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1 Proof

This part will give proofs to some of the statements and theorems in the main part.

Proof of Dual Representation

Firstly, the Lagrangian of problem (6) is

L(β, b, {ξi}ni=1, {ηi}ni=1, ε) =
1

2
||β||22 + λ′

n∑
i=1

ξi +
n∑
i=1

ζi(1 + ε− ξi − yi(xTi β + b))

+
n∑
i=1

τi(1− ε− ηi − yi(xTi β + b))−
n∑
i=1

ρiξi −
n∑
i=1

γiηi

+ θ−1(
∑
yi=−1

wiηi − n−1α−1) + θ1(
∑
yi=1

wiηi − n1α1)− νε. (1)

Then we consider the Karush-Kuhn-Tucker conditions. We write L(β, b, ε, {ξi}ni=1, {ηi}ni=1)
as L for simplicity.

∂L

∂β
= β −

n∑
i

ζiyixi −
n∑
i

τiyixi = 0,

∂L

∂b
= −

n∑
i=1

ζiyi −
n∑
i=1

τiyi = 0,

∂L

∂ξi
= λ− ζi − ρi = 0 for ∀i,

∂L

∂ηi
= −τi − γi + wiθ−1 = 0 for yi = −1,
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∂L

∂ηi
= −τi − γi + wiθ1 = 0 for yi = 1,

∂L

∂ε
=

n∑
i

ζi −
n∑
i

τi − ν = 0,

ζi(1 + ε− ξi − yi(xTi β − b)) = 0 for i = 1, 2, ..., n,

τi(1− ε− ηi − yi(xTi β − b)) = 0 for i = 1, 2, ..., n,

ρiξi = 0 for i = 1, 2, ..., n,

γiηi = 0 for i = 1, 2, ..., n,

θ−1(
∑
yi=−1

ηi − n−1α−1) = 0,

θ1(
∑
yi=1

ηi − n1α1) = 0,

νε = 0.

After plugging the KKT conditions into expression 1, we can get the dual problem.

Proof of Theorem 1

In order to prove Theorem 1 and 2, we need to first introduce another risk function, R̄(f, ε) =
P (Y f(X) < ε) + 1

2
P (|f(X)| ≤ ε) and the optimization problem associate with it.

min R̄(f, ε) (2)

subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1.

And here is a Lemma come with it.

Lemma 1. Under Assumption 1, for any fixed ε ≥ 0, the discrimination function f ∗ such
that

f ∗(x) =


1 + ε, η(x) > t−1

ε ∗ sgn(η(x)− 1
2
), t1 ≤ η(x) ≤ t−1

−(1 + ε), f(x) < t1

is a solution to the optimization problem (2) (in the main work) and (2).

Denote C∗−1 = {x : f ∗(x) ≤ ε} and C∗1 = {x : f ∗(x) ≥ −ε} and the set classifier
introduced by f ∗ is φ∗. The Assumption 1 ensures that C∗−1 ∪ C∗1 = X . Let’s denote
C∗−1 ∩ C∗1 by C∗0 . The first part of this lemma is of vital importance in showing the Fisher
consistency of the proposed method and the second part will be used in proving Theorem 2.

The optimality of φ∗ to Problem (2) (in the main work) is proved in Lei (2014). Here we
prove the optimality of f ∗ for problem 2. The technique used in the following prove is fairly
straight-forward in statistical decision and game theory. We start the proof with looking for
a so-called complete set of f . After that, we only need to focus on this set of discriminant
functions. We firstly make two definitions to simplify our proof.
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Definition 1. For any (inequality) constrained optimization problem with m constrains

minL(f)

subject to Ci(f) ≤ ci i = 1, ...,m,

two function f1 and f2, f1 is said to be as good as than f2 when L(f1) ≤ L(f2) and Ci(f1) ≤
Ci(f2) for ∀i, and better than f2 when one of those inequality holds strictly.

Definition 2. Given the distribution of X and Y , denoted as P . Define a class of function,
F∗(a1, a2; b1, b2) consists all functions f which take at most two distinct non-negative values
a1 < a2 for {x : η > 1

2
} and at most two distinct non-positive values b1 > b2 for {x : η(x) <

1
2
}. A constrained optimization problem O is said to be simple monotone with respect to
F∗(a1, a2, b1, b2), if it satisfies:

(i). F∗(a1, a2, b1, b2) is a complete class of the problem, which means ∀f , ∃g ∈ F∗, and
g is as good as f .

(ii). If there exist disjoint B1, B2 ∈ X , such that P−1(B1) = P−1(B2) > 0, for ∀x1 ∈
B1, x2 ∈ B2, η(x1) > η(x2) > 1

2
. Moreover, for any pairs of function in F∗, f1(x) and

f2(x) such that f1(x) = f2(x) for ∀x /∈ B1 ∪ B2, and f1(x) =

{
a1, ∀x ∈ B1

a2, ∀x ∈ B2
and f2(x) ={

a2, ∀x ∈ B1

a1, ∀x ∈ B2
, f2 is better than f1.

