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Abstract

We consider semidefinite programs (SDPs) of size n with equality constraints. In
order to overcome scalability issues, Burer and Monteiro proposed a factorized
approach based on optimizing over a matrix Y of size n×k such that X = Y Y ∗ is
the SDP variable. The advantages of such formulation are twofold: the dimension
of the optimization variable is reduced, and positive semidefiniteness is naturally
enforced. However, optimization in Y is non-convex. In prior work, it has been
shown that, when the constraints on the factorized variable regularly define a
smooth manifold, provided k is large enough, for almost all cost matrices, all
second-order stationary points (SOSPs) are optimal. Importantly, in practice,
one can only compute points which approximately satisfy necessary optimality
conditions, leading to the question: are such points also approximately optimal?
To answer it, under similar assumptions, we use smoothed analysis to show that
approximate SOSPs for a randomly perturbed objective function are approximate
global optima, with k scaling like the square root of the number of constraints (up
to log factors). Moreover, we bound the optimality gap at the approximate solution
of the perturbed problem with respect to the original problem. We particularize our
results to an SDP relaxation of phase retrieval.

1 Introduction

We consider semidefinite programs (SDP) over K = R or C of the form:
min

X∈Sn×n
〈C,X〉

subject to A(X) = b,

X � 0,

(SDP)

with 〈A,B〉 = Re[Tr(A∗B)] the Frobenius inner product (A∗ is the conjugate-transpose ofA), Sn×n
the set of self-adjoint matrices of size n (real symmetric for R, or Hermitian for C), C ∈ Sn×n
the cost matrix, and A : Sn×n → Rm a linear operator capturing m equality constraints with right
hand side b ∈ Rm: for each i, A(X)i = 〈Ai, X〉 = bi for given matrices A1, . . . , Am ∈ Sn×n. The
optimization variable X is positive semidefinite. We let C be the feasible set of (SDP):

C =
{
X ∈ Sn×n : A(X) = b and X � 0

}
. (1)
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Large-scale SDPs have been proposed for machine learning applications including matrix comple-
tion [Candès and Recht, 2009], community detection [Abbé, 2018] and kernel learning [Lanckriet
et al., 2004] for K = R, and in angular synchronization [Singer, 2011] and phase retrieval [Wald-
spurger et al., 2015] for K = C. Unfortunately, traditional methods to solve (SDP) do not scale (due
to memory and computational requirements), hence the need for alternatives.

In order to address such scalability issues, Burer and Monteiro [2003, 2005] restrict the search to
the set of matrices of rank at most k by factorizing X as X = Y Y ∗, with Y ∈ Kn×k. It has been
shown that if the search space C (1) is compact, then (SDP) admits a global optimum of rank at most
r, where dim Sr×r ≤ m [Barvinok, 1995, Pataki, 1998], with dim Sr×r = r(r+1)

2 for K = R and
dim Sr×r = r2 for K = C. In other words, restricting C to the space of matrices with rank at most k
with dim Sk×k > m does not change the optimal value. This factorization leads to a quadratically
constrained quadratic program:

min
Y ∈Kn×k

〈C, Y Y ∗〉

subject to A(Y Y ∗) = b.
(P)

Although (P) is in general non-convex because its feasible set

M =Mk =
{
Y ∈ Kn×k : A(Y Y ∗) = b

}
(2)

is non-convex, considering (P) instead of the original SDP presents significant advantages: the
number of variables is reduced from O(n2) to O(nk), and the positive semidefiniteness of the matrix
is naturally enforced. Solving (P) using local optimization methods is known as the Burer–Monteiro
method and yields good results in practice: Kulis et al. [2007] underlined the practical success of
such low-rank approaches in particular for maximum variance unfolding and for k-means clustering
(see also [Carson et al., 2017]). Their approach is significantly faster and more scalable. However,
the non-convexity of (P) means further analysis is needed to determine whether it can be solved to
global optimality reliably.

For K = R, in the case whereM is a compact, smooth manifold (see Assumption 1 below for a
precise condition), it has been shown recently that, up to a zero-measure set of cost matrices, second-
order stationary points (SOSPs) of (P) are globally optimal provided dim Sk×k > m [Boumal et al.,
2016, 2018b]. Algorithms such as the Riemannian trust-regions method (RTR) converge globally to
SOSPs, but unfortunately they can only guarantee approximate satisfaction of second-order optimality
conditions in a finite number of iterations [Boumal et al., 2018a].

The aforementioned papers close with a question, crucial in practice: when is it the case that
approximate SOSPs, which we now call ASOSPs, are approximately optimal? Building on recent
proof techniques by Bhojanapalli et al. [2018], we provide some answers here.

Contributions

This paper formulates approximate global optimality conditions holding for (P) and, consequently,
for (SDP). Our results rely on the following core assumption as set in [Boumal et al., 2016].

Assumption 1 (Smooth manifold). For all values of k up to n such that Mk is non-empty, the
constraints on (P) defined by A1, . . . , Am ∈ Sn×n and b ∈ Rm satisfy at least one of the following:

1. {A1Y, . . . , AmY } are linearly independent in Kn×k for all Y ∈Mk; or

2. {A1Y, . . . , AmY } span a subspace of constant dimension in Kn×k for all Y in an open
neighborhood ofMk in Kn×k.

In [Boumal et al., 2018b], it is shown that (a) if the assumption above is verified for k = n, then it
automatically holds for all values of k ≤ n such thatMk is non-empty; and (b) for those values of k,
the dimension of the subspace spanned by {A1Y, . . . , AmY } is independent of k: we call it m′.

When Assumption 1 holds, we refer to problems of the form (SDP) as smooth SDPs becauseM is
then a smooth manifold. Examples of smooth SDPs for K = R are given in [Boumal et al., 2018b].
For K = C, we detail an example in Section 4. Our main theorem is a smooth analysis result (cf.
Theorem 3.1 for a more formal statement). An ASOSP is an approximate SOSP (a precise definition
follows.)
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Theorem 1.1 (Informal). Let Assumption 1 hold and assume C is compact. Randomly perturb the cost
matrix C. With high probability, if k = Ω̃(

√
m), any ASOSP Y ∈ Kn×k for (P) is an approximate

global optimum, and X = Y Y ∗ is an approximate global optimum for (SDP) (with the perturbed C.)

