
A Supplemental Details

A.1 Model details

Encoder and decoder For the encoder we use a simple convolutional network with the following structure:
conv 64 ! conv 64 ! conv 128! conv 128! fc 256, where conv n_filters is a 4⇥4 convolution
with n_filters output filters, ReLU activations and stride 2, and similarly fc n_out is a fully connected layer
with n_out units. The output of the fully connected layer is given to a linear layer that outputs the mean µenc(x)
and log-variance log�2

enc(x) of the encoder posterior q�(z|x) ⇠ N(µenc(x),�
2
enc(x)). The decoder network

receives a sample z⇠ q�(z|x) from the encoder and outputs the parameters of a distribution p✓(x|z,s) over x.
We use the transpose of the encoder network, but we also feed it the environment index s by first encoding it with
a one-hot encoding (of size max_environments, which is a hyperparameter), and then concatenating it to z. For
most of the experiments, we use a product of independent Bernoulli distributions (parametrised by the mean) for
the decoder distribution p✓(x|z,s). In the DM Lab experiments we use instead a product of Gaussian distributions
with fixed variance. We train the model using Adam [25] with a fixed learning rate 6e-4 and batch size 64.

Environment inference network We attach an additional fully connected layer to the last layer of the
encoder (gradients to the encoder are stopped). Given an input image x, the layer outputs a softmax distribution
q (s|x) over max_environments indices, which tries to infer the most likely index s of the environment from
which the data is coming, assuming the environment was already seen in the past. Notice that we always know
the (putative) index of the current data (ŝ in Equation (6), also see Appendix A.2), so that we can always train
this layer to associate the current data to the current index. However, to avoid catastrophic forgetting we also
need to train on hallucinated data from past environments. Assuming ŝ is the current environment and m is the
total number of environments seen until now, the resulting loss function is given by:

Lenv = Ex[�log(q (ŝ|x))]| {z }
Classification loss on current data

+Eŝ 6=s<mEx0⇠p✓0 (x
0|z0,s)[�logq (s|x0)]

| {z }
Classification loss on hallucinated data

,

where the hallucinated data x0 in the second part of the equation is generated according to Section 3.5, and the
expectation over s is similarly done through Monte Carlo sampling.

A.2 Extra algorithm implementation details

Atypical latent components The atypicality ↵n of the component zn on a batch of samples x1, ... ,xB

is computed using a KL divergence from the marginal posterior over the batch to the prior according to
Equation (4). In practice it is not convenient to compute this KL divergence directly. Rather, we observe that
the marginal distribution of the latent samples 1

B

PB
b=1q�(zn|xb) is approximately Gaussian. We exploit this

by fitting a Gaussian to the latent samples z and then computing in closed-form the KL-divergence between this
approximation of the marginal and the unit Gaussian prior p(z)=N (0,1).

Recall from Section 3.3 that we deem a latent component zn to be active (an =1) whenever it is typical, that
is, if ↵n <�. However, since the atypicality is computed on a relatively small batch of B samples, ↵i may be
a noisy estimate of atypicality. Hence we introduce the following filtering: we set ↵n=1 if ↵n>�1 and ↵n=0
if ↵n<�0, with �0<�1. If �0<↵n<�1, we leave ↵n unchanged.

Used latent components We say that a factor zn is not used by the environment s if the reconstruction
p✓(x|z,s) does not depend on zn. To measure this, we find the maximum amount of noise we can add to zn
without changing the reconstruction performance of the network. That is, we optimise

⌃= argmin
⌃=diag(�1,...,�N)

E✏⇠N (0,�)[�logp✓(x|z✏,s)]�log|⌃|

where z✏n=(1��nm)zn+�nm(zn+✏). If �0
n>T for some threshold T , we say that zn is unused. We generally

observe that components are either completely unused �n = 0, or else �n is very large. Therefore, picking a
threshold is very easy and the precise value does not matter. We only compare the atypicality masks in eq. (6)
for the used latents.

Environment index Expanding on the explanation in Section 3.4, let Ls(x)=Ez⇠q�(z|x)[�logp✓(x|zs,s)]
be the reconstruction loss on a batch x of data, assuming it comes from the environment s. Let L̃s be the average
reconstruction loss observed in the past for data from environment s. Let m be the number of datasets observed
until now. Let us be a binary vector of used units computed with the method described before.

