
A Conversion to Tree-Structured Search Spaces

We define a search space as an arbitrary finite directed graph G = (V,E), where V is the set of nodes
and E ⊂ V × V is the set of directed edges. Every directed graph G = (V,E) has associated a
tree-structured directed graph Gp = (Vp, Ep) encoding all possible paths through G. An important
reason to do this transformation is that, in practice, policies often incorporate history features, so they
are functions of the whole path leading to a node in G, rather than just a single node in G. A policy
becomes a function of single nodes of Gp. If G is tree-structured, Gp is isomorphic to G, i.e., they
are the same search space.

The set of terminal nodes Tp contains all paths from the initial node v(0) ∈ V to terminal nodes
v ∈ T . For v ∈ Vp, we denote the length of the sequence encoding a path by |v|. The length of a
path v ∈ Vp is |v| − 1. We write vi for the i-th element of a path v ∈ Vp. For all v ∈ V , vi ∈ V for
all i ∈ [|v|] and v1 = v(0). The sets Np,v, Rp,v, Tp,v for v ∈ Vp are defined analogously to the sets
Nv, Rv, Tv for v ∈ V . For a path v ∈ Vp, v′ ∈ Np,v if v′1:|v| = v, |v| = |v′| − 1, and v′|v′| ∈ Nv′|v| ,
i.e., a path v′ ∈ Vp neighbors v ∈ Vp if it can be written as v followed by an additional node in Nv|v| .
For v ∈ Vp, v′ ∈ Rp,v if v is a prefix of v′ and v′ ∈ Tp,v if v is a prefix of v′ and v′|v′| ∈ T . As Gp is
tree-structured, we can define the depth dv of a path v ∈ Vp as its length, i.e., dv = |v| − 1. If path
v ∈ Vp, then prefix v1:i ∈ Vp, for all i ∈ [|v|], i.e., path prefixes are themselves paths.

Tree-structured search spaces are common in practice. They often occur in write-only search spaces,
where once an action is taken, its effects are irreversible. Typical search spaces for sequence tagging
and machine translation are tree-structured: given a sequence to tag or translate, at each step we
commit to a token and never get to change it. When the search space G is not naturally seen as being
tree-structured, the construction described makes it natural to work with an equivalent tree-structured
search space of paths Gp.

If G has cycles, Gp would be infinite. Infinite cycling in Gp can be prevented by, for example,
introducing a maximum path length or a maximum number of times that any given node v ∈ V can
be visited. In this paper, we also assumed that all nodes in Tp have distance h to the root. It is possible
to transform Gp into a new tree-structured graph G′p by padding shorter paths to length h. Let h be
the maximum distance of any terminal in Tp to the root. For each terminal node v ∈ Tp with distance
dv < h to the root, we extend the path to v by appending a linear chain of h− dv additional nodes.
Node v is no longer a terminal node in G′p, and all the nodes in G′p that resulted from extending the
path are identified with v.

B Convex Upper Bound Surrogate for Expected Beam Transition Cost

In this appendix, we design a convex upper bound surrogate loss `(·, b) : Θ→ R for the expected
beam transition cost Eb′∼π(b,·)c(b, b

′) : Θ → R. Let Ab = {v1, . . . , vn} be an arbitrary ordering
of the neighbors of b, with corresponding costs c1, . . . , cn, with ci = c∗(vi) for all i ∈ [n]. Let
s1, . . . , sn be the corresponding scores, with si = s(vi, θ) for all i ∈ [n]. Let σ∗ : [n] → [n] and
σ̂ : [n]→ [n] be the unique permutations such that cσ∗(1) ≤ . . . ≤ cσ∗(n) and sσ̂(1) ≥ . . . ≥ sσ̂(n),
respectively, with ties broken according to the total order on V . We have c∗(b) = cσ∗(1). Let
k ∈ N be the maximum beam capacity. Let b′ be the beam induced by the scores s1, . . . , sn, i.e.,
b′ = {vσ̂(1), . . . , vσ̂(k′)}, with k′ = min(k, n) and ties broken according to the total order.

