
Supplement to “Clebsch–Gordan Nets: a Fully
Fourier Space Spherical Convolutional Neural

Network”

Risi Kondor1∗ Zhen Lin1∗ Shubhendu Trivedi2∗
1The University of Chicago 2Toyota Technological Institute
{risi, zlin7}@uchicago.edu, shubhendu@ttic.edu

1 Summary of algorithm

In summary our Spherical Clebsch–Gordan network is an S+1 layer feed-forward neural network
with the following architecture. Note that assuming that the C`1,`2,` matrices have been precom-
puted, every operation in this algorithm apart from the initial spherical harmonic transform reduces
to simple matrix operations.

1. The inputs to the network are nin functions f01 , . . . , f
0
nin
:S2→C. For example, for spherical

color images, f01 , f
0
2 and f03 might encode the red, green and blue channels. For generality, we

treat these functions as complex valued, but of course they may also be real. The activation of
layer s = 0 is the union of the spherical transforms of these functions f01 , . . . , f

0
nin

up to some
band limit L, i.e.,

[f̂0`,j]m =
1

4π

∫ 2π

0

∫ π

−π
f0j (θ, φ)

∗ Y m` (θ, φ) cos θdθdφ. (1)

Therefore, the type of f̂0 is τ0 = (nin, nin, . . . , nin), and f̂0 is stored as a collection of L+1
matrices {F 0

0 , F
0
1 , . . . , F

0
L} of sizes 1×nin, 3×nin, 5×nin,. . .

2. For layers s = 1, . . . , S−1, the Fourier space activation f̂s= (F s0 , F
s
1 , . . . , F

s
L) is computed as

follows:

(a) We form all possible Kronecker products

Gs`1,`2 = F s−1`1
⊗ F s−1`2

0 ≤ `1 ≤ `2 ≤ L.

Note that the size of Gs`1,`2 is (2`1 + 1)(2`2 + 1)× (τs−1`1
τs−1`2

).

(b) Each Gs`1,`2 is decomposed into ρ`–covariant blocks by [Gs`1,`2]` = C>`1,`2,` G
s
`1,`2

, where
C†`1,`2,` is the rectangular Clebsch–Gordan matrix as in (17).

(c) All [Gs`1,`2]` blocks with the same ` are concatenated into a large matrix Hs
` ∈C(2 +̀1)×τs

` ,
and this is multiplied by the weight matrix W s

` ∈Cτ
s
`×τ

s
` to give

F s` = Hs
` W

s
` ` = 0, 1, . . . , L.

3. The operation of layer S is similar, except that the output type is τS = (nout,0,0,...,0), so compo-
nents with ` > 0 do not need to be computed. By construction, the entries of F s0 ∈C1×nout are
SO(3)–invariant scalars, i.e., they are invariant to simultaneous rotations of the input functions
f01 , . . . , f

0
nin
:S2→C.

∗Authors are arranged alphabetically

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

2 Experimental Details

Cohen et al. present two sets of experiments: In the first sequence, they study the numerical sta-
bility of their algorithm and quantify the equivariance error due to the quadrature. In the second,
they present results on three datasets comparing with other methods. Since our method is fully
equivariant, we focus on the second set of experiments.

2.1 Rotated MNIST on the Sphere

We use a version of MNIST in which the images are painted onto a sphere and use two instances as
in [2]: One in which the digits are projected onto the northern hemisphere and another in which the
digits are projected on the sphere and are also randomly rotated.

The baseline model is a classical CNN with 5 × 5 filters and 32, 64, 10 channels with a stride of 3
in each layer (roughly 68K parameters). This CNN is trained by mapping the digits from the sphere
back onto the plane, resulting in nonlinear distortions. The second model we use to compare to is
the Spherical CNN proposed in [2]. For this method, we use the same architecture as reported by the
authors i.e. having layers S2 convolution – ReLU – SO(3) convolution – ReLU – Fully connected
layer with bandwidths 30, 10 and 6, and the number of channels being 20, 40 and 10 (resulting in a
total of 58K parameters).

For our method we use the following architecture: We set the bandlimit Lmax = 10, and keep
τl = 12√

2l+1
, using a total of 5 layers as described in section 3.5, followed by a fully connected

layer of size 256 by 10. We use a variant of batch normalization that preserves covariance in the
fourier layers. This method takes a expanding average of the standard deviation for a particular
fragment for all examples seen during training till then and divide the fragment by it (in testing, use
the average from training); the parameter corresponding to the mean in usual batch normalization is
kept to be zero as anything else will break covariance. Finally, we concatenate the output of each F s0
in each internal layer (length 24 each, as each is τ0 = 12 complex numbers), as well as the original
coefficient at l = 0 (length 2), into a SO(3) invariant vector of length 122. (We observed that
having these skip connections was crucial to facilitate smooth training.) After that, we use the usual
batch normalization [4] on the concatenated results before feeding it into fully connected layers of
length 256, a dropout layer with dropout probability 0.5, and finally a linear layer to to 10 output
nodes. The total number of parameters was 285772, the network was trained by using the ADAM
optimization procedure [5] with a batch size of 100 and a learning rate of 5 × 10−4. We also used
L2 weight decay of 1× 10−5 on the trainable parameters.