The high probability proviso is with respect to the perturbation only: if the perturbation is “good”,
then all ASOSPs are as described in the statement. If C is compact, then so is M and known
algorithms for optimization on manifolds produce an ASOSP in finite time (with explicit bounds).
Theorem 1.1 ensures that, for k large enough and for any cost matrix C, with high probability upon a
random perturbation of C, such algorithms produce an approximate global optimum of (P).

Theorem 1.1 is a corollary of two intermediate arguments, developed in Lemmas 3.1 and 3.2:

1. Probabilistic argument (Lemma 3.1): By perturbing the cost matrix in the objective function
of (P) with a Gaussian Wigner matrix, with high probability, any approximate first-order
stationary point Y of the perturbed problem (P) is almost column-rank deficient.

2. Deterministic argument (Lemma 3.2): If an approximate second-order stationary point Y
for (P) is also almost column-rank deficient, then it is an approximate global optimum and
X = Y Y ∗ is an approximate global optimum for (SDP).

The first argument is motivated by smoothed analysis [Spielman and Teng, 2004] and draws heavily
on a recent paper by Bhojanapalli et al. [2018]. The latter work introduces smoothed analysis to
analyze the performance of the Burer–Monteiro factorization, but it analyzes a quadratically penalized
version of the SDP: its solutions do not satisfy constraints exactly. This affords more generality,
but, for the special class of smooth SDPs, the present work has the advantage of analyzing an exact
formulation. The second argument is a smoothed extension of well-known on-off results [Burer and
Monteiro, 2003, 2005, Journee et al., 2010]. Implications of this theorem for a particular SDP are
derived in Section 4, with applications to phase retrieval and angular synchronization.

Thus, for smooth SDPs, our results improve upon [Bhojanapalli et al., 2018] in that we address
exact-feasibility formulations of the SDP. Our results also improve upon [Boumal et al., 2016] by
providing approximate optimality results for approximate second-order points with relaxation rank
k scaling only as Ω̃(

√
m), whereas the latter reference establishes such results only for k = n+ 1.

Finally, we aim for more generality by covering both real and complex SDPs, and we illustrate the
relevance of complex SDPs in Section 4.

Related work

A number of recent works focus on large-scale SDP solvers. Among the direct approaches (which
proceed in the convex domain directly), Hazan [2008] introduced a Frank–Wolfe type method for a
restricted class of SDPs. Here, the key is that each iteration increases the rank of the solution only
by one, so that if only a few iterations are required to reach satisfactory accuracy, then only low
dimensional objects need to be manipulated. This line of work was later improved by Laue [2012],
Garber [2016] and Garber and Hazan [2016] through hybrid methods. Still, if high accuracy solutions
are desired, a large number of iterations will be required, eventually leading to large-rank iterates.
In order to overcome such issue, Yurtsever et al. [2017] recently proposed to combine conditional
gradient and sketching techniques in order to maintain a low rank representation of the iterates.

Among the low-rank approaches, our work is closest to (and indeed largely builds upon) recent results
of Bhojanapalli et al. [2018]. For the real case, they consider a penalized version of problem (SDP)
(which we here refer to as (P-SDP)) and its related penalized Burer–Monteiro formulation, here called
(P-P). With high probability upon random perturbation of the cost matrix, they show approximate
global optimality of ASOSPs for (P-P), assuming k grows with

√
m and either the SDP is compact

or its cost matrix is positive definite. Given that there is a zero-measure set of SDPs where SOSPs
may be suboptimal, there can be a small-measure set of SDPs where ASOSPs are not approximately
optimal [Bhojanapalli et al., 2018]. In this context, the authors resort to smoothed analysis, in the
same way that we do here. One drawback of that work is that the final result does not hold for the
original SDP, but for a non-equivalent penalized version of it. This is one of the points we improve
here, by focusing on smooth SDPs as defined in [Boumal et al., 2016].
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Notation

We use K to refer to R or C when results hold for both fields. For matrices A, B of same size, we use
the inner product 〈A,B〉 = Re[Tr(A∗B)], which reduces to 〈A,B〉 = Tr(ATB) in the real case.
The associated Frobenius norm is defined as ‖A‖ =

√
〈A,A〉. For a linear map f between matrix

spaces, this yields a subordinate operator norm as ‖f‖op = supA6=0
‖f(A)‖
‖A‖ . The set of self-adjoint

matrices of size n over K, Sn×n, is the set of symmetric matrices for K = R or the set of Hermitian
matrices for K = C. We also write Hn×n to denote Sn×n for K = C. A self-adjoint matrix X is
positive semidefinite (X � 0) if and only if u∗Xu ≥ 0 for all u ∈ Kn. Furthermore, I is the identity
operator and In is the identity matrix of size n. The integer m′ is defined after Assumption 1.

2 Geometric framework and near-optimality conditions

In this section, we present properties of the smooth geometry of (P) and approximate global optimality
conditions for this problem. In covering these preliminaries, we largely parallel developments
in [Boumal et al., 2016]. As argued in that reference, Assumption 1 implies that the search space
M of (P) is a submanifold in Kn×k of codimension m′. We can associate tangent spaces to a
submanifold. Intuitively, the tangent space TYM to the submanifoldM at a point Y ∈ M is a
subspace that best approximatesM around Y , when the subspace origin is translated to Y . It is
obtained by linearizing the equality constraints.
Lemma 2.1 (Boumal et al. [2018b, Lemma 2.1]). Under Assumption 1, the tangent space at Y to
M (2), denoted by TYM, is:

TYM =
{
Ẏ ∈ Kn×k : A(Ẏ Y ∗ + Y Ẏ ∗) = 0

}
=
{
Ẏ ∈ Kn×k : 〈AiY, Ẏ 〉 = 0 for i = 1, . . . ,m

}
. (3)

By equipping each tangent space with a restriction of the inner product 〈·, ·〉, we turn M into a
Riemannian submanifold of Kn×k. We also introduce the orthogonal projector ProjY : Kn×k →
TYM which, given a matrix Z ∈ Kn×k, projects it to the tangent space TYM:

ProjY Z := argmin
Ẏ ∈TYM

‖Ẏ − Z‖. (4)

This projector will be useful to phrase optimality conditions. It is characterized as follows.
Lemma 2.2 (Boumal et al. [2018b, Lemma 2.2]). Under Assumption 1, the orthogonal projector
admits the closed form

ProjY Z = Z −A∗
(
G†A(ZY ∗)

)
Y,

where A∗ : Rm → Sn×n is the adjoint of A, G is a Gram matrix defined by Gij = 〈AiY,AjY 〉 (it is
a function of Y ), and G† denotes the Moore–Penrose pseudo-inverse of G (differentiable in Y ).