(iii). If there exist disjoint B
′
1, B

′
2 ∈ X , such that P1(B

′
1) = P1(B

′
2) > 0, for ∀x1 ∈

B
′
1, x2 ∈ B

′
2, η(x1) < η(x2) < 1

2
. Moreover, for any pairs of function in F∗, f1(x) and

f2(x) such that f1(x) = f2(x) for ∀x /∈ B′1 ∪ B
′
2, and f1(x) =

{
b1, ∀x ∈ B

′
1

b2, ∀x ∈ B
′
2

and f2(x) ={
b2, ∀x ∈ B

′
1

b1, ∀x ∈ B
′
2

, f2 is better than f1.

It can be shown that a complete class of a simple monotone optimization problem can be
astonishingly simple. We are going to further shrink our focus to the functions which only
depend on η(x) rather than x. In other words, we can regard η as a sufficient statistic of x.

Lemma 2. If an optimization O is simple monotone with respect to F∗(a1, a2; b1, b2), then
a solution of O in F∗ takes the form

f(x) =


a2, η(x) > t
a1,

1
2
≤ η(x) ≤ t

b1, t′ ≤ η(x) < 1
2

b2, η(x) < t′

for some t′ ≤ 1
2
≤ t almost surely.

Proof. Let’s prove there exists a 1
2
≤ t ≤ 1 such that f(x) = a1,∀x, such that 1

2
< η(x) <

t, a.s. and f(x) = a2,∀η(x) > t, a.s.. Define T1 = {t : ∃C,P (C) > 0, η(x) > t, f(x) =
a1,∀x ∈ C} and T2 = {t : ∃C ′, P (C ′) > 0, η(x) < t, f(x) = a2,∀x ∈ C ′}. Firstly, if T1 = ∅,
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then t = 1
2

and similarly, if T2 = ∅, then t = 1. So now we can assume T1 and T2 are
nonempty.

If t1 ∈ T1, then by definition t2 ∈ T1,∀t2 < t1, so that T1 is a interval and 1
2
∈ T1.

Similarly, T2 is also a interval and 1 ∈ T2. Moreover, T1 and T2 are open interval in [1
2
, 1].

By definition, if t1 ∈ T1, then we have P (C ∩ (∪∞n {x : η(x) > t1 + 1
n
})) > 0, so ∃m, such that

P (C ∩ {x : η(x) > t1 + 1
m
}) > 0. Thus we have t1 + 1

m
∈ T1 as well. If T1 ∩ T2 6= ∅, then we

have a t′ ∈ T1 ∩ T2, which indicates there exists ∀C1, C2 ∈ X such that P (C1), P (C2) > 0,
1 > η(x1) > η(x2) > 1

2
, and f̂(x1) = a2, f̂(x1) = a2, ∀x1 ∈ C1, x2 ∈ C2. If we have

P (C1), P (C2) > 0. Then we can choose two subsets of C1 and C2, named C ′1 and C ′2,
such that P−1(C ′1) = P−1(C ′2) > 0, because P−1 is continuous with positive density and η is
continuous (P (η = 1) = 0). This will leads to a contradiction with the (ii) of 2. If T1∩T2 = ∅,
then we can choose a point t in [sup {T1}, inf {T2}] and it will satisfy our purpose.

By similar argument, we can show there exists a 0 ≤ t′ ≤ 1
2
.

Proof of Lemma 1: We want to show that 2 is simple monotone with respect to
F∗(ε+ 1, 0, 0,−(ε+ 1)).

Because optimization problem 2 can be regarded as an optimization problem for clas-
sifiers, it is sufficient to consider functions f with 3 values, ε + 1, −(ε + 1), 0, that is
f ∈ F(ε) := {f : X → {ε+ 1,−(ε+ 1), 0}}.

Firstly, we need to prove sign(η(X) − 1
2
)f̂(X) ≥ 0 with probability 1 for any f̂ , a

solution of 2 in F(ε). If there is a set A ⊂ X , ∀x ∈ A, η(x) > 1
2
, f̂ = −(ε + 1) and

P (A) > 0, then we can consider another function fA such that fA(x) = f̂(x), ∀x ∈ Ac but
fA(x) = 0,∀x ∈ A. fA will be better than f̂ . It is easy to check that two constraints still hold
for fA. But the objective function will be smaller, because 1

2
P (|f̂(X)| ≤ ε) + P (Y f̂(X) <

−ε) − 1
2
P (|fA(X)| ≤ ε) + P (Y fA(X) < −ε) = 1

2
P (|f̂(X)| ≤ ε,X ∈ A) + P (Y f̂(X) <

−ε,X ∈ A) − 1
2
P (|fA(X)| ≤ ε,X ∈ A) + P (Y fA(X) < −ε,X ∈ A) = E(η(X)1X∈A) > 0.