Consider the upper bound loss function (repeated here from Equation (10))

`(s, c) = max (0, δk+1, . . . , δn) , (14)

where δj = (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1) for j ∈ {k + 1, . . . , n}.

This loss function is lower bounded by zero, so we only need to show that it upper bounds c(b, b′)
when there is a cost increase, i.e., when c(b, b′) > 0. A cost increase c(b, b′) > 0 implies that the
best element vσ∗(1) fell off the beam, meaning that b′ = {vσ̂(1), . . . , vσ̂(k)} 6= {vσ∗(1), . . . , vσ∗(k)},
and therefore b′ ∩ {vσ∗(k+1), . . . , vσ∗(n)} 6= ∅. Let vσ∗(j) ∈ b′ ∩ {vσ∗(k+1), . . . , vσ∗(n)}, then

11

sσ∗(j) ≥ sσ∗(1) and c(b, b′) ≤ cσ∗(j) − cσ∗(1), with j ∈ {k + 1, . . . , n}. We have

max (0, δk+1, . . . , δn) ≥ δj
= (cσ∗(j) − cσ∗(1))(sσ∗(j) − sσ∗(1) + 1)

≥ cσ∗(j) − cσ∗(1)

≥ c(b, b′),
proving the upper bound property of the loss in Equation (14).

This loss is the maximum of a finite number of affine functions of the scores, and therefore convex
with respect to the score vector s ∈ Rn. The resulting optimization problem is convex with respect to
the parameters of the scoring function if, for example, the scoring function is linear with respect to
the parameters θ ∈ Θ, i.e., s(v, θ) = θTφ(v, x), where φ : V ×X → Rp is a fixed feature function
of the state. If Ab has no more than k elements, this surrogate loss is identically zero, i.e., for k ≥ n,
`(s, c) = 0, for all s ∈ Rn and c ∈ Rn. If k = 1, we recover a greedy decoding algorithm and the
loss in Equation (14) becomes a weighted hinge loss.

C Convexity Considerations for Surrogate Loss Functions

It is common in the literature to update the parameters only when a cost increase occurs [10, 8, 9].
We show that the resulting loss surrogate functions are, in general, non-convex in the scores.

The following loss is an upper bound on the beam transition loss c : Ek → R, but is non-convex in
the scores:

`(s, c) = (cσ̂(k) − cσ∗(1)) max(0, sσ̂(k) − sσ∗(1) + 1). (15)

The upper bound property for this loss is easy to verify: if s ∈ Rn at b ∈ Vk induces b′ ∈ Vk with
c(b, b′) > 0, then sσ̂(k) ≥ sσ∗(1) and cσ̂(k) > cσ∗(1), leading to

(cσ̂(k) − cσ∗(1)) max(0, sσ̂(k) − sσ∗(1) + 1) ≥ cσ̂(k) − cσ∗(1)

≥ c(b, b′),
as vσ̂(k) ∈ b′. This loss is used in [11]. The same reasoning holds when substituting k in Equation (15)
by any i ∈ [k].

We now show that two aspects commonly present in the beam-aware literature lead to non-convexity
of the surrogate losses. The first aspect is updating the parameters only when there is a cost increase.
This amounts to defining a new loss function `′ : Rn × Rn → R from ` : Rn × Rn → R of the form

`′(s, c) = `(s, c)1[c(b, b′) > 0],

where b′ is induced by s ∈ Rn. The second aspect that leads to non-convexity is indexing the
score vector s ∈ Rn or cost vector c ∈ Rn with a function of the parameters, e.g., permutation
σ̂ : [n] → [n] depends on the scores s ∈ Rn and therefore, on the parameters θ ∈ Θ. We show
non-convexity with respect to the scores through two simple counter examples.

