (2490 control records) [4, 6]. Each record
contains 8 covariates, such as age, education, ethnicity, as well as previous earnings. The outcome
is the employment status with/without job training.

2 Performance Metric and Experiment Settings

On the IHDP dataset, the distributions of potential outcomes are known, so we use the Precision in
Estimation of Heterogeneous Effect (PEHE) [3] as the performance metric. The definition of PEHE
is: EPEHE = 1
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estimated control and treated outcomes of unit i, respectively. The lower the EPEHE is, the better
the method is. On IHDP dataset, we conduct experiment over 10 realizations of the outcomes with
63/27/10 ratio of train/validation/test splits, as suggested in [5].

On the Jobs dataset, there is no ground truth ITE available. To evaluate the proposed method,
the policy risk Rpol [5] is used as the metric, which is defined as: Rpol = 1 −

(
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)
, where π(x) = 1 if ŷ1 − ŷ0 > 0 and π(x) = 0,

otherwise. The policy risk measure the expected loss if the treatment is taken according to the ITE
estimation. The policy risk of Jobs dataset can be estimated from the randomized experiment part:
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; T1 = {xi : ti = 1}; T0 = {xi : ti = 0}. The lower value of R̂pol indi-

cates the ITE estimation method can better support the decision strategy. On the Jobs dataset, we
average over 10 train/validation/test splits with 56/24/20 split ratio, as suggested in [5].
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Table 1: Hyper-parameter searching space
Hyper-parameter Range

β, γ
{
10k/2

}6
k=−6

λ 10−4

Number of hidden layers in the representation network 1, 2, 3

Number of hidden layers in outcome prediction network 1, 2, 3

dimension of each layer in the representation network 50,100,200

dimension of each layer in the outcome prediction network 50,100,200

batch size 50,100

Table 2: Performance on three datasets.
IHDP (EPEHE) Jobs (Rpol) Twins (AUC)

Method Within-sample Out-of-sample Within-sample Out-of-sample Within-sample Out-of-sample

SITE-MMD 1.162± .118 1.242± .163 .194± .015 .218± .010 .710± .003 .705± .006
SITE-WASS .993± .112 1.459± .481 .190± .015 .232± .011 .849± .003 .762± .007

3 Hyper-parameter Optimization

Table summarizes the searching space of the hyper-parameters. In the PDDM structure, Wu and
Wv ∈ Rd×d; Wu ∈ R2d×d and Ws ∈ R1×d, where d is the number of the representation layer.
The parameters of baselines are set as what is suggested in the original papers.

Due to the fact of missing counterfactuals, we cannot directly use the EPEHE , and AUC on the
validation dataset as the selection criterion. Fortunately, the underlying assumption of SITE, that
there exits a model that can work well on both control and treated group, makes the RMSE of the
observed outcome on the validation dataset to be a reasonable hyper-parameter selection criterion.

4 Methodology Discussion

There are a lot of alternatives to do balancing. Here we replace the balancing structure MPDM with
the distribution metric such as Wasserstein metric [2], and Maximum Mean Discrepancy(MMD) [7].
The loss for balancing is as follows: LB = D(ZT ,ZC), where D(·, ·) denotes the distribution
metric. And the final loss function is as follows: The loss function is as follows:

L =LFL + βLPDDM + αLB + λ||W ||2. (2)

SITE with MMD as the distribution metric is denoted as SITE-MMD and with Wasserstein metric
is denoted as SITE-WASS. The performance of SITE-MMD and SITE-WASS is reported in the
table 2.

5 Representation Visualization

The t-SNE visualization of the learned representation on the synthetic dataset is shown in Figure 1.
The synthetic dataset is the same as what we generated in Section 3.2. The visualization of SITE
confirms that the MPDM minimizes the distance between the approximated centers of two groups.
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(a) Original Data (b) SITE
Figure 1: t-SNE visualization of the original data and the representation layer of SITE on the syn-
thetic dataset.
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