This will lead to a contradiction with the optimality of f̂ .
We only give the proof for part (ii) in 2, and part (iii) can be proved analogously. We

can check the constraints and objective function one by one.
Firstly, P1(Y f1(X) < −ε) = P1(Y f2(X) < −ε) because the set in which f1 and f2 take

−(1 + ε) are the same. Secondly, P−1(Y f1(X) < −ε) − P−1(Y f2(X) < −ε) = P−1(B2) −
P−1(B1) = 0. Lastly, 1

2
P (|f2(X)| ≤ ε)+P (Y f2(X) < −ε)−(1

2
P (|f1(X)| ≤ ε)+P (Y f1(X) <

−ε)) = E(1(X∈B2)(η(X) − 1
2
)) − E(1(X∈B1)(η(X) − 1

2
)) < 0. This comes from the fact that

η(x1)− 1
2
> η(x2)− 1

2
> 0,∀x1 ∈ B1, x2 ∈ B2 and P (B2) < P (B1). The last inequality come

from P (Y = 1|X ∈ B1) > P (Y = 1|X ∈ B2) and P−1(B1) = P−1(B2).
Then by Lemma 2, we can see that the solution of 2 only depends on η.
The next part of this proof is to find out the optimal t and t′. Let’s show that the optimal

choice of t is t−1. If t 6= t−1 for f̂ , then t > t−1 and P (η(x) ≤ t) < 1 − α−1 (note that η is
continuous a.s.), otherwise f̂ does not satisfy the constraint that P−1(Y f(X) < −ε) ≤ α−1.
Then If we consider another function f̂ ∗ such that f̂ ′(x) = 0,∀x, s.t. t−1 < η(x) < t and
f̂ ∗(x) = f̂(x) elsewhere. Denote C ′ = {x : t−1 < η(x) < t} and P (C ′) > 0. Then we
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have that 1
2
P (|f̂(X)| ≤ ε) + P (Y f̂(X) < −ε) − (1

2
P (|f̂ ′(X)| ≤ ε) + P (Y f̂ ′(X) < −ε)) =

E((1
2
− (1 − η(X)))1{(C ′)}) > 0. So t = t−1. The optimal choice for t′ can be found in a

similar way.
The proof is completed by observing f ∗ gives exactly the same R̄ loss.

Now let’s start to prove Theorem 1.
The argument in the proof is similar to Lemma 1. We are going to show the optimization

problem (9) (in the main work) is simply monotone. We consider our proof in two parts.
The first is to show the minimizer of optimization problem (4) (in the main work) can only
takes four values and is Fisher consistent in a classification sense.

In the first step, let’s prove that with probability 1 that |f ∗(x)| ≤ 1 + ε. This step is
identical to proving the Fisher Consistency of SVM. If a function f(x) has a set A1 with
positive probability in X such that for ∀x ∈ X , |f(x)| > 1 + ε, then we can truncate
those values to 1 + ε. In other word, consider fnew(x) = f(x) for x ∈ A1

c, fnew(x) =
(1 + ε)sgn(f(x)) for x ∈ A1. Then let’s prove fnew is better than f . We can see that
the decision implied by f and fnew is the same. So the two constrains in problem (4)
do not change. However, by looking at the objective function E[(1 + ε − Y f(X))+] =
E[η(X)(1 + ε− f(X))+ + (1− η(X))(1 + ε+ f(X))+], we can see fnew gives smaller loss for
all the X such that ηX 6= 0, 1, so that f ∗ will give a smaller expected loss in A1.

The next step, we prove |f ∗(x)| ≥ ε in a similar way. If a function has a set A2 with
positive probability in X such that for ∀x ∈ X , |f(x)| < ε, then we can enlarge those
values of |f | to εsgn(η(X) − 1

2
). In other words, consider fnew(x) = f(x) for x ∈ A2

c,
fnew(x) = εsgn(η(X)− 1

2
) otherwise. Then let’s prove fnew is better than f . We can see that

the decision implied by f and fnew is the same. So the two constrains in problem (4) do not
change. However, by considering the objective function E[(1 + ε− Y f(X))+] and the result
of first step we have E[(1+ε−Y f(X))+] = E[(1+ε−Y f(X))] = E[η(X)(1+ε−f(X))+(1−
η(X))(1+ε+f(X))] = E[1+ε+(1−2η(X))f(X)]. Thus we have E[Hε(f)]−E[Hε(f

new)] =
E[(1− 2η(X))(f(X)− fnew(X))] = E[(1− 2η(X))(f(X)− εsgn(η(X)− 1

2
))1X∈A2 ] > 0.