(See a proof in Appendix A.) To properly state the approximate first- and second-order necessary
optimality conditions for (P), we further need the notions of Riemannian gradient and Riemannian
Hessian on the manifoldM. We recall that (P) minimizes the function g, defined by

g(Y ) = 〈CY, Y 〉 , (5)
on the manifoldM. The Riemannian gradient of g at Y , grad g(Y ), is the unique tangent vector at
Y such that, for all tangent Ẏ , 〈grad g(Y ), Ẏ 〉 = 〈∇g(Y ), Ẏ 〉, with ∇g(Y ) = 2CY the Euclidean
(classical) gradient of g evaluated at Y . Intuitively, grad g(Y ) is the tangent vector at Y that points
in the steepest ascent direction for g as seen from the manifold’s perspective. A classical result states
that, for Riemannian submanifolds, the Riemannian gradient is given by the projection of the classical
gradient to the tangent space [Absil et al., 2008, eq. (3.37)]:

grad g(Y ) = ProjY (∇g(Y )) = 2
(
C −A∗

(
G†A(CY Y ∗)

))
Y. (6)

This leads us to define the matrix S ∈ Sn×n which plays a key role to guarantee approximate global
optimality for problem (P), as discussed in Section 3:

S = S(Y ) = C −A∗(µ) = C −
m∑
i=1

µiAi, (7)
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where µ = µ(Y ) = G†A(CY Y ∗). We can write the Riemannian gradient of g evaluated at Y as

grad g(Y ) = 2SY. (8)

The Riemannian gradient enables us to define an approximate first-order necessary optimality
condition below. To define the approximate second-order necessary optimality condition, we need
to introduce the notion of Riemannian Hessian. The Riemannian Hessian of g at Y is a self-adjoint
operator on the tangent space at Y obtained as the projection of the derivative of the Riemannian
gradient vector field [Absil et al., 2008, eq. (5.15)]. Boumal et al. [2018b] give a closed form
expression for the Riemannian Hessian of g at Y :

Hess g(Y )[Ẏ ] = 2 · ProjY (SẎ ). (9)

We can now formally define the approximate necessary optimality conditions for problem (P).

Definition 2.1 (εg-FOSP). Y ∈ M is an εg–first-order stationary point for (P) if the norm of the
Riemannian gradient of g at Y almost vanishes, specifically,

‖grad g(Y )‖ = ‖2SY ‖ ≤ εg,

where S is defined as in equation (7).

Definition 2.2 ((εg, εH)-SOSP). Y ∈ M is an (εg, εH )–second-order stationary point for (P) if
it is an εg–first-order stationary point and the Riemannian Hessian of g at Y is almost positive
semidefinite, specifically,

∀Ẏ ∈ TYM,
1

2

〈
Ẏ ,Hess g(Y )[Ẏ ]

〉
= 〈Ẏ , SẎ 〉 ≥ −εH‖Ẏ ‖2.

From these definitions, it is clear that S encapsulates the approximate optimality conditions of
problem (P).

3 Approximate second-order points and smoothed analysis

We state our main results formally in this section. As announced, following [Bhojanapalli et al., 2018],
we resort to smoothed analysis [Spielman and Teng, 2004]. To this end, we consider perturbations
of the cost matrix C of (SDP) by a Gaussian Wigner matrix. Intuitively, smoothed analysis tells us
how large the variance of the perturbation should be in order to obtain a new SDP which, with high
probability, is sufficiently distant from any pathological case. We start by formally defining the notion
of Gaussian Wigner matrix, following [Ben Arous and Guionnet, 2010].

Definition 3.1 (Gaussian Wigner matrix). The random matrix W = W ∗ in Sn×n is a Gaussian
Wigner matrix with variance σ2

W if its entries on and above the diagonal are independent, zero-mean
Gaussian variables (real or complex depending on context) with variance σ2

W .

Besides Assumption 1, another important assumption for our results is that the search space C (1)
of (SDP) is compact. In that scenario, there exists a finite constant R such that

∀X ∈ C, Tr(X) ≤ R. (10)

Thus, for all Y ∈M, ‖Y ‖2 = Tr(Y Y ∗) ≤ R. Another consequence of compactness of C is that the
operator A∗ ◦G† ◦ A is uniformly bounded, that is, there exists a finite constant K such that

∀Y ∈M, ‖A∗ ◦G† ◦ A‖op ≤ K, (11)

where G† is a continuous function of Y as in Lemma 2.2. We give explicit expressions for the
constants R and K for the case of phase retrieval in Section 4.

We now state the main theorem, whose proof is in Appendix E.

Theorem 3.1. Let Assumption 1 hold for (SDP) with cost matrix C ∈ Sn×n and m constraints.
Assume C (1) is compact, and let R and K be as in (10) and (11). Let W be a Gaussian Wigner
matrix with variance σ2

W and let δ ∈ (0, 1) be any tolerance. Define κ as:

κ = κ(R,K,C, n, σW ) = RK
(
‖C‖op + 3σW

√
n
)
. (12)
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There exists a universal constant c0 such that, if the rank k for the low-rank problem (P) satisfies

k ≥ 3

[
log(n) +

√
log(1/δ) +

√
m · log

(
1 +

6κ
√
c0n

σW

)]
, (13)

then, with probability at least 1− δ− e−n
2 on the random matrix W , any (εg, εH)-SOSP Y ∈ Kn×k

of (P) with perturbed cost matrix C +W has bounded optimality gap:

0 ≤ g(Y )− f? ≤ (εH + ε2gη)R+
εg
2

√
R, (14)

with g the cost function of (P), f? the optimal value of (SDP) (both perturbed), and

η = η(R,K,C, n,m, σW ) =
c0nK(2 +KR)2 (‖C‖op + 3σW

√
n))

9mσ2
W log

(
1 +

6κ
√
c0n

σW

) . (15)

This result indicates that, as long as the rank k is on the order of
√
m (up to logarithmic factors), the

optimality gap in the perturbed problem is small if a sufficiently good approximate second-order
point is computed. Since (SDP) may admit a unique solution of rank as large as Θ(

√
m) (see for

example [Laurent and Poljak, 1996, Thm. 3.1(ii)] for the Max-Cut SDP), we conclude that the scaling
of k with respect to m in Theorem 3.1 is essentially optimal.