We run the auxiliary environment inference network (Appendix A.1) on each sample from the batch x and take the
average of all results in order to obtain a probability distribution q(s|x) over the possible environment s of the batch
x, assuming it has already been seen in the past. Let ŝ=argmaxsq(s|x) be the most likely environment, which is
our candidate for the new environment. If the reconstruction lossLŝ(x) (assuming s= ŝ) is significantly larger (see

12

DISENTANGLED ENTANGLED
EXPERIMENT � CMAX �C �  ⌧ �  ⌧
ABLATION STUDY (150K) 100.0 35.0 6.3e-6 0.6 1.5 500
FIVE DATASETS (150K) 100.0 35.0 6.3e-6 0.6 1.5 5000
CELEBA ! INVERTED FASHION (30K) 200.0 20.0 1.7e-5 0.8 1.1 500
NATLAB ! EDE (60K) 200.0 25.0 1e-5 2.0 1.1 5000 20.0 1.1 5000
IMAGINATION-DRIVEN EXPLORATION (45K) 200.0 35.0 0.7e-5 0.7 1.5 500

Table 2: Hyperparameter values used for the experiments reported in this paper. Values in brackets after the
experiment name indicate the number of training steps used per dataset.

Algorithm 1) than the average loss for the environment ŝ, we decide that the data is unlikely to come from this en-
vironment, and hence we allocate a new one. If the reconstruction is good, but some of the used components (given
by u) are atypical, we still allocate a new environment. Otherwise, we assume that the data indeed comes from ŝ.

Algorithm 1 Infer the environment index s from a batch of data

ŝ argmaxsEz⇠q�(z|x)[�logp✓(x|zs,s)]
if Lŝ>L̃ŝ then

s m+1
else if aŝ�us 6=a(x)�uŝ then

s m+1
else

s ŝ

A.3 Hyperparameter sensitivity

Table 2 lists the values of the hyperparameters used in the different experiments reported in this paper.

For all experiments we use max_environments = 7, and we increase C in eq. (3) linearly by �C ·Cmax per step
(starting from 0) until it reaches Cmax, at which point we keep C fixed at that value. In the loss function eq. (8),
the dreaming loss was re-weighted, with the full loss being:

L(�,✓)=Ezs⇠q�(·|xs))[�logp✓(x|zs,s)] + �|KL(q�(zs|xs)||p(z))�C|2
| {z }

MDL on current data

+

+Ez,s0,x0

h
↵D[q�(z|x0), q�0(z0|x0)]+�D[q✓(x|z,s0), q✓0(x0|z,s0)]

i
.

| {z }
“Dreaming” feedback on past data

(9)

The values ↵=1000 and �=20 were used for all experiments, except for in the hyperparameter sweep.

For the ablation study we ran a hyperparameter search using the full model, and used the best hyperparameters
found for all experiments. We list the search ranges and our observed sensitivity to these hyperparameters next:

• � = coefficient for the capacity constraint – {50,100,200} – found not to be very sensitive.

• Cmax = final value of C – {20,35,50} – classification accuracy increased significantly for capacity from
20 to 35.

• � = atypicality threshold – {0.4,0.6,1,2} – lower threshold led to more latent freezing. Classification
performance was not very sensitive to this.

• ⌧ = update frequency reference network – {500,1000,2000,5000} – found not to be very sensitive.

• ↵ = weight for encoder loss in "dreaming" loop – {10,20,40} – found not to be very sensitive.

• � = weight for decoder loss in "dreaming" loop – {500,1000,2000} – found not to be very sensitive.

A.4 Imagination-based exploration experiments

Once we learn the concept of moving objects in one environment, it is reasonable to imagine that a novel object
encountered in a different environment can also be moved. Given the ability to act, we may try to move the
object to realise our hypothesis. We can use such imagination-driven exploration to augment our experiences
in an environment to learn a richer representation. Notice however, that such imagination requires a compositional
representation that allows for novel yet sensible recombinations of previously learnt semantic factors. We now

13

investigate whether VASE can use such imagination-driven exploration to learn better representations using a
sequence of three datasets: moving Fashion ! MNIST ! moving MNIST.