In the third step, we are going to show that f ∗ is Fisher Consistent in the classic clas-
sification sense. In other words, sgn(f ∗(x)) = sgn(η(x) − 1

2
) with probability 1. Because

of symmetry, let’s just prove the case that η(X) > 1
2
. If a function has a set A3 with

positive probability in X such that for ∀x ∈ X , |f(x)| < 0, η(x) > 1
2
, then we can make

them to ε. In other words, consider fnew(x) = f(x) for x ∈ A3
c, fnew(x) = ε oth-

erwise. Then let’s prove fnew is more efficient than f . The second constraint will not
change since {x : f(x) > ε} = {x : fnew(x) > ε}. The second constraint is also satis-
fied by fnew because we actually have {x : fnew(x) < −ε} ⊆ {x : f(x) < −ε}. However,
E[Hε(f)]− E[Hε(f

new)] = E[(1− 2η(X))(f(X)− ε)1X∈A3 ] > 0.
In last step of part one, we want to prove that f ∗(x) does not take values between ε and

ε+1 with probability 1. If a function has a set A4 with positive probability in X such that for
∀x ∈ X , ε < |f(x)| < 1+ε, then we can enlarge those values of f to (1+ε)sgn(η(X)− 1

2
). In

other words, consider fnew(x) = f(x) for x ∈ A2
c, fnew(x) = (1+ε)sgn(η(X)− 1

2
) otherwise.

Then let’s prove fnew is more efficient than f . By considering the result of step three, we
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have the two constraints of f is the same as fnew, because here we only need to consider
the function f such that sgn(f(x)) = sgn(η(x) − 1

2
). However, E[Hε(f)] − E[Hε(f

new)] =
E[(1− 2η(X))(f(X)− (1 + ε)sgn(η(x)− 1

2
))1X∈A4 ] > 0.

Now we have proved that f ∗ only takes value of 1 + ε, ε, −ε, −(1 + ε), with probability
1. That is to say F∗(1 + ε, ε,−ε,−(1 + ε)) is a complete class of the problem (4).

The difference between the proof of Lemma 1 and Theorem 1 is that F∗(1+ε, ε,−ε,−(1+
ε)) is not only the complete class of problem (4). Moreover, for any function f such that
there does not exist a g with f(x) − g(x) = 0 with probability 1, by the argument above,
there exist a gf that is better than f . We can than draw a conclusion that any solution of
problem (4) is in F∗(1 + ε, ε,−ε,−(1 + ε)) (with a difference of probability 0).

The second part of the proof is to show part (ii) and (iii) of 2. This can be verified by
direct calculation which is similar to the proof of Lemma 1. The last part of this proof is to
find out the optimal t and t′. The procedure is also analogous to proof of Lemma 1, thus is
omitted here. As a result, 1 is the solution of problem (4) with probability 1.

Proof of Theorem 2

We prove this Theorem in two steps. Firstly, we want to use excess risk of R̄ = P (Y f(X) <
−ε)+ 1

2
P (|f(X)| ≤ ε) to bound the excess ambiguity R. This can be formalized to a Lemma

below.

Lemma 3. Let f̂ be another function that suffices the constraints in (3), then under As-
sumption 2, for any ε ≥ 0, we have 1

c
(R̄(f̂ , ε)− R̄(f ∗, ε)) ≥ R(f̂ , ε)−R(f ∗, ε).

To prove this, we need to further use another lemma which can be regarded as an exten-
sion of the theorem before.

Lemma 4. There ∃c > 0 satisfies Assumption 2, then for any fixed ε ≥ 0, f ∗ is also a
solution of the following optimization problem

minimize (
1

2
− c)P (|f(X)| ≤ ε) + P (Y f(X) < −ε) (3)

subject to Pj(Y f(X) < −ε) ≤ αj, j = ±1.

The proof of this Lemma 4 is analogous to the proof of Lemma 1, thus is omitted here.
Actually one can change the definition (ii) and (iii) in 2 by replacing 1

2
with 1

2
+ c and also

show that for |η(x)− 1
2
| ≤ c, |f(x)| ≤ ε.

By Lemma 4, we have

1

c
(R̄(f̂ , ε)− R̄(f ∗, ε))− (R(f̂ , ε)−R(f ∗, ε))

=
1

c
(P (Y f̂(X) ≤ ε)− P (Y f ∗(X) ≤ ε))− (P (|Y f̂(X)| ≤ ε)− P (|Y f ∗(X)| ≤ ε))

=
1

c
(((

1

2
− c)P (|f̂(X)| ≤ ε) + P (Y f̂(X) < −ε))− (

1

2
− c)P (|f ∗(X)| ≤ ε) + P (Y f ∗(X) < −ε))

≥0
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The next step is the prove we can use the excess RH risk to bound the excess risk of R̄,
which gives the Lemma below.

Lemma 5. Under Assumption 2, for any f satisfies the constraints in (3), we have

C (RH(f, ε)−RH(f ∗, ε)) ≥
(
R̄ (f, ε)− R̄ (f ∗, ε)

)
(4)

where C = 1
4c

+ 1
2
.

The proof consists of two steps. First, we will show that we only need to consider the
f which takes those values: 1 + ε, ε+, ε, −ε, −ε−, −(1 + ε). Here ε+ can be regarded as
ε plus a arbitrarily small number and it is similar for −ε−. This can be shown by direct
calculation.