For the first aspect, let k = 2 and n = 3, with v1, v2, v3 having costs c1 = 0, c2 = 1, c3 = 1.
Any beam that keeps v1 has no cost increase. Consider the scores s1 = 1, s2 = 10, s3 = 0
and s′1 = 1, s′2 = 0, s′3 = 10. Both s and s′ lead to no cost increase, as both score vectors
keep v1 in the beam. For `′ : Rn × Rn → R to be convex in the scores, we must have `′(αs +
(1 − α)s′, c) ≤ α`′(s, c) + (1 − α)`′(s′, c), for all α ∈ [0, 1]. As both s and s′ lead to no cost
increase, we have `′(s, c) = `′(s′, c) = 0, yielding the following necessary condition for convexity:
`(αs + (1 − α)s′, c) ≤ 0 for all α ∈ [0, 1]. For α = 0.5, we have s1 = 1, s2 = 5, s3 = 5, which
leads to a cost increase, and therefore to loss `′(s, c) > 0, implying that `′ : Rn × Rn → R is
non-convex in the scores.

For the second aspect, consider the loss in Equation (15). Ignore the multiplicative term involving the
costs and consider only the hinge part max(0, sσ̂(k) − sσ∗(k) + 1). Let k = 2 and n = 3. Consider
that the elements v1, v2, v3 are sorted in increasing order of cost; let s1 = 2, s2 = 1, s3 = 0, and
s′1 = 2, s′2 = 4, s′3 = 0. In both cases, the hinge part of loss in Equation (15) is zero, but if we take
a convex combination of the scores with α = 0.5, we get s1 = 2, s2 = 2.5, s3 = 0, for which the
surrogate loss is nonzero (assuming that the costs of v1, v2, v3 are unique).

12

D Additional Loss Functions

We present additional loss functions that were omitted in Section 4.1 and discuss their connections to
previous work.

cost sensitive margin (beam) Prefers the lowest cost element to be scored higher than best runner-
up in the beam by a cost-weighted margin. With unbounded beam capacity, we recover the structured
max-margin loss of [24] for M3Ns.

`(s, c) = −sσ∗(1) + max
i∈{1,...,k}

(
cσ̂(i) + sσ̂(i)

)
(16)

softmax margin (beam) Log loss that can be understood as smoothing the max in cost sensitive
margin (beam). With unbounded beam capacity, we recover the softmax-margin loss of [25] for
CRFs.

`(s, c) = −sσ∗(1) + log

(
k∑
i=1

exp
(
cσ̂(i) + sσ̂(i)

))
(17)

weighted pairs (all) Reduces the problem of producing the correct ranking over the neighbors to
n(n− 1)/2 weighted binary classification problems. Hinge terms for pairs with the same cost cancel,
effectively expressing that we are indifferent to the relative order of the elements of the pair.

`(s, c) =

n∑
i=1

n∑
j=i+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(18)

weighted pairs (bipartite) Only weighted pairs between elements than ought to be included in the
beam and those that ought to excluded from the beam. A similar loss has been proposed for bipartite
ranking, where the goal is to order all positive examples before all negative examples

`(s, c) =

k∑
i=1

n∑
j=k+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(19)

weighted pairs (hybrid) Similar to weighted pairs bipartite but we also include the pairs for the
elements that ought to be included in the beam

`(s, c) =

k∑
i=1

n∑
j=i+1

(
cσ∗(j) − cσ∗(i)

)
max

(
0, sσ∗(j) − sσ∗(1) + 1

)
(20)

The weighted pairs (all) loss provides many different variants as exemplified by weighted pairs
(bipartite) and weighted pairs (hybrid). We believe that exploring the ranking literature can lead to
interesting insights on what losses to use for learning beam search policies in our framework.

E No-Regret Guarantees

This section presents analysis that leads to proofs of theorems 1, 2, 3, and 4. We analyze

c(θ) = E(x,y)∼DEŷ∼π(·,θ)cx,y(ŷ).

