
Implicit Reparameterization Gradients
Supplementary materials

A Testing of implicit gradient implementation

A simple test to verify the correctness of an implicit gradient implementation is to choose an
appropriate function f(z) and check that the Monte-Carlo averaging approximates the correct
quantity:

r� Eq�(z) [f(z)] ⇡
1

S

SX

s=1

rzf(zs)r�zs, zs ⇠ q�(z). (10)

For Gamma(↵, 1), we can choose f(z) = z. Then, @
@↵ Eq↵(z) z = 1, so the average stochastic

gradient should be equal to 1. For vonMises(0,), an appropriate choice is f(z) = cos z. Then,
@
@ Eq(z) cos z = @

@
I1()
I0()

= 1� I1()
I0()

�
⇣

I1()
I0()

⌘2
.

B Implementation details for the reparameterization gradient

We implement Eqn. (8) using an equivalent but more numerically stable expression:

r�z = �r�F (z|�)
q�(z)

= � exp(� log q�(z))r�F (z|�). (11)

Gamma distribution. We perform forward-mode differentiation of the efficient computation
method [2]. We use the implementation available in Eigen [5], which is based on the Cephes [10]
library. A more advanced version of this method is available in SciPy [7]. For z � 1 and z > ↵ this
method uses the continued fraction expansion:

�(z,↵) = 1� exp(�z)z↵

�(↵)

1

z +
1� ↵

1 +
1

z +
2� ↵

1 + 2
z+...

(12)

The expansion can be evaluated in the “direct order” using the Wallis algorithm [13]. For other values
of the arguments, a series expansion is used:

�(z,↵) =
exp(�z)z↵

�(↵+ 1)

1 +

1X

k=1

z
k

(↵+ 1)(↵+ 2) . . . (↵+ r)

!
(13)

In both cases, all the operations are differentiable with respect to ↵, so forward-mode differentiation
can be applied. We stop the computation as soon as the value of the derivative (not the CDF)
starts changing by less than some small value. The maximum number of iterations is set to 200
for float32 precision and 500 for float64. Additionally, we multiply the resulting derivative
by exp(� logGamma(z|↵, 1)) in the same code. This improves the speed by about 30% and the
accuracy by an order of magnitude, because some of the terms, including a Gamma function, cancel
out.

Von Mises distribution. The CDF of a standardized von Mises distribution is given by the series

F (z|0,) =
Z z

�⇡
vonMises(t|0,)dt = z

2⇡
+

1

⇡

1X

j=1

Ij()

I0()

sin(j · z)
j

. (14)

For smaller concentration parameters,  < 50, the numerical method [6] first chooses the truncation
point K for the series, and then computes the first K terms using an efficient backwards recursion.
For larger , it computes the CDF of a Normal approximation for the von Mises. We use the
implementation available in the SciPy library [7]. Again, forward-mode automatic differentiation can
be used since all the operations with respect to  are differentiable.

13

Table 5: The relative step size � used for finite difference approximation of the CDF derivative.
float32 float64

Gamma 10�3 10�5

Von Mises 10�1 10�4

C Accuracy and speed of the reparameterization gradient estimators

We start by describing how we computed the ground-truth value of the CDF derivatives and then
provide the implementation details of the comparison.

Gamma distribution. The derivative of the CDF of a Gamma distribution can be obtained in terms
of the hypergeometric function 2F2 [16]:

@�(z,↵)

@↵
= �(z,↵)(log z � (↵)) + 2F2(↵,↵;↵+ 1,↵+ 1;�z)

z
↵

↵�(↵+ 1)
, (15)

where (↵) = (log�(↵))0 is the digamma function and 2F2(↵,↵;↵ + 1,↵ + 1;�z) =
P1

k=0
↵2

(↵+k)2
(�z)k

k! . The function 2F2 is implemented in mpmath package [11], allowing to evaluate
this expression to arbitrary precision for comparison purposes. We compute it with the default settings
that result in float64 precision.