Assume f : X → R is an arbitrary discriminate function. Then we consider another func-
tion f̄(x) = (1+ε)1

[
f(x) > ε, η(x) ≥ 1

2

]
+(ε+)1

[
f(x) > ε, η < 1

2

]
+ε1

[
|f(x)| ≤ ε, η ≥ 1

2

]
+

(−ε)1
[
|f(x)| ≤ ε, η < 1

2

]
+ (−ε−)1

[
f(x) < −ε, η ≥ 1

2

]
+ (−(1 + ε))1

[
f(x) < −ε, η(x) < 1

2

]
.

It is easy to see φ(f,ε) = φ(f̄ ,ε) so that R̄(f, ε) − R̄(f ∗, ε) = R̄(f̄ , ε) − R̄(f ∗, ε). Moreover,

by direct calculation, one can show that RH(f(x)) ≥ RH(f̄(x)) for all x. So we can see
change f to f̄ will always leads to a smaller excess surrogate risk while keep the excess risk
the same.

The second part is to explicitly calculate the left hand side and the right hand side and
show that the C in the theorem really works. To simplify the notation, we give divide X by
value of f(now f take 6 values). For instance, we define Sε+1 = {x : f(x) = ε + 1} and by
the first part, we can assume η(Sε+) < 1

2
and η(S−ε−) > 1

2
. To ease the notation, we omit

the independent variable X in following expressions although the expectation is really taken
with respect to it. Then we have

RH(f)−RH(f ∗) = E(1[Sε+1](2(1 + ε)(1− η))) + E(1[Sε](1 + 2ε(1− η)))

+ E(1[S−ε−](1 + 2εη)) + E(1[Sε+](1 + 2ε(1− η)))

+ E(1[S−ε](1 + 2εη)) + E(1
[
S−(ε+1)

]
(2(1 + ε)η))

− E(1

[
1

2
≤ η ≤ t−1

]
(1 + 2ε(1− η)))− E(1

[
t1 ≤ η ≤ 1

2

]
(1 + 2εη))

− E(1[η > t−1](2(1 + ε)(1− η)))− E(1[η < t1](2(1 + ε)η))

and

R(f)−R(f ∗) = E(1[Sε+1](1− η)) + E(1[Sε](
1

2
)) + E(1[S−ε−](η)

+ E(1[Sε+](1− η)) + E(1[S−ε](
1

2
)) + E(1

[
S−(ε+1)

]
(η))

− E(1

[
1

2
≤ η ≤ t−1

]
(
1

2
))− E(1

[
t1 ≤ η ≤ 1

2

]
(
1

2
))

− E(1[η > t−1](1− η))− E(1[η < t1](η))
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Then by some algebra, we have C(RH(f) − RH(f ∗)) ≥ R(f) − R(f ∗) is equivalent to A +
2εCB ≥ 0 where

A = E(1[Sε+1]((2C − 1)(1− η))) + E(1[Sε](C −
1

2
))

+ E(1[S−ε−](C − η)) + E(1[Sε+](C − (1− η)))

+ E(1[S−ε](C −
1

2
)) + E(1

[
S−(ε+1)

]
((2C − 1)η))

− E(1

[
1

2
≤ η ≤ t−1

]
(C − 1

2
))− E(1

[
t1 ≤ η ≤ 1

2

]
(C − 1

2
))

− E(1[η > t−1]((2C − 1)(1− η)))− E(1[η < t1]((2C − 1)η))

and B = P (f(X)Y < 0) − P (f ∗(X)Y < 0). By the definition of f ∗ we can easily see that
B ≥ 0. So the rest is to show A ≥ 0. We can only focus on C > 1

2
. Divide A by 2C − 1 and

do some algebra, we have A ≥ 0 is equivalent to

(E(1[Sε+1]((1− η)) + E(1[Sε](
1

2
) + E(1[S−ε−](

1

2
)

+ E(1[Sε+](
1

2
)) + E(1[S−ε](

1

2
) + E(1

[
S−(ε+1)

]
(η)))

− (E(1

[
1

2
≤ η ≤ t−1

]
(
1

2
)) + E(1

[
t1 ≤ η ≤ 1

2

]
(
1

2
)

+ E(1[η > t−1](1− η)− E(1[η < t1](η)))

≥ 1

2C − 1
(E(1[S−ε−](η − 1

2
) + E(1[Sε+](

1

2
− η)))

It is not hard to see the first part of the left hand side is a R̄ risk of a classifier with +1
prediction at Sε+1, negative prediction at S−(ε+1) and ambiguity else where. The second part
is the risk of f ∗. By definition of f ∗, we have P−1(η ≤ t−1) = 1− α−1, P1(η ≥ t1) = 1− α1.
Let α′−1 = α−1−P−1(Sε+) and α′1 = α1−P1(S−ε−) and let t′−1 and t′1 satisfy P−1(η ≤ t′−1) =
1− α′−1, P1(η ≥ t′1) = 1− α′1. Because η(Sε+) < 1