The prediction cost cx,y(ŷ) is generated by sampling a beam trajectory b1:h with policy π(·, θ). The
prediction ŷ is extracted from bh. We have

c(θ) = E(x,y)∼DEb1:h∼π(·,θ)

(
c∗(b1) +

h−1∑
i=1

c(bi, bi+1)

)
.

As b1 depends only on x ∈ X , c∗(b1) does not depend on the parameters θ and therefore can be
ignored for optimization purposes. We analyze instead the surrogate

`(θ, θ′) = E(x,y)∼DEb1:h∼π(·,θ′)

(
h−1∑
i=1

`(θ, bi)

)
, (21)

13

where `(·, b) : Θ → R is a surrogate for Eb′∼π(b,·)c(b, b
′) : Θ → R. See Section 4.1 for extended

discussion on the motivation behind surrogate loss `(·, b). It is convenient to assume that the policy
π(·, θ′) : Vk → ∆(Vk) used to collect the beam trajectory b1:h can be different than the policy
π(·, θ) : Vk → ∆(Vk) used to evaluate the surrogate losses at the visited beams. The surrogate
loss function ` : Θ× Vk → R depends on the sampled example (x, y) ∈ X × Y , but we omit this
dependency for conciseness.

E.1 No-Regret Guarantees with Explicit Expectations

Here we present the proofs of Theorem 1 and Theorem 2. It is informative to consider the case
where we have access to both explicit expectations. In this case, the no-regret algorithm is run on the
sequence of losses `(θ1, θ1), . . . , `(θm, θm) yielding average regret

γm =
1

m

m∑
t=1

`(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

`(θ, θt).

As the sequence θ1, . . . , θm is generated by a no-regret algorithm, the average regret goes to zero as
m goes to infinity. This result tells us that the uniform mixture obtained by sampling uniformly at
random one of θ1, . . . , θm and acting according to it for the full trajectory, is competitive with the
best policy in Θ along the same induced trajectories. Note that

1

T

T∑
t=1

`(θt, θt)−min
θ∈Θ

1

T

T∑
t=1

`(θ, θt) = Et∼U(1,T)`(θt, θt)−min
θ∈Θ

Et∼U(1,T)`(θ, θt),

where U(1, T) denotes the uniform distribution over [T]. Performance guarantees are obtained from
the rearrangement

1

m

m∑
t=1

`(θt, θt) = εm + γm,

where

εm = min
θ∈Θ

1

m

m∑
t=1

`(θ, θt),

γm =
1

m

m∑
t=1

`(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

`(θ, θt).

Furthermore, if the surrogate loss `(·, b) : Θ→ R upper bounds the expected beam transition cost
Eb′∼π(b,·)c(b, b

′) : Θ→ R, i.e., `(θ, b) ≥ Eb′∼π(b,θ)c(b, b
′) for all b ∈ Vk and all θ ∈ Θ, we have

Eb1:h∼π(·,θ)

(
h−1∑
i=1

c(bi, bi+1)

)
≤ Eb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)
,

and consequently,

1

m

m∑
t=1

c(θt) ≤
1

m

m∑
t=1

`(θt, θt) + E(x,y)∼Dc
∗(b1),

i.e, we are able to use the expected surrogate loss incurred by the uniform mixture of θ1, . . . , θm
to upper bound the expected labeling cost resulting from labeling examples (x, y) ∼ D with the
uniform mixture of θ1, . . . , θm.

As the sequence θ1, . . . , θm is chosen by a no-regret algorithm, γm goes to zero as m goes to infinity.
The term εm is harder to characterize as m goes to infinity. We are guaranteed that the uniform
mixture of θ1, . . . , θm and, as result the best policy in θ1, . . . , θm, is competitive with the best policy
in hindsight θ∗m ∈ arg minθ∈Θ 1/m

∑m
t=1 `(θ, θt). For the performance guarantees to be interesting,

it is necessary for εm to remain small as m goes to infinity, i.e., there must exist a policy in Θ that
performs well on the distribution of trajectories induced by the uniform mixture of θ1, . . . , θm. We
think that this remark is often not adequately discussed in the literature. Nonetheless, for expressive
policy classes, e.g., neural networks, it is reasonable to assume the existence of such a policy.