Von Mises distribution. Differentiating the series (14) with respect to  using the identity @
@Ij() =

j
Ij() + Ij+1() yields

@F (z|0,)
@

=
1

⇡

1X

j=1

j
Ij() + Ij+1()

I0()
� Ij()I1()

(I0())2

!
sin(j · z)

j
. (16)

We compute this expression using the SciPy implementation of the Bessel functions by truncating the
series at the 100th term.

Details of the comparison. We first choose a grid of the parameters. For the Gamma distribution, we
consider ↵ 2 {1⇥ 10�2

, 1⇥ 10�1
, 1, 1⇥ 101, 1⇥ 102, 1⇥ 103}, and for von Mises we consider

 2 {1⇥ 10�2
, 1⇥ 10�1

, 1, 1⇥ 101}. Then, we sample 1000 random variables from the distribu-
tion for each value of the parameter. We report the relative step sizes � > 0 determined by grid search
that we use for the finite difference approximation in Table 5. The timings are measured on a single
core of an Intel Xeon CPU.

D Experimental details

RSVI details. We use the proposal distributions suggested in [12]. For Gamma(↵, 1), we employ
the proposal distribution from Marsaglia and Tsang [9] which is explicitly reparameterizable using
the standard Normal. For vonMises(0,), we use the wrapped Cauchy proposal distribution [1] that
is explicitly reparameterizable using the Uniform distribution.

Gradient of the cross-entropy. The gradient variance is computed as

Eq�(z)

✓
@

@�
[� log p(z)]� c

◆2

, (17)

where the expectation is estimated using 1000 samples and c = @
@�Eq�(z)[� log p(z)] is the analytical

gradient of the cross-entropy. The timings are measured on a single core of an Intel Xeon CPU.

Variance of the gradient during training. For LDA and VAE models, we estimate the variance of
the gradient by reusing the exponential moving averages of the first and second moments computed
by the Adam optimizer [8]. Specifically, denoting by m and v the estimates of the first and second
moments of the gradient respectively, the variance estimate is (v �m2). We average this estimate
over all the parameters. Note that we compute the variance of the gradient with respect to the model
parameters: weights, biases and prior parameters.

14

Table 6: Hyperparameters used for the LDA experiments.
Dataset 20 Newsgroups RCV1 RCV1
Model LN-LDA, LDA LN-LDA LDA

Learning rate 3⇥ 10�4 1⇥ 10�3 1⇥ 10�3

Layers in the inference network 3 1 2
Units per layer 300 200 250
Initial value of ↵ 0.7 0.5 0.95
Burn-in epochs for ↵ 350 7 5

Parameters of distributions. The positive-valued parameters (scale of Normal; all the parameters
of Gamma, Beta and Dirichlet; concentration parameter of von Mises) are computed as a softplus
of an unconstrained value. For all of these parameters except for the Normal scale, we additionally
perform clipping to the [10�3

, 103] range. This makes the analytical KL-divergence numerically
stable in float32 precision. A useful sanity check of numerical stability is that the KL-divergence is
always non-negative.

The samples from von Mises distribution, and likewise the location parameter µ, can be equivalently
represented as an angle z 2 [�⇡,⇡), or as a point on a circle (x, y). We find that learning in the
second case is much easier. Thus, we compute the location parameter as µ = atan2(x, y), where x

and y are unconstrained values, and transform the samples from the distribution: z ! (cos z, sin z).

Latent Dirichlet Allocation. The 20 Newsgroups models are trained for 500 epochs, while the
RCV1 ones for 10 epochs. We set the number of topics to 50. The inference network is a ReLU
multilayer perceptron with the same number of units per layer. The optimization method is Adam [8]
with �1 = 0.9 and the batch size is 32. The model parameters are initialized using the Xavier
initializer [4]: the truncated Normal distribution with zero mean and the variance of 2

fan_in+fan_out .
The prior parameters are fixed at the initial value for a number of epochs (burn-in period) and then
trained jointly with other parameters. For the LN-LDA model [15], we tune the prior parameters
of the underlying Dirichlet distribution for which the Laplace approximation is performed; we also
checked that training the Normal prior parameters without any constraints does not improve the
perplexity. We find that the architectural modifications suggested in [15], such as using dropout and
batch normalization, do not lead to improved values of the perplexity, so we do not use them (they
report the perplexity of 1059 for 20 Newsgroups dataset, while we obtain 875).