2.2 Atomization Energy Prediction

We use the Coulomb Matrix (CM) representation proposed by [8], which is rotation and translation
invariant but not permutation invariant. The Coulomb matrix C ∈ RN×N is defined such that for
a pair of atoms i 6= j, Cij = (zizj)/(|pi − pj |), which represents the Coulomb repulsion, and for
atoms i = j, Cii = 0.5z2.4i , which denotes the atomic energy due to charge. To test our algorithm
we use the same set up as in [2]: We define a sphere Si around pi for each atom i. Ensuring uniform
radius across atoms and molecules and ensuring no intersections amongst spheres during training,
we define potential functions Uz(x) =

∑
j 6=i,zj=z

ziz
|x−pi| for every z and for every x on Si. This

yields a T channel spherical signal for each atom in a molecule. This signal is then discretized using
Driscol-Healy [3] grid using a bandwidth of b = 10. This gives a sparse tensor representation of
dimension N × T × 2b× 2b for every molecule.

Our spherical CNN architecture has the same parameters and hyperparameters as in the previous
subsection except that τl = 15 for all layers, increasing the number of parameters to 1.1 M. Fol-
lowing [2], we share weights amongst atoms and each molecule is represented as a N × F tensor
where F represents F s0 scalars concatenated together. Finally, we use the approach proposed in [6]
to ensure permutation invariance. The feature vector for each atom is projected onto 150 dimensions
using a MLP. These embeddings are summed over atoms, and then the regression target is trained
using another MLP having 50 hidden units. Both of these MLPs are jointly trained. The final results
are presented below, which show that our method outperforms the Spherical CNN of Cohen et al..
The only method that delivers better performance is a MLP trained on randomly permuted Coulomb

2

matrices [7], and as [2] point out, this method is unlikely to scale to large molecules as it needs a
large sample of random permutations, which grows rapidly with N .

2.3 3D Shape Recognition

We use the SHREC17 dataset [9], which is a subset of the larger ShapeNet dataset [1] hav-
ing roughly 51300 3D models spread over 55 categories. It is divided into a 70/10/20 split for
train/validation/test. Two versions of this dataset are available: A regular version in which the ob-
jects are consistently aligned and another where the 3D models are perturbed by random rotations.
Following [2] we focus on the latter version, as well as represent each 3D mesh as a spherical signal
by using a ray casting scheme. For each point on the sphere, a ray towards the origin is sent which
collects the ray length, cosine and sine of the surface angle. In addition to this, ray casting for the
convex hull of the mesh gives additional information, resulting in 6 channels. The spherical signal
is discretized using the Discroll-Healy grid [3] with a bandwidth of 128. We use the code provided
by [2] for generating this representation.

We use a ResNet style architecture, but with the difference that the full input is not fed back but
rather different frequency parts of it. We consider Lmax = 14, and first train a block only till L = 8
using τl = 10 using 3 layers. The next block consists of concatenating the fragments obtained from
the previous block and training for two layers tillL = 10, repeating this process till Lmax is reached.
These later blocks use τl = 8. As earlier, we concatenate the F s0 scalars from each block to form
the final output layer, which is connected to 55 nodes forming a fully connected layer. We use Batch
Normalization in the final layer, and the normalization discussed in 2.1 in the Fourier layers. The
model was trained with ADAM using a batch size of 100 and a learning rate of 5× 10−4, using L2
weight decay of 0.0005 for regularization.

3

References
[1] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva,

M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015). Shapenet: An information-rich 3d model
repository.

[2] Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. (2018). Spherical CNNs. International
Conference on Learning Representations.

[3] Driscoll, J. R. and Healy, D. M. (1994). Computing fourier transforms and convolutions on the
2-sphere. Advances in Applied Mathematics.

[4] Ioffe, S. and Szefedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International Conference on Machine Learning.

[5] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. International
Conference on Learning Representations.

[6] M. Zaheer, ., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., , and Smola., A.
(2017). Deep sets.

[7] Montavon, G., Hansen, K., Fazli, S., Rupp, M., Biegler, F., Ziehe, A., Tkatchenko, A., von
Lilienfeld, O., and Müller, K. (2012). Learning invariant representations of molecules for atom-
ization energy prediction. In NIPS.

[8] Rupp, M., Tkatchenko, A., Müller, K.-R., and von Lilienfeld, O. A. (2012). Fast and accurate
modeling of molecular atomization energies with machine learning. Physical Review Letters.

[9] Savva, M., Yu, F., Su, H., Kanezaki, A., Furuya, T., Ohbuchi, R., Zhou, Z., Yu, R., Bai, S., Bai,
X., Aono, M., Tatsuma, A., Thermos, S., Axenopoulos, A., Papadopoulos, G. T., Daras, P., Deng,
X., Lian, Z., Li, B., Johan, H., Lu, Y., and Mk., S. (2017). Large-scale 3d shape retrieval from
shapenet core55. Eurographics Workshop on 3D Object Retrieval.

4

	Summary of algorithm
	Experimental Details
	Rotated MNIST on the Sphere
	Atomization Energy Prediction
	3D Shape Recognition