2
, we have P (t−1 < η ≤ t′−1) > P (Sε+) by

Bayes Formula. Similarly P (t′1 ≤ η < t1) > P (S−ε−). So at last, we have

LHS of above ≥ E(1
[
t−1 < η ≤ t′−

]
(η − 1

2
)) + E(1

[
t′+ ≤ η < t1

]
(
1

2
− η))

≥ c(P (t−1 < η ≤ t′−) + P (t′+ ≤ η < t1)) ≥ c(P (Sε+) + P (S−ε−))

=
1

2C − 1

1

2
(P (Sε+) + P (S−ε−))

≥ 1

2C − 1
(E(1[S−ε−](η − 1

2
) + E(1[Sε+](

1

2
− η)))

So we have A ≥ 0 thus the statement of our theorem holds.
Note that one can induce a small δ, i.e., using ε+ δ instead of using the notation ε+ and

let δ goes to 0 at the end of the proof to make it more rigorous. However, because there is
no limit involved in other parts of this proof, we can live with this notation to keep us from

8



those trouble.
Lastly, Theorem 2 is a direct corollary of Lemma 3 and Lemma 5.

Proof of Theorem 3

To prove this theorem, we need to introduce Rademacher complexity which has been widely
used in statistical machine learning theory.

Here we only prove inequality for Y = −1, the proof for Y = 1 case can be down
analogously. Without loss of generality, we assume the first n−1 observations are from −1.

Let σ = {σi; i = 1, ..., n−1} be independent and identically distributed random variables
from discrete uniform distribution U({-1,1}). Also denote by S a sample of observations
(xi, yi); i=1,...,n−1, independent and identically distributed from the underlying distribution
P (X, Y |Y = −1) (Y will always be −1 in this case). we define the empirical Rademacher
complexity of the function class with fixed b, Hb

K(s) = {h(x) + b|h ∈ HK , ||h||HK ≤ s} as
follows,

R̂n−1{Hb
K(s)} = Eσ[ sup

f∈HbK(s)

1

n−1

n−1∑
i=1

σiH−ε(yif(xi))] (5)

Here Eσ means taking expectation with respect to the joint distribution of σ. Moreover, we
can define the Rademacher complexity of Hb

K(s) to be

Rn−1{Hb
K(s)} = Eσ,S[ sup

f∈HbK(s)

1

n−1

n−1∑
i=1

σiH−ε(yif(Xi))] (6)

where S is the sample space given Y = −1.
The next step is to construct the standard inequality of Rademacher complexity. It

controls the expected hinge loss for negative group by the summation of empirical hinge
loss, empirical Rademacher complexity and a small penalty term, which can be summarized
in the following lemma. This lemma is important and will be used in the proves follows.

Lemma 6. Let R̂n{Hb
K(s)} and Rn{Hb

K(s)} be defined as above. Then with probability at
least 1− ζ,

E(H−ε(Y f(X))) ≤ 1

n−1

n−1∑
i=1

H−ε(yif(xi)) + 2Rn−1{Hb
K(s)}+ Tn−1(ζ), (7)

Moreover, with probability at least 1− ζ,

E(H−ε(Y f(X))) ≤ 1

n−1

n−1∑
i=1

H−ε(yif(xi)) + 2R̂n−1{Hb
K(s)}+ 3Tn−1(ζ/2). (8)

Proof. The proof consist of three parts. In the first part, we use the McDiarmid inequality
to bound the left hand side of inequality 7 by its empirical counterpart and φ(S) which is

9



define below:

φ(S) = sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

n−1∑
i=1

H−ε(yif(xi))}

Let S(i) = {(x1, y1), ...(xi
′, yi), ...(xn, yn)} be another sample from P (X, Y |Y = −1),

where the difference between S and S(i,x) is just the ith observation. Then by definition, we
have

φ(S)− φ(S(i)) = sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑
S

H−ε(yif(xi))}

− sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑
Si,x

H−ε(yif(xi))}.

Note that it is easy to show the difference of supremum of two functions is smaller than
the supremum of the difference of two functions.

Then we have

φ(S)− φ(S(i)) ≤ sup
f∈HbK(s)

{E(H−ε(Y f(X)))− 1

n−1

∑
S

H−ε(yif(xi))}

− {E(H−ε(Y f(X)))− 1

n−1

∑
Si,x

H−ε(yif(xi))}

= sup
f∈HbK(s)

{ 1

n−1

H−ε(yif(xi))−H−ε(yif(x′i))}

≤ sup
f∈HbK(s)

{ 1

n−1

|{f(xi)− f(x′i)|}

≤ sup
h∈HK ,||h||HK≤s

{ 1

n−1

|{h(xi)− h(x′i)|}

≤ sup
h∈HK ,||h||HK≤s

{ 1

n−1

|〈h,K(xi, ·)〉 − 〈h,K(x′i, ·)〉|}

≤ 1

n−1

sup
h∈HK ,||h||HK≤s

{|〈h,K(xi, ·)〉|+ |〈h,K(x′i, ·)〉|}

≤ 2

n−1

sup
h∈HK ,||h||HK≤s,x∈X

{
√
||h||HK ||K(x,x)||}

≤ 2
√
sr

n−1

Because S and Si are symmetric, as a result, we have |φ(S)− φ(S(i))| ≤ 2
√
sr

n−1
.