We find the key hyperparameters by Bayesian optimization of the validation set perplexity. The
validation set consists of 10% random training documents for 20 Newsgroups and 1% random training
documents for RCV1. A separate search is performed for each dataset (20 Newsgroups, RCV1)
and model (LN-LDA, LDA (implicit)) combination, for a total of four runs. For 20 Newsgroups
the obtained hyperparameters are very similar for both models, so we use the same values. The
hyperparameter values are shown in Table 6.

We use GenSim library [14] implementation of stochastic variational inference (SVI). We train for the
same number of epochs and with the same number of topics as above. We perform a grid search for
the key hyperparameters. For 20 Newsgroups, we use chunk_size=1000 and decay=0.5, while for
RCV1 we set chunk_size=2000 and decay=0.5. In both cases, we set alpha="auto", meaning
that the prior hyperparameters ↵ are learned. The remaining options were set to the default values.

We performed control experiments on the 20 Newsgroups dataset showing that (i) using a fixed prior
distribution increases the perplexity by 60 points; (ii) computing the KL using sampling instead of an
analytical expression increases the perplexity by 80 points. The latter result highlights the importance
of using variational posteriors that allow for analytical KL estimation when dealing with “sparse”
distributions that have density asymptotes.

Variational autoencoder. We base our experimental setup on the one from Davidson et al. [3]: a
fully-connected ReLU network with two layers of 256 and 128 units as the encoder, a two-layer
fully-connected ReLU network with 128 and 256 units as the decoder, minibatch size of 64, Adam
optimizer [8], and annealing the KL term from 0 to 1 over the first 105 minibatches. The only
differences are (i) we do not perform early stopping and always train for 2 million minibatches; (ii)
we train each model with the learning rates of 10�3 and 10�4 and choose the best-performing one.

15

Table 7: Comparison of implicit reparameterization gradients and RSVI for the generative modeling
task on MNIST dataset. Test negative log-likelihood (lower is better) mean ± standard deviation over
5 runs.

Prior Variational posterior Training method D = 2 D = 5 D = 10 D = 20 D = 40

N (0, 1) N (µ,�2) Explicit 131.1± 0.6 107.9± 0.4 92.5± 0.2 88.1± 0.2 88.1± 0.0

Gamma(0.3, 0.3) Gamma(↵,�)
Implicit 132.4± 0.3 108.0± 0.3 94.0± 0.3 90.3± 0.2 90.6± 0.2
RSVI B = 20 132.3± 0.2 108.5± 0.3 94.3± 0.9 90.1± 0.1 90.6± 0.1

Gamma(10, 10) Gamma(↵,�)
Implicit 135.0± 0.2 107.0± 0.2 92.3± 0.2 88.3± 0.2 88.3± 0.1
RSVI B = 20 131.6± 0.3 107.1± 0.1 92.2± 0.1 88.2± 0.1 88.2± 0.1

Uniform(0, 1) Beta(↵,�)
Implicit 128.3± 0.2 107.4± 0.2 94.1± 0.1 88.9± 0.1 88.6± 0.1
RSVI B = 20 128.9± 0.8 107.3± 0.1 94.3± 0.1 88.8± 0.1 88.5± 0.1

Beta(10, 10) Beta(↵,�)
Implicit 131.1± 0.4 106.7± 0.1 92.1± 0.2 87.8± 0.1 87.7± 0.1
RSVI B = 20 131.7± 0.4 106.9± 0.1 92.2± 0.1 87.7± 0.1 87.6± 0.1

Uniform(�⇡,⇡) vonMises(µ,)
Implicit 127.6± 0.4 107.5± 0.4 94.4± 0.5 90.9± 0.1 91.5± 0.4
RSVI 129.1± 0.4 107.6± 0.3 96.0± 0.5 92.8± 0.2 92.8± 0.2

vonMises(0, 10) vonMises(µ,)
Implicit 130.7± 0.8 107.5± 0.5 92.3± 0.2 87.8± 0.2 87.9± 0.3
RSVI 130.4± 0.7 107.8± 0.5 93.0± 0.1 88.7± 0.2 88.7± 0.1

The model parameters are initialized from the truncated Normal distribution with zero mean and the
variance of 1

fan_in . We estimate the log-likelihood using importance sampling with 500 samples.