There is an incentive to pick σW small, since the optimality gap is phrased in terms of the perturbed
problem. As expected though, taking σW small comes at a price. Specifically, the required rank
k scales with

√
log(1/σW ), so that a smaller σW may require k to be a larger multiple of

√
m.

Furthermore, the optimality gap is bounded in terms of η with a dependence in ε2g/σ
2
W ; this may force

us to compute more accurate approximate second-order points (smaller εg) for a similar guarantee
when σW is smaller: see also Corollary 3.1 below.

As announced, the theorem rests on two arguments which we now present—a probabilistic one, and a
deterministic one:

1. Probabilistic argument: In the smoothed analysis framework, we show, for k large enough,
that εg-FOSPs of (P) have their smallest singular value near zero, with high probability upon
perturbation of C. This implies that such points are almost column-rank deficient.

2. Deterministic argument: If Y is an (εg, εH)-SOSP of (P) and it is almost column-rank
deficient, then the matrix S(Y ) defined in equation (7) is almost positive semidefinite. From
there, we can derive a bound on the optimality gap.

Formal statements for both follow, building on the notation in Theorem 3.1. Proofs are in Appen-
dices C and D, with supporting lemmas in Appendix B.
Lemma 3.1. Let Assumption 1 hold for (SDP). Assume C (1) is compact. Let W be a Gaussian
Wigner matrix with variance σ2

W and let δ ∈ (0, 1) be any tolerance. There exists a universal
constant c0 such that, if the rank k for the low-rank problem (P) is lower bounded as in (13), then,
with probability at least 1− δ − e−n

2 on the random matrix W , we have

‖W‖op ≤ 3σW
√
n,

and furthermore: any εg-FOSP Y ∈ Kn×k of (P) with perturbed cost matrix C +W satisfies

σk(Y ) ≤ εg
σW

√
c0n

k
,

where σk(Y ) is the kth singular value of the matrix Y .
Lemma 3.2. Let Assumption 1 hold for (SDP) with cost matrix C. Assume C is compact. Let
Y ∈ Kn×k be an (εg, εH)-SOSP of (P) (for any k). Then, the smallest eigenvalue of S = S(Y ) (7)
is bounded below as

λmin(S) ≥ −εH − ζ‖C‖op · σ2
k(Y ),

where ζ = K(2 +KR)2 with R,K as in (10) and (11), and σk(Y ) is the kth singular value of Y (it
is zero if k > n). This holds deterministically for any cost matrix C.
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Combining the two above lemmas, the key step in the proof of Theorem 3.1 is to deduce a bound on
the optimality gap from a bound on the smallest eigenvalue of S: see Appendix E.

We have shown in Theorem 3.1 that a perturbed version of (P) can be approximately solved to global
optimality, with high probability on the perturbation. In the corollary below, we further bound the
optimality gap at the approximate solution of the perturbed problem with respect to the original,
unperturbed problem. The proof is in Appendix F.
Corollary 3.1. Assume C is compact and let R be as defined in (10). Let X ∈ C be an approximate
solution for (SDP) with perturbed cost matrix C +W , so that the optimality gap in the perturbed
problem is bounded by εf . Let f? denote the optimal value of the unperturbed problem (SDP), with
cost matrix C. Then, the optimality gap for X with respect to the unperturbed problem is bounded
as:

0 ≤ 〈C,X〉 − f? ≤ εf + 2‖W‖opR.

Under the conditions of Theorem 3.1, with the prescribed probability, εf and ‖W‖op can be bounded
so that for an (εg, εH)-SOSP Y of the perturbed problem (P) we have:

0 ≤ 〈CY, Y 〉 − f? ≤ (εH + ε2gη)R+
εg
2

√
R+ 6σW

√
nR,

where η is as defined in (15) and σ2
W is the variance of the Wigner perturbation W .

4 Applications

The approximate global optimality results established in the previous section can be applied to deduce
guarantees on the quality of ASOSPs of the low-rank factorization for a number of SDPs that appear
in machine learning problems. Of particular interest, we focus on the phase retrieval problem. This
problem consists in retrieving a signal z ∈ Cd from n amplitude measurements b = |Az| ∈ Rn+ (the
absolute value of vector Az is taken entry-wise). If we can recover the complex phases of Az, then z
can be estimated through linear least-squares. Following this approach, Waldspurger et al. [2015]
argue that this task can be modeled as the following non-convex problem:

min
u∈Cn

u∗Cu

subject to |ui| = 1, for i = 1, . . . , n,
(PR)

where C = diag(b)(I −AA†)diag(b) and diag : Rn → Hn×n maps a vector to the corresponding
diagonal matrix. The classical relaxation is to rewrite the above in terms of X = uu∗ (lifting) without
enforcing rank(X) = 1, leading to a complex SDP which Waldspurger et al. [2015] call PhaseCut:

min
X∈Hn×n

〈C,X〉

subject to diag(X) = 1,

X � 0.

(PhaseCut)

The same SDP relaxation also applies to a problem called angular synchronization [Singer, 2011].
The Burer–Monteiro factorization of (PhaseCut) is an optimization problem over a matrix Y ∈ Cn×k
as follows:

min
Y ∈Cn×k

〈CY, Y 〉

subject to diag(Y Y ∗) = 1.
(PhaseCut-BM)

For a feasible Y , each row has unit norm: the search space is a Cartesian product of spheres in Ck,
which is a smooth manifold. We can check that Assumption 1 holds for all k ≥ 1. Furthermore, the
feasible space of the SDP is compact. Therefore, Theorem 3.1 applies.