14

E.2 Finite Sample Analysis

Next we provide a proof of Theorem 3. We typically do not have access to the explicit expectations
in Equation (21). What we do have access to is an estimator

ˆ̀(θ, θ′) =

h−1∑
i=1

`(θ, bi),

which is obtained by sampling an example (x, y) from the data generating distribution D, and
executing policy π(·, θ′) to collect a trajectory b1:h.

Our no-regret algorithm is then run on the sequence of sampled losses, yielding the sequence
θ1, . . . , θm and average regret

γ̂m =
1

m

m∑
t=1

ˆ̀(θt, θt)−min
θ∈Θ

1

m

m∑
t=1

ˆ̀(θ, θt).

We show that the true population loss of the uniform mixture of θ1, . . . , θm is, with high probability,
not much larger than the empirical loss observed on the sampled trajectories, i.e.,

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, θt) + η(δ,m)

)
≥ 1− δ, (22)

where δ ∈ (0, 1] is related to the probability of the statement, and η(δ,m) depends only on δ and m.
Given this result, we are able to give performance guarantees for the uniform mixture of θ1, . . . , θm
as

P

(
1

m

m∑
t=1

`(θt, θt) ≤ ε̂m + γ̂m + η(δ,m)

)
≥ 1− δ. (23)

Proof. Define a function on beam trajectories. Assume that we have 0 ≤ `(θ, b1:h) ≤ u, with u ∈ R,
for all (x, y) ∈ X ×Y and for all beam trajectories b1:h through Gk, i.e., b1 = b(0), bh ∈ Tk, bi ∈ Vk
for all i ∈ [n], and bi+1 ∈ Nbi for i ∈ [h− 1]. As a result, 0 ≤ `(θ, θ′) ≤ u and 0 ≤ ˆ̀(θ, θ′) ≤ u,
for all θ, θ′ ∈ Θ and all (x, y) ∈ X × Y . In our case,

`(θ, b1:h) =

h−1∑
i=1

`(θ, bi). (24)

Construct the martingale sequence

zt =

t∑
j=1

(
`(θj , θj)− ˆ̀(θj , θj)

)
, (25)

for t ∈ [m]. It is simple to verify that the sequence z1, . . . , zm is a martingale, i.e., that we have
Ezt|z1,...,zt−1

zt = zt−1 for all t ∈ [m]. Furthermore, we have |zt − zt−1| ≤ u for all t ∈ [m], where
z0 = 0. The high probability result is obtained by applying the Azuma-Hoeffding inequality to the
martingale sequence zt, for t ∈ N, which yields

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, θt) + u

√
2 log(1/δ)

m

)
≥ 1− δ. (26)

Revisiting Equation (23), for fixed δ ∈ (0, 1], as m goes to infinity, we have that both γ̂m and η(δ,m)
go to zero, proving high probability no-regret guarantees for this setting.

E.3 Finite Sample Analysis for Arbitrary Data Collection Policies

Finally, in this section, we provide a proof of Theorem 4. All the results stated so far are for the
continue data collection strategy where, at time t ∈ [m], the whole trajectory b1:h is collected using
the current policy π(·, θt). Stop and reset data collection strategies do not necessarily collect the

15

full trajectory under π(·, θt). If a transition (b, b′) ∼ π(·, θt) leads to a cost increase, then, the stop
data collection strategy stops collecting the trajectory at b′, and the reset data collection strategy, the
oracle policy π∗(·, c∗) is used to sample the transition at b instead.