We model a very simple interaction with the environment where the agent can translate the observed object (in
our case the input image). The agent is trained as follows: a random z⇤ is sampled from the prior p(z). Given an
observation x from the environment, the agent needs to pick an action g(z⇤,x) (in our case a translation) in such a
way that the encodingz⇠q�(z|g ·x)of the new imageg ·x is as close as possible toz⇤. That is, we minimise the loss

Lagent =Ex⇠p(x)Ez⇤⇠p(z)Ez⇠q(z|g(z⇤,x)·x)kz⇤�zk2.
The agent can then be used to “explore” the current environment. Given an image x from the current environment,
and a random configuration z⇤ sampled from the prior p(z), and we let the agent act on the environment in order
to realise the imagined configuration. The result of this action is a new image x⇤ = g(z,x) ·x. The image x⇤

is then added to the training data, so that the encoder will learn from a more diversified set of inputs than the
images x⇠p(x) observed passively.

We apply this method to the sequence moving Fashion ! MNIST ! moving MNIST. During the first stage
(moving Fashion), VASE learns the concepts of position and the shape of Fashion sprites. It also learns how to
move the sprites to reach a hallucinated state z⇤, thus acquiring the ability to manipulate the environment in order
to improve exploration. Later, when presented with fixed MNIST digits, VASE implements an imagination-based
augmentation of the input data by moving MNIST digits to different positions using the learnt policy. In other
words, VASE can imagine the existence of moving MNIST, and act on the environment to realise this configuration,
before actually experiencing the moving MNIST dataset. Indeed, fig. 5C shows that when we train a moving
MNIST classifier during the static MNIST training stage, the classifier is able to achieve good accuracy in the
imagination-driven exploration condition, highlighting the benefits of imagination-driven data augmentation.

Details of the policy network The policy network first processes the input image x (of size 64⇥64) though
four convolutional 4⇥4 layers with 16 filters, stride 2 and ReLU activations. The resulting vector is concatenated
with the target z⇤, and fed to a 1-hidden layer fully connected network that outputs the parameters of the 2D
translation g(x,z⇤) which needs to be applied to the image. We use a tanh output to ensure the translation is
always in a sensible range. Once these parameters are obtained, the transformation is applied to the image x using
a Spatial Transformer Network (STN) [23], thus obtaining a translated image x⇤=g(z⇤,x)·x. We can now finally
compute the resulting representation z⇠ q(z|g(z⇤,x)·x). We compare this with the target configuration z⇤ to
obtain the loss Lagent for the policy, which tries to minimise the distance between z and the target z⇤. Notice that
the whole operation is fully differentiable, thanks to the properties of the STN, so the policy loss can be minimised
by stochastic gradient descent. In our experiments, the policy is trained in parallel with the main model.

A.5 Dataset processing

DM Lab We used an IMPALA agent trained on all DM-30 tasks [11] to generate data. We take
observations of this optimal agent (collecting rewards according to the task descriptions explained in
https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30),
on randomly generated episodes of Exploit Deferred Effects and NatLab Varying Map Randomized; storing them
as 111⇥84⇥3 RGB tensors. We crop the right-most 27 pixels out to obtain a 84⇥84 image (this retains the most
useful portion of the original view), which are finally scaled down to 64⇥64 (using tf.image.resize_area).

CelebA! Inverse Fashion To make CelebA compatible with Fashion, we convert the CelebA images to
grayscale and extract a patch of size 32⇥32 centered on the face. We also invert the colours of Fashion so that
the images are black on a white background, and slightly reducing the contrast, in order to make the two datasets
more similar, and hence easier to confuse after mixing.

A.6 Quantifying catastrophic forgetting

We train on top of the representation z⇠ q�(z|x) a simple 2-hidden layers fully connected classifier with 256
hidden units per layer and ReLU activations. At each step while training the representation, we also train a
separate classifier on the representation for each environment, using Adam with learning rate 6e-4 and batch
size 64. This classifier training step does not update the weights in the main network.

For each ablation type we reported the average classification accuracy (or regression MSE) score obtained by
20 replicas of the model, all with the best set of hyperparameters discovered for the full model. We quantified
catastrophic forgetting by reporting the average difference between the maximum accuracy obtained while VASE
was training on a particular dataset and the minimum accuracy obtained for the dataset afterwards.