In this setting, Tr(X) = n for all feasible X , and ‖A∗ ◦G† ◦ A‖op = 1 for all feasible Y (because
G = G(Y ) = Im for all feasible Y—see Lemma 2.2—and A∗ ◦ A is an orthogonal projector from
Hermitian matrices to diagonal matrices). For this reason, the constants defined in (10) and (11) can
be set to R = n and K = 1.

As a comparison, Mei et al. [2017] also provide an optimality gap for ASOSPs of (PhaseCut) without
perturbation. Their result is more general in the sense that it holds for all possible values of k.
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Figure 1: Computation time of the dedicated interior-point method (IPM) and of the Burer–Monteiro
approach (BM) to solve (PhaseCut). For increasing values of n (horizontal axis), we display the
computation time averaged over four independent realizations of the problem (vertical axis). The
smallest and largest observed computation times are represented with dashed lines. At n = 3000,
BM is about 40 times faster than IPM. For the largest value of n, IPM runs out of memory.

However, when k is large, it does not accurately capture the fact that SOSPs are optimal, thus
incurring a larger bound on the optimality gap of ASOSPs. In contrast, our bounds do show that for k
large enough, as εg, εH go to zero, the optimality gap goes to zero, with the trade-off that they do so
for a perturbed problem (though see Corollary 3.1), with high probability.

Numerical Experiments

We present the empirical performance of the low-rank approach in the case of (PhaseCut). We
compare it with a dedicated interior-point method (IPM) implemented by Helmberg et al. [1996]
for real SDPs and adapted to phase retrieval as done by Waldspurger et al. [2015]. This adaptation
involves splitting the real and the imaginary parts of the variables in (PhaseCut) and forming an
equivalent real SDP with double the dimension. The Burer–Monteiro approach (BM) is implemented
in complex form directly using Manopt, a toolbox for optimization on manifolds [Boumal et al.,
2014]. In particular, a Riemannian Trust-Region method (RTR) is used [Absil et al., 2007]. Theory
supports that these methods can return an ASOSP in a finite number of iterations [Boumal et al.,
2018a]. We stress that the SDP is not perturbed in these experiments: the role of the perturbation
in the analysis is to understand why the low-rank approach is so successful in practice despite the
existence of pathological cases. In practice, we do not expect to encounter pathological cases.

Our numerical experiment setup is as follows. We seek to recover a signal of dimension d, z ∈ Cd,
from n measurements encoded in the vector b ∈ Rn+ such that b = |Az| + ε, where A ∈ Cn×d is
the sensing matrix and ε ∼ N (0, Id) is standard Gaussian noise. For the numerical experiments,
we generate the vectors z as complex random vectors with i.i.d. standard Gaussian entries, and we
randomly generate the complex sensing matrices A also with i.i.d. standard Gaussian entries. We do
so for values of d ranging from 10 to 1000, and always for n = 10d (that is, there are 10 magnitude
measurements per unknown complex coefficient, which is an oversampling factor of 5.) Lastly, we
generate the measurement vectors b as described above and we cap its values from below at 0.01 in
order to avoid small (or even negative) magnitude measurements.

For n up to 3000, both methods solve the same problem, and indeed produce the same answer up to
small discrepancies. The BM approach is more accurate, at least in satisfying the constraints, and, for
n = 3000, it is also about 40 times faster than IPM. BM is run with k =

√
n (rounded up), which

is expected to be generically sufficient to include the global optimum of the SDP (as confirmed in
practice). For larger values of n, the IPM ran into memory issues and we had to abort the process.
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5 Conclusion

We considered the low-rank (or Burer–Monteiro) approach to solve equality-constrained SDPs. Our
key assumptions are that (a) the search space of the SDP is compact, and (b) the search space of its
low-rank version is smooth (the actual condition is slightly stronger). Under these assumptions, we
proved using smoothed analysis that, provided k = Ω̃(

√
m) where m is the number of constraints, if

the cost matrix is perturbed randomly, with high probability, approximate second-order stationary
points of the perturbed low-rank problem map to approximately optimal solutions of the perturbed
SDP. We also related optimality gaps in the perturbed SDP to optimality gaps in the original SDP.
Finally, we applied this result to an SDP relaxation of phase retrieval (also applicable to angular
synchronization).
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A Proof of Lemma 2.2

We follow the proof of [Boumal et al., 2018b, Lemma 2.2] and reproduce it here to be self-contained,
and also because the reference treats only the real case; writing the proof here explicitly allows to
verify that, indeed, all steps go through for the complex case as well.

Orthogonal projection is along the normal space, so that ProjY Z is in TYM (3) and Z − ProjY Z
is in NYM, where the normal space at Y is (using Assumption 1)

NYM =
{
Z ∈ Kn×k : 〈Z, Ẏ 〉 = 0 ∀Ẏ ∈ TYM

}
= span{A1Y, . . . , AmY }. (16)

From the latter we infer there exists µ ∈ Rm such that

Z − ProjY Z =

m∑
i=1

µiAiY = A∗(µ)Y,

since the adjoint of A is A∗(µ) = µ1A1 + · · ·+ µmAm. Multiply on the right by Y ∗ and apply A
to obtain

A(ZY ∗) = A(A∗(µ)Y Y ∗),

where we used A(ProjY (Z)Y ∗) = 0 since ProjY (Z) ∈ TYM. The right-hand side expands into

A(A∗(µ)Y Y ∗)i =

〈
Ai,

m∑
j=1

µjAjY Y
∗

〉
=

m∑
j=1

〈AiY,AjY 〉µj = (Gµ)i,

where G is a real, positive semidefinite matrix of size m defined by Gij = 〈AiY,AjY 〉. By
construction, this system of equations in µ has at least one solution; we single out µ = G†A(ZY ∗),
where G† is the Moore–Penrose pseudo-inverse of G. The function Y 7→ G† is continuous and
differentiable at Y ∈M providedG has constant rank in an open neighborhood of Y in Kn×k [Golub
and Pereyra, 1973, Thm 4.3], which is the case for all Y ∈M under Assumption 1.