In this section, we relate the expected loss of π(·, θ) on trajectories collected by a different policy π′
to the expected loss of π(·, θ) on its own trajectories. Consider the following auxiliary lemma:
Lemma 1. Let f : X → R be a function such that f(x) ∈ [a, a+ r], for a, r ∈ R and r ≥ 0 for all
x ∈ X , that can be either discrete or continuous. Let d, d′ be two probability distributions over X .
We have

|Ex∼df(x)− Ex∼d′f(x)| ≤ r/2||d− d′||1. (27)

Proof. We prove the result for the case where X is discrete, i.e., d and d′ are discrete probability
distributions. The result for discrete distributions is sufficient for our purposes. Let |X| = e, with
e ∈ N, then d, d′ ∈ Re. We have

|Ex∼df(x)− Ex∼d′f(x)| =

∣∣∣∣∣∑
x∈X

d(x)f(x)−
∑
x∈X

d′(x)f(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

d(x)(f(x)− c)−
∑
x∈X

d′(x)(f(x)− c)

∣∣∣∣∣
=
∣∣(d− d′)T (f − c)

∣∣
≤ ||f − c||∞||d− d′||1,

where c is an arbitrary constant in R and f ∈ Re is the vector representation of the function. In
the second equality, we use

∑
x∈X d(x) =

∑
x∈X d

′(x) = 1. In the third equality, we express the
expectations as inner products and slightly abuse notation by denoting the coordinate-wise subtraction
of c from f as f − c. In the final inequality, we use the generalized Cauchy–Schwarz inequality for
the pair of dual norms || · ||1 and || · ||∞. The desired result is obtained by choosing c = a+ r/2.

Often, π′ = (1−β)π(·, θ) +βπ∗(·, c∗) for β ∈ [0, 1], i.e., a probabilistic interpolation of the learned
policy and the oracle policy. We do a more general analysis that will be useful to provide regret
guarantees for the stop and reset data collection strategies. It is not necessarily the case that, for a
roll-in policy π′ : Vk → ∆(Vk), there exists θ′ ∈ Θ such that π′ = π(·, θ′). We modify the notation
in Equation (21) to capture this fact and write

`(θ, π′) = E(x,y)∼DEb1:h∼π′
(
h−1∑
i=1

`(θ, bi)

)
. (28)

The roll-in policies π′ : Vk → ∆(Vk) that we consider induce distributions over beam trajectories
in Gk that have a component where the beam trajectory up to h − 1 can be thought as coming
from π(·, θ). For a policy π′ that is somehow derived from the learned policy π(·, θ), we write
dπ′ = α(θ, x, y)dθ + (1− α(θ, x, y))q, where dπ′ is the distribution over trajectories induced by the
roll-in policy π′, dθ is the distribution over trajectories induced by the learned policy π(·, θ), q is the
residual distribution over trajectories of the component that is not captured by dθ, and α(θ, x, y) is
the probability that the trajectory up to bh−1 is drawn solely from π(·, θ). For example, for the policy
π′ = (1− β)π(·, θ) + βπ∗(·, c∗), we have α(θ, x, y) = (1− β)h−2, where α(θ, x, y) is independent
of θ in this case. In this example, π′, at each step of the trajectory of length h, flips a biased coin and
acts with probability 1− β according to π(·, θ) and with probability β according to π(·, c∗).

Relating expectations We use Lemma 1 to relate Eb1:h∼π(·,θ)

(∑h−1
i=1 `(θ, bi)

)
and

Eb1:h∼π′
(∑h−1

i=1 `(θ, bi)
)

. We have

||dπ′ − dθ||1 = ||α(θ, x, y)dθ + (1− α(θ, x, y))q − dθ||1
= (1− α(θ, x, y))||q − dθ||1
≤ 2(1− α(θ, x, y)),

16

where we used that ||d1 − d2||1 ≤ 2 for any two distributions d1, d2. Revisiting Equation (27), we
have

Eb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)
≤ Eb1:h∼π′

(
h−1∑
i=1

`(θ, bi)