A.7 Additional results

We present additional experimental results and extra plots for the experiments reported in the main paper here.
Fig. 6 and table 3 show latent traversals and quantitative evaluation results for an ablation study on VASE trained

14

https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/dmlab30

DISENTANGLED ENTANGLED
CONFIGURATION AVG. DECREASE (%) AVG. MAX (%) AVG. DECREASE (%) AVG. MAX (%)
DA -7.9 90.5 -12.1 90.9
SD -2.2 91.0 -4.3 92.1
S -3.9 90.8 -8.4 91.5
A -9.6 90.2 -10.1 91.7
SA -5.9 90.0 -10.3 91.0
- -4.4 91.1 -6.6 92.6
D -6.0 90.5 -6.9 91.4
VASE (SDA) -0.9 90.3 -2.5 91.2

Table 3: Average drop in classification accuracy and maximum average accuracy when training an object classifier
on top of the learnt representation on the MNIST ! Fashion ! MNIST sequence. We do a full ablation study of
VASE, where D - dreaming feedback loop, S - cluster inference q(s|xs), and A - atypicality based latent mask as

inference. We compare two versions of our model - one that is encouraged to learn a disentangled representation
through the capacity increase regularisation in eq. (3), and an entangled VAE baseline (�=1). The unablated
disentangled version of VASE (SDA) has the best performance.

MNIST Traversals
MNIST

-2 2 -2 2Latent value Latent value

La
te

nt
s (

or
de

re
d)

Ad
de

d
U

nu
se

d

Fr
oz

en
Ad

de
d

Re
us

ed

Fashion MNIST EDENatLab

La
te

nt
s (

or
de

re
d)

Ad
de

d
U

nu
se

d

DM Lab Traversals

U
nu

se
d

Re
us

ed

Figure 6: Latent traversals for VASE trained on MNIST ! Fashion ! MNIST, and DM Lab levels NatLab !
EDE.

on the MNIST ! Fashion ! MNIST sequence. Fig. 6 also shows traversals for VASE trained on the DM Lab
levels NatLab ! EDE. This is the model reported in section 4. Fig. 7 shows cross-dataset reconstructions for
VASE trained on the moving Fashion ! MNIST ! moving MNIST sequence described in the ablation study
in section 4. Figs. 8-9 shows latent traversals and cross-dataset reconstructions for VASE trained on the moving
MNIST ! Fashion ! inverted Fashion ! MNIST ! moving Fashion sequence described in the main text.

15

Moving Fashion/Moving MNIST
 Cross-Domain Reconstructions

O
rig

Fa
sh

io
n

M
N

IS
T

Re
co

ns
tr

uc
tio

ns
 a

s
O

rig
Re

co
ns

tr
uc

tio
ns

 a
s

Disentangled Entangled

Fa
sh

io
n

M
N

IS
T

Figure 7: Cross-domain reconstructions for the entangled and disentangled versions of VASE (as described in
section 4) trained on moving Fashion ! MNIST ! moving MNIST. We see that the entangled baseline forgets
moving Fashion by the end of training.

Latent Traversals
MNISTFashion MNIST Inverted Fashion MNIST Moving Fashion MNISTMoving MNIST

La
te

nt
s (

or
de

re
d)

Ad
de

d
U

nu
se

d

U
nu

se
d

U
nu

se
d

Ad
de

d

Ad
de

d

Ad
de

d

Re
us

ed

Re
us

ed

Re
us

ed

Re
us

ed
Re

us
ed

Re
us

ed

Fr
oz

en

Fr
oz

en

Fr
oz

en

Fr
oz

en
Fr

oz
en

Figure 8: Latent traversals for VASE trained on a sequence of moving MNIST ! Fashion ! inverse Fashion !
MNIST ! moving Fashion.

16

(1) Moving MNIST

O
rig

(1
)

Re
co

ns
tr

uc
tio

ns
 a

s
(2

)
(3

)
(4

)
(5

)

(2) Fashion MNIST

O
rig

(1
)

Re
co

ns
tr

uc
tio

ns
 a

s
(2

)
(3

)
(4

)
(5

)

(3) Inverted Fashion MNIST

O
rig

(1
)

Re
co

ns
tr

uc
tio

ns
 a

s
(2

)
(3

)
(4

)
(5

)

(4) MNIST

O
rig

(1
)

Re
co

ns
tr

uc
tio

ns
 a

s
(2

)
(3

)
(4

)
(5

)

(5) Moving Fashion MNIST

O
rig

(1
)

Re
co

ns
tr

uc
tio

ns
 a

s
(2

)
(3

)
(4

)
(5

)

Cross-Domain Reconstructions

Figure 9: Cross-domain reconstructions for the VASE trained on moving MNIST ! Fashion ! inverted Fashion
! MNIST ! moving Fashion.

17