Next, by the McDiarmid inequality, we have that for any t > 0, P (φ − E(φ(S)) ≥ t) ≤
exp(− t2n−1

2sr
), or equivalently, with probability 1− ζ, φ(S)−E(φ(S)) ≤ Tn(ζ). Consequently,

we have that with probability at least 1− ζ, E(H−ε(Y f(X))) ≤ 1
n−1

∑
yi=−1H−ε(yif(xi)) +

10



E{φ(S)}+ Tn−1(ζ). This gives the first part of the proof.
In the second part, we need to bound E{φ(S)} by the Rademacher complexity. Define

S ′ = {(x′i, y′i); i = 1, ..., n−1} as an independent identical duplicate of S. Then we have that

E{φ(S)} = ES( sup
f∈HbK(s)

ES′ [
1

n−1

∑
S′

H−ε(y
′
if(x′

i))−
1

n−1

∑
S

H−ε(yif(xi))]|S)

≤ ES,S′ [
1

n−1

∑
S′

H−ε(y
′
if(x′

i))−
1

n−1

∑
S

Hε(yif(xi))]

= ES,S′,σ[
1

n−1

∑
S′

σiH−ε(y
′
if(x′

i))−
1

n−1

∑
S

σiHε(yif(xi))]

≤ 2Rn−1{Hb
K(s)}

Combining the first and second step, we have already proved first inequality in Lemma
6.

The third step is analogous to the first step. We will use the empirical Rademacher
complexity to bound the population Rademacher complexity.

This can be shown by defining ψ(S) = ˆRn−1{Hb
K(s)} and it is easy to see |ψ(S)−ψ(S ′)| ≤

2
√
sr

n−1
by the definition of empirical Rademacher complexity. Then we can use McDiarmid

inequality again and get with probability at least 1− ζ, ψ(S)−E(ψ(S)) ≤ Tn−1(ζ). At last,
we can combine this outcome and 7 by choose the confidence level to be 1− ζ/2 to get 8.

Then last step will be controlling the empirical Rademacher complexity for kernel learn-
ing. In particular, by Lemma 4.2 and Theorem 5.5 in Mohri et al. (2012), we can have that

ˆRn−1{Hb
K(s)} can be upper bounded by the following inequality

ˆRn−1{Hb
K(s)} ≤ Eσ[ sup

h∈HK ,||h||HK≤s

1

n−1

∑
yi=−1

σih(xi)]

≤ rs
√
n−1

.

Proof of Theorem 4

This proof is similar to proof of Theorem 5 in Rigollet and Tong (2011).
Statement (a) of this theorem is the direct Corollary of Theorem 3. One can see the proof

for Lemma 6 does not only work for H−ε, but also work for Hc with any c. In particular,
it works for ε. So define the events E1 and E2. Let Rj

H(f, c) = E(Hc(Y f(X))|Y = j), and

R̂j
H(f, c) be its empirical counterpart for j = ±1.

E−(f, ε) = {|R̂−1
H (f,−ε)−R−1

H (f,−ε)| ≤ κ
√
n−1

, |R̂1
H(f,−ε)−R1

H(f,−ε)| ≤ κ
√
n1

},

11



E+(f, ε) = {|R̂−1
H (f, ε)−R−1

H (f, ε)| ≤ κ
√
n−1

, |R̂1
H(f, ε)−R1

H(f, ε)| ≤ κ
√
n1

}.

By Theorem 3, P (E−) ≥ 1− 2ζ and P (E+) ≥ 1− 2ζ for any fix f ∈ HK(s) and c ∈ R.
To study statement (b), we can decompose the left hand side of the inequality into three

parts and study them one by one.

RH(f̂ , ε̂)− min
(f,ε)∈F(0,s)

RH(f, ε) = A1 + A2 + A3

Where

A1 = (RH(f̂ , ε̂)− R̂H(f̂ , ε̂)) + (R̂H(f̂ , ε̂)− min
(f,ε)∈F̂(κ,s)

RH(f, ε))

A2 = min
(f,ε)∈F̂(κ,s)

RH(f, ε)− min
(f,ε)∈F(2κ,s)

RH(f, ε)

A3 = min
(f,ε)∈F(2κ,s)

RH(f, ε)− min
(f,ε)∈F(0,s)

RH(f, ε)

Because we only focus on E1 = E+(f̂ , ε̂)
⋂
E+(argmin(f,ε)∈F̂(κ,s) RH(f, ε)), then we have

A1 ≤
2κ√
n

It is easy to see that A2 ≤ 0 for large enough n on E2 = E−(argmin(f,ε)∈F(2κ,s) RH(f, ε)).
The last part of the proof is to bound A3. To begin with the proof, let’s first introduce

a lemma.