We present the comparison between implicit gradients and RSVI gradients in Table 7. We find that
while they perform similarly for Gamma and Beta distributions, for the von Mises distribution implicit
gradients obtain better results, since there is no analogue of the shape augmentation parameter B for
this distribution.

References

[1] D. Best and N. I. Fisher. “Efficient simulation of the von Mises distribution”. In: Applied
Statistics (1979), pp. 152–157.

[2] G. P. Bhattacharjee. “Algorithm AS 32: The Incomplete Gamma Integral”. In: Journal of
the Royal Statistical Society. Series C (Applied Statistics) 19.3 (1970), pp. 285–287. ISSN:
00359254, 14679876.

[3] T. R. Davidson, L. Falorsi, N. De Cao, T. Kipf, and J. M. Tomczak. “Hyperspherical Variational
Auto-Encoders”. In: Conference on Uncertainty in Artificial Intelligence (2018).

[4] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neural
networks”. In: International Conference on Artificial Intelligence and Statistics. 2010, pp. 249–
256.

[5] G. Guennebaud, B. Jacob, et al. Eigen v3. 2010. URL: http://eigen.tuxfamily.org.
[6] G. W. Hill. “Algorithm 518: Incomplete Bessel Function I0. The Von Mises Distribution”. In:

ACM Transactions on Mathematical Software (TOMS) 3.3 (1977), pp. 279–284.
[7] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python. 2001.

URL: http://www.scipy.org/.
[8] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: International

Conference on Learning Representations (2015).
[9] G. Marsaglia and W. W. Tsang. “A simple method for generating gamma variables”. In: ACM

Transactions on Mathematical Software (TOMS) 26.3 (2000), pp. 363–372.
[10] S. Moshier. Cephes math library. 2000. URL: http://www.moshier.net.
[11] F. Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic

(version 1.0.0). http://mpmath.org/. 2017.
[12] C. Naesseth, F. Ruiz, S. Linderman, and D. Blei. “Reparameterization gradients through

acceptance-rejection sampling algorithms”. In: International Conference on Artificial Intelli-
gence and Statistics (2017), pp. 489–498.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes 3rd
Edition: The Art of Scientific Computing. Cambridge University Press, 2007.

16

http://eigen.tuxfamily.org
http://www.scipy.org/
http://www.moshier.net

[14] R. Řehůřek and P. Sojka. “Software Framework for Topic Modelling with Large Corpora”.
English. In: LREC 2010 Workshop on New Challenges for NLP Frameworks (May 2010),
pp. 45–50.

[15] A. Srivastava and C. Sutton. “Autoencoding variational inference for topic models”. In:
International Conference on Learning Representations (2017).

[16] The Wolfram Functions Site. Derivative of GammaRegularized with respect to a. 2001. URL:
http://functions.wolfram.com/06.08.20.0001.01.

17

http://functions.wolfram.com/06.08.20.0001.01

	Introduction
	Background
	Explicit reparameterization gradients
	Stochastic variational inference

	Implicit reparameterization gradients
	Applications of implicit reparameterization gradients
	Accuracy and speed of reparameterization gradient estimators

	Related work
	Experiments
	Gradient of the cross-entropy
	Latent Dirichlet Allocation
	Variational Autoencoders

	Conclusion
	Testing of implicit gradient implementation
	Implementation details for the reparameterization gradient
	Accuracy and speed of the reparameterization gradient estimators
	Experimental details