B Lower-bound for smallest singular values

This appendix provides supporting results necessary for Appendix C, which is devoted to the proof of
Lemma 3.1. The statements we need are established for K = R in [Bhojanapalli et al., 2018, Cor. 5,
Lem. 7]. Here we give the corresponding statements for K = C: the proofs are essentially the same.

We first state a special case of Corollary 1.17 from [Nguyen, 2018]. Here, NI(X) denotes the number
of eigenvalues of X ∈ Sn×n in the real interval I . (Note that the reference covers the real case in its
main statement, and addresses the complex case later on as a remark.) For Gaussian Wigner matrices,
we follow Definition 3.1. Furthermore, P {E} denotes the probability of event E.

Corollary B.1. Let M be a deterministic Hermitian matrix of size n. Let W be a Gaussian Wigner
matrix with variance 1. Then, for any given 0 < γ < 1, there exists a constant c = c(γ) such that for

any ε > 0 and k ≥ 1, with I being the interval
[
− εk√

n
,
εk√
n

]
,

P
{
NI(M +W ) ≥ k

}
≤ nk

(
cε√
2π

)(1−γ)k2/2

.

The next lemma follows easily—the original proof for K = R is in [Bhojanapalli et al., 2018, Lem. 7].

Lemma B.1. Let M be a deterministic Hermitian matrix of size n. Let W be a complex Gaussian
Wigner matrix of size n with variance σ2

W , independent of M . There exists an absolute constant c0
such that:

P

{
k∑
i=1

σn−(i−1)(M +W )2 <
k2σ2

W

c0n

}
≤ exp

(
−k

2

8
log(8π) + k log(n)

)
.

11



Proof. In our case, the entries of W have variance E[|Wi,j |2] = σ2
W . Thus, set W = σWW and

M = σWM . From Corollary B.1, we get

NσW I(M +W ) = NI(M +W ) < k

with probability at least 1 − nk
(

cε√
2π

)(1−γ)k2/2

. In this event, σn−(k−1)(M + W ) ≥ εk√
n
σW .

With the choices γ =
1

2
and ε =

1

2c
, we get that

σn−(k−1)(M +W ) ≥ k

2c
√
n
σW

with probability at least 1− exp(−k
2

8 log(8π) + k log(n)). In that event,
k∑
i=1

σn−(i−1)(M +W )2 ≥ σn−(k−1)(M +W )2 ≥ k2

c0n
σ2
W

for some absolute constant c0 = 4c2.

C Proof of Lemma 3.1

This section builds on a result from [Bhojanapalli et al., 2018], where a similar statement was made
under different assumptions. The proof follows closely the developments therein, with appropriate
changes. Using (8), Y is an εg-FOSP of the perturbed problem if and only if ‖2SY ‖ ≤ εg with
S = M +W and

M = C − (A∗ ◦G† ◦ A) ((C +W )Y Y ∗) . (17)

Let Y = PΣQ∗ be a thin SVD of Y , where P is n× k with orthonormal columns (assuming without
loss of generality k ≤ n, as otherwise σk(Y ) = 0 deterministically) and Q is k×k orthogonal. Then,

εg ≥ ‖2SY ‖ = ‖2(M +W )Y ‖
≥ 2σk(Y )‖(M +W )P‖

≥ 2σk(Y )

√√√√ k∑
i=1

σn−(i−1)(M +W )2.

Thus, we control the smallest singular value of Y in terms of ε and the k smallest singular values of
M +W :

σk(Y ) ≤ εg

2
√∑k

i=1 σn−(i−1)(M +W )2
. (18)

Given that M is not statistically independent of W , we are not able to directly apply Lemma B.1.
Indeed, M depends on W and on Y , and Y itself is an εg-FOSP of the perturbed problem: a feature
which depends on W . To tackle this issue, we cover the set of possible Ms with a net. Lemma B.1
provides a bound for each M̄ in this net. By union bound, we can extend the lemma for all M̄ . By
taking a sufficiently dense net, we then infer that M is necessarily close to one of these M̄ ’s and
conclude.

To this end, we first control ‖M − C‖ using the definitions of R (10) and K (11):

‖M − C‖ = ‖A∗ ◦G† ◦ A ((C +W )Y Y ∗)‖
≤ ‖A∗ ◦G† ◦ A‖op‖C +W‖op‖Y Y ∗‖
≤ K(‖C‖op + ‖W‖op)R.

Since W is a Gaussian Wigner matrix with variance σ2
W , it is a well known fact (see for instance2

Part 1 of Appendix A in [Bandeira et al., 2017]) that, with probability at least 1− e−n
2 ,

‖W‖op ≤ 3σW
√
n. (19)

2The reference proves the statement for complex matrices with diagonal entries equal to zero. That proof can
easily be adapted to the definition of Wigner matrices used in this paper, both real and complex.
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Hence, with probability at least 1− e−n
2 ,

‖M − C‖ ≤ RK(‖C‖op + 3σW
√
n) , κ,

where we recover κ as defined in (12).

As a result, M lies in a ball of center C and radius κ. Moreover, from (17), we remark that M lives in
an affine subspace of dimension rank(A∗ ◦G† ◦ A) = rank(A). A unit ball in Frobenius norm in d
dimensions admits an ε-net of

(
1 + 3

ε

)d
points (see for instance Lemma 1.18 in [Rigollet and Hütter,

2017]).3 Thus, we pick a kσW

2κ
√
c0n

-net on the unit ball with
(

1 +
6κ
√
c0n

kσW

)rank(A)

points. Rescaling

by a factor κ gives a kσW

2
√
c0n

-net of a ball of radius κ centered at zero. Hence, for any M as in (17)
there necessarily exists a point M̄ in the net satisfying:

‖M̄ −M‖ ≤ kσW
2
√
c0n

. (20)

Let T : Sn×n → Rk be defined by Tq(A) = (σn−q+1(A), . . . , σn(A))>, that is: T extracts the q
smallest singular values of A, in order. Then, by using the result from Exercise IV.3.5. in [Bhatia,
2007] in the first inequality,4 we have:

‖M̄ −M‖ = ‖(M̄ +W )− (M +W )‖

=

√√√√ n∑
i=1

σ2
i

(
(M̄ +W )− (M +W )

)

≥

√√√√ n∑
i=1

(
σi(M̄ +W )− σi(M +W )

)2
= ‖Tn(M̄ +W )− Tn(M +W )‖
≥ ‖Tk(M̄ +W )− Tk(M +W )‖
≥ ‖Tk(M̄ +W )‖ − ‖Tk(M +W )‖,

where we used the triangular inequality in the last inequality. Thus, rearranging we obtain√√√√ k∑
i=1

σn−(i−1)(M +W )2 ≥

√√√√ k∑
i=1

σn−(i−1)(M̄ +W )2 − ‖M̄ −M‖. (21)

Taking a union bound for Lemma B.1 over each M̄ in the net, we get that√√√√ k∑
i=1

σn−(i−1)(M̄ +W )2 ≥ kσW√
c0n

(22)

holds with probability at least

1− exp

(
−k

2

8
log(8π) + k log(n) + rank(A) · log

(
1 +

6κ
√
c0n

kσW

))
. (23)

Combining (20), (21) and (22), we conclude that√√√√ k∑
i=1

σn−(i−1)(M +W )2 ≥ kσW
2
√
c0n

(24)

3The lemma in the reference shows that for any ε ∈ (0, 1) the cardinality of one such ε-net is bounded by
(3/ε)d. Furthermore, for ε ≥ 1, there is an obvious ε-net of cardinality one, comprising just the origin. Hence,
for any ε > 0, it is possible so find an ε-net of cardinality at most max

(
1, (3/ε)d

)
≤ (1 + 3/ε)d.

4The same result can be obtained by using Theorem IV.2.14 in the reference. In this setting, one considers the
function F (A) = −

∑n
i=1 σ

2
i (A); then, use the subadditive property of F , i.e., F (A+B) ≤ F (A) + F (B),

and define A = M̄ +W and B = −(M +W ).

13



holds with probability bounded as in (23). Combining with (18), we obtain

σk(Y ) ≤ εg
σW

√
c0n

k

as desired. It remains to discuss the probability of success, which we do below.

Inside the log in (23), we can safely replace k with 1, as this only hurts the probability. Then, the
result holds with probability at least

1− exp

(
−k

2

8
log(8π) + k log(n) + rank(A) · log

(
1 +

6κ
√
c0n

σW

))
.

We would like to constrain k such that the exponential part is bounded by δ. In this fashion, taking a
union bound with event (19), we will get an overall probability of success of at least 1− δ − e−n

2 .
Equivalently, k must satisfy the quadratic inequality

−ak2 + bk + c ≤ log(δ),

with a, b > 0, c ≥ 0 defined by a = log(8π)
8 , b = log(n), c = rank(A) · log

(
1 +

6κ
√
c0n

σW

)
. This

quadratic inequality can be rewritten as:

ak2 − bk − c′ ≥ 0,

with c′ = c+ log(1/δ). This quadratic has two distinct real roots, one positive and one negative:

b±
√
b2 + 4ac′

2a
.

Since k is positive, we deduce that k needs to be larger than the positive root. The latter obeys the
following inequality:5

b+
√
b2 + 4ac′

2a
≤ b+ b+ 2

√
ac′

2a
=
b+
√
ac′

a
=

1

a
b+

1√
a

√
c′.

Since both 1/a and 1/
√
a are smaller than 3, it is sufficient to require

k ≥ 3
(
b+

√
c+ log(1/δ)

)
.

Assuming δ ≤ 1, we can use the inequality in the footnote again and find that it is sufficient to have

k ≥ 3
(
b+

√
log(1/δ) +

√
c
)
.

Plugging in the definitions of b and c, we find the sufficient condition (with δ ≤ 1):

k ≥ 3

[
log(n) +

√
log(1/δ) +

√
rank(A) · log

(
1 +

6κ
√
c0n

σW

)]
.

Since rank(A) ≤ m, we obtain the desired sufficient bound on k.

D Proof of Lemma 3.2

The Riemannian gradient and Hessian of the objective function g of (P) are respectively given by
equations (8) and (9). Since Y is an (εg, εH)-SOSP, it holds for all Ẏ ∈ TYM (3) with ‖Ẏ ‖ = 1
that:

− εH ≤
1

2

〈
Ẏ ,Hess g(Y )[Ẏ ]

〉
= 〈Ẏ , SẎ 〉. (25)

Our goal is to show that S is almost positive semidefinite. To this end, we first construct specific Ẏ ’s
to exploit the fact that Y is almost rank deficient. Let z ∈ Kk be a right singular vector of Y such that
‖Y z‖ = σk(Y ) and ‖z‖ = 1. For any x ∈ Kn with ‖x‖ = 1, we introduce U = xz∗. Decompose U

5We use that, for any u, v ≥ 0,
√
u+ v ≤

√√
u
2

+
√
v
2

+ 2
√
u
√
v =
√
u+
√
v.
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in two components: U = UT + UT⊥ , with UT the component of U in the tangent space TYM and
UT⊥ the orthogonal component in NYM. Given that ‖z‖ = 1, using (25) with Ẏ = UT , we have:

〈x, Sx〉 = 〈U, SU〉 = 〈UT , SUT 〉+ 2 〈UT⊥ , SUT 〉+ 〈UT⊥ , SUT⊥〉
≥ −εH‖UT ‖2 + 2 〈UT⊥ , SUT 〉+ 〈UT⊥ , SUT⊥〉
≥ −εH + 2 〈UT⊥ , SUT 〉+ 〈UT⊥ , SUT⊥〉
= −εH + 2 〈UT⊥ , SU〉 − 〈UT⊥ , SUT⊥〉 , (26)

where we also used ‖UT ‖2 ≤ ‖U‖2 = 1. We know by Lemma 2.2 that UT can be written as:

UT = ProjY U = xz∗ −A∗
(
G†A (xz∗Y ∗)

)
Y. (27)

Therefore, the component along the normal space, UT⊥ , is:

UT⊥ = A∗
(
G†A (xz∗Y ∗)

)
Y. (28)

Using (28), we can derive an upper bound on 〈UT⊥ , SUT⊥〉. Indeed, by Cauchy–Schwarz we obtain:

〈UT⊥ , SUT⊥〉 ≤ ‖UT⊥‖2‖S‖op.
From the expression for S in (7) and the definitions of R (10) and K (11), the two factors are easily
bounded since ‖xz∗Y ∗‖ = ‖Y z‖ = σk(Y ):

‖UT⊥‖ ≤ ‖A∗ ◦G† ◦ A‖op‖xz∗Y ∗‖‖Y ‖ ≤ K
√
R · σk(Y ),

and

‖S‖op ≤ ‖C‖op + ‖A∗(G†A(CY Y ∗))‖op
≤ ‖C‖op + ‖A∗ ◦G† ◦ A‖op‖CY Y ∗‖ ≤ (1 +KR)‖C‖op.

Combining, we find the bound

〈UT⊥ , SUT⊥〉 ≤ K2R(1 +KR)‖C‖op · σk(Y )2. (29)

Through a similar reasoning, we can handle the remaining term in (26). The important step is to
make sure σk(Y ) appears quadratically:

〈UT⊥ , SU〉 =
〈
A∗
(
G†A (xz∗Y ∗)

)
Y, Sxz∗

〉
=
〈
(A∗ ◦G† ◦ A)(xz∗Y ∗), Sxz∗Y ∗

〉
≥ −‖A∗ ◦G† ◦ A‖op‖S‖op‖xz∗Y ∗‖2

≥ −K(1 +KR)‖C‖op · σk(Y )2. (30)

Finally, combining (29) and (30) with (26) yields:

〈x, Sx〉 ≥ −εH − 2K(1 +KR)‖C‖op · σk(Y )2 −K2R(1 +KR)‖C‖op · σk(Y )2

= −εH −K(2 +KR)(1 +KR)‖C‖op · σk(Y )2

≥ −εH −K(2 +KR)2‖C‖op · σk(Y )2

= −εH − ζ‖C‖op · σk(Y )2,

where ζ is as defined in the lemma statement. This holds for any unit vector x, hence the proof is
complete.

E Proof of Theorem 3.1

We now build on Lemmas 3.1 and 3.2 to prove Theorem 3.1. The first part of the argument is
fully deterministic: it relates the minimal eigenvalue of S to the optimality gap of the optimization
problem.

Let Y be an (εg, εH)-SOSP of problem (P) with perturbed cost matrix C̃ = C +W . By Lemma 3.2
applied to the perturbed problem,

λmin(S) ≥ −εH − ζ‖C̃‖opσk(Y )2, (31)
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where ζ is as defined in that lemma, and S is as defined in (7) with cost matrix C̃ instead of C:

S(Y ) = C̃ −A∗(µ(Y )), and

µ(Y ) = G†A(C̃Y Y ∗).

Using the definition of C, for all X
′ ∈ C feasible for the problem (SDP),

λmin(S) · Tr(X ′) ≤ 〈S(Y ), X ′〉 = 〈C̃,X ′〉 − 〈A∗(µ(Y )), X ′〉 = 〈C̃,X ′〉 − 〈µ(Y ), b〉 .

In particular

〈µ(Y ), b〉 = 〈µ(Y ),A(Y Y ∗)〉 = 〈C̃ − S(Y ), Y Y ∗〉 = g(Y )− 〈S(Y )Y, Y 〉 .

Combining those equations, using grad g(Y ) = 2S(Y )Y and taking X ′ = X∗, we find

0 ≤ g(Y )− f? ≤ −λmin(S) · Tr(X∗) +
1

2
〈grad g(Y ), Y 〉

≤ −λmin(S) · Tr(X∗) +
εg
2
‖Y ‖.

Since C is compact, we use the definition of R in (10) to get that Tr(X∗) ≤ R and ‖Y ‖ ≤
√
R:

0 ≤ g(Y )− f? ≤ −λmin(S) ·R+
εg
2

√
R

≤
(
εH + ζ‖C̃‖opσk(Y )2

)
R+

εg
2

√
R, (32)

where we used (31) in the last step.

We can now turn to the probabilistic part of the proof. Using Lemma 3.1, we have with probability at
least 1− δ − e−n

2 that

‖W‖op ≤ 3σW
√
n, and

σk(Y ) ≤ εg
σW

√
c0n

k
,

and, by assumption,

k ≥ 3

[
log(n) +

√
log(1/δ) +

√
m · log

(
1 +

6κ
√
c0n

σW

)]
≥ 3

√
m · log

(
1 +

6κ
√
c0n

σW

)
.

In that event, combining, it follows that

‖C̃‖op ≤ ‖C‖op + 3σW
√
n, and

σk(Y )2 ≤ ε2g
c0n

9mσ2
W log

(
1 +

6κ
√
c0n

σW

) .
Combining with the deterministic result (32), we find that the optimality gap is bounded as

0 ≤ g(Y )− f? ≤
(
εH + ε2gη

)
R+

εg
2

√
R,

where η is as defined in (15). This concludes the proof.

F Proof of Corollary 3.1

Consider the two following functions:

f(C) = min
X∈C
〈C,X〉 , h(C) = max

X∈C
〈C,X〉 .

By assumption on X ,

〈C,X〉 − 〈−W,X〉 = 〈(C +W ), X〉 ≤ f(C +W ) + εf .
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We can rearrange and get:

〈C,X〉 ≤ f(C +W ) + εf + 〈−W,X〉 ≤ f(C +W ) + εf + h(−W ).

Moreover,

f(C +W ) = min
X∈C

(〈C,X〉+ 〈W,X〉) ≤ f(C) + h(W ).

Overall, we get a bound on the optimality gap, using that f(C) = f?:

〈C,X〉 − f? ≤ εf + h(W ) + h(−W ).

To conclude, observe that

h(W ) = max
X∈C
〈W,X〉 ≤ ‖W‖op max

X∈C
Tr(X) ≤ ‖W‖opR,

where we used that Tr(X) ≤ R for all X ∈ C. The same bound applies to h(−W ).
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