)
+ u(1− α(θ, x, y)),

and as a result

`(θ, θ) = E(x,y)∼DEb1:h∼π(·,θ)

(
h−1∑
i=1

`(θ, bi)

)

≤ E(x,y)∼D

(
Eb1:h∼π′

(
h−1∑
i=1

`(θ, bi)

)
+ u(1− α(θ, x, y)

)
= `(θ, π′) + u(1− α(θ)), (29)

where we defined α(θ) = E(x,y)∼Dα(θ, x, y), i.e., the probability of sampling the beam trajectory up
to time h− 1 solely with π(·, θ), or equivalently, the probability of π(·, θ) incurring no cost increases
up to time h− 1.

Finite sample analysis with known schedules We now consider the finite sample analysis for the
setting considered in this section. By arguments similar to those in Appendix E.2, we have

P

(
1

m

m∑
t=1

`(θt, πt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m

)
≥ 1− δ,

which, combining with Equation (29) implies

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m
+ u

(
1− 1

m

m∑
t=1

α(θt)

))
≥ 1− δ,

(30)

Equation (30) can be simplified for roll-in policies πt = (1 − βt)π(·, θ) + βtπ
∗(·, c∗) with fixed

interpolation schedules βt, for t ∈ N. For example, for β1 = 1 for t ∈ [t0], for some t0 ∈ N, and
βt = 0 for t > t0, we have

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + u

√
2 log(1/δ)

m
+ umin

(
1,
t0
m

))
≥ 1− δ. (31)

Guarantees for the stop and reset data collection strategies The previous analysis allows us to
provide regret guarantees for the reset data collection strategy. Steps in the trajectory are sampled
using the learned policy π(·, θ) when they do not result in cost increase, and sampled from π∗(·, c∗)
otherwise, i.e., while sampling a trajectory b1, . . . , bi with π(·, θ), if a cost increase would occur on
the transition from bi to b′ ∼ π(bi, θ), then rather than transitioning to bi+1 = b′, we transition to
bi+1 ∼ π∗(bi, c

∗), and continue from bi+1 until a terminal beam bh ∈ Tk is reached. In this case,
α(θ, x, y) is interpreted as the probability that the trajectory b1:h−1 on the beam search Gk induced
by x is sampled using only π(·, θ), i.e., no cost increases occur up to time h− 1.

We can use this fact along with the previous results to obtain a regret statement for both the explicit
expectation and the finite sample cases. The main difficulty is that α(θ, x, y) and α(θ) are not known.
Again, the only way that we have access to them is through a sample estimate α̂(θ). We construct a
martingale for this case involving both the randomness of the loss function and the reset probability.

We can use this information along with Azuma-Hoeffding inequality to give a joint concentration
result. The martingale sequence that we now construct is

zt =

t∑
j=1

(
`(θj , πj)− ˆ̀(θj , πj) + u (1− α(θj))− u (1− α̂(θj))

)
, (32)

which now includes the random variables of the estimator of the probability that we will reset at
least once. Note that α̂(θ) also depends on x, y, b1:h, which we omit for simplicity. Similarly to the

17

martingale arguments in Equation (25), Equation (32) defines a martingale. In this case, we have
|zt − zt−1| ≤ 2u for all t ∈ [m], and z0 = 0. Applying Azuma-Hoeffding yields a result similar to
Equation (30), i.e.,

P

(
1

m

m∑
t=1

`(θt, θt) ≤
1

m

m∑
t=1

ˆ̀(θt, πt) + 2u

√
2 log(1/δ)

m
+ u

(
1− 1

m

m∑
t=1

α̂(θt)

))
≥ 1− δ,

(33)

Even if 1/m
∑m
t=1 α̂(θt) remains at some nonzero quantity as m goes to infinity, we can still give a

guarantee with respect to this reset probability. Namely, if we observe that we are most of the time
sampling the full trajectory with the learned policy, then we guarantee that we are not too far away
from the true loss of the mixture policy.

18