Lemma 7. Let γs((α−1, α1)) = be a function from [0, 1]2 to inf
f∈F(0,s)

RH(f, ε). Then γε is

convex in [0, 1]2. Moreover, γs((α−1, α1)) ≤ γs((α
′
−1, α

′
1)) for α−1 ≥ α′−1 and α1 ≥ α′1.

Proof. By the convexity of loss function Hc, we have E(H(θc1+(1−θ)c2)(Y (θf1(X) + (1 −
θ)f2(X)))) ≤ θE(Hc1(Y f1(X))) + (1 − θ)E(Hc2(Y f2(X))) for all θ ∈ [0, 1]. By defini-
tion of infimum, for any µ > 0 and α1 = (α−1, α1), there exists a f1 ∈ F(0, s), such that
γs(α

1) > E(Hε(Y f1(X)))− µ, and for another α2, there exists a f2 as well.
By the argument above, we have γs(θα

1 + (1− θ)α2) ≤ E(H(θε1+(1−θ)ε2)(Y (θf1(X) + (1−
θ)f2(X)))) ≤ θE(Hε1(Y f1(X))) + (1− θ)E(Hε2(Y f2(X))) ≤ θγs(α

1) + (1− θ)γs(α2)− µ for
all positive µ. And it is easy to verify that θf1 + (1− θ)f2 and (θε1 + (1− θ)ε2) give satisfy
the constraints. So that γs is convex.

The second statement of the lemma is easy to see by noticing that HK(s)∩Fε(α′−1, α
′
1) ⊂

HK(s) ∩ Fε(α−1, α1) for α−1 ≥ α′−1 and α1 ≥ α′1.

The last part of the proof is from the convexity of γs. For a large enough n−1 and n1, we
will finally have κ√

n−1
< α−1,

κ√
n1
< α1). Let ν = ( κ√

n−1
, κ√

n1
).

Now by convexity of γs, we have γs(α)− γs(α− ν) ≥ ν · g and γs(α− ν0)− γs(α− ν) ≥
(ν − ν0) · g, where g in any member of the subgradiant of γ at α− ν. After combining these
two inequalities, we have

γs((0, 0))− γs(α− ν) ≥ (α− ν) · (−g)
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≥ min {
α−1 − κ√

n−1

κ√
n−1

,
α1 − κ√

n1

κ√
n1

}ν · (−g)

≥ min {
α−1 − κ√

n−1

κ√
n−1

,
α1 − κ√

n1

κ√
n1

}(γs(α− ν)− γs(α))

This will finally lead us to γs(α − ν) − γs(α) ≤ (γs(α) − γs(α − ν))
2 max { κ√

n−1
, κ√
n1
}

min {α−1,α1} ≤
2κ

min {α−1,α1}min {√n−1,
√
n1} . The last inequality is directly from the fact that f(x) ≡ 0 and

ε = 1 satisfies the constraints of problem (5) and gives ambiguity loss 2. Thus we have
A3 ≤ 4κ

min {α−1,α1}min {√n−1,
√
n1} .

Then the proof is finished by combining A1, A2, A3.

2 More on numerical study

For each simulation scenario, we give a plot of non-coverage rates for both −1 and 1 class.
We also give plots of the proportion of instances in which both classes have the desired test
non-coverage rates, e.g. 0.05 or smaller.

Linear model with nonlinear Bayes rule

40 80 120 160 200

csvm_r_w csvm_w logi_r svm_r csvm_r_w csvm_w logi_r svm_r csvm_r_w csvm_w logi_r svm_r csvm_r_w csvm_w logi_r svm_r csvm_r_w csvm_w logi_r svm_r
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Figure 1: Non-coverage rates for all the models. We can see that weighted CSVM has a
smaller non-coverage rates when sample size become larger, which explains why it has a
relatively larger ambiguity. It worth to note that when n = 80, weighted CSVM has a
significantly smaller non-coverage rates than plug-in methods and maintain a smaller (or
comparable) ambiguity.
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Figure 2: Success (to cover desired observations) rates for all the models. We can see that
weighted CSVM has a greater success rates when sample size become larger, which also
explains why it has a relatively larger ambiguity. It worth to note that when n = 80,
weighted CSVM has a much larger non-coverage rates than plug-in methods and maintain
a smaller (or comparable) ambiguity.

Moderate dimensional polynomial boundary
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Figure 3: Non-coverage rates for all the models. We can see that weighted CSVM and kNN
has a smaller non-coverage rates when the other three have similar non-coverage rates. But
within those two groups, the proposed model always has a smaller ambiguity.
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Figure 4: Success rates for all the models. We can see that weighted CSVM and kNN has
a larger success rates when the other three have similar success rates. But within those two
groups, the proposed model always has a smaller ambiguity.

High-dimensional donut
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Figure 5: Non-coverage rates for all the models. We can see that weighted CSVM and kNN
has a smaller non-coverage rates when the other three have similar non-coverage rates. But
within those two groups, the proposed model always has a smaller ambiguity.
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Figure 6: Success rates for all the models. We can see that weighted CSVM and kNN has
a larger success rates when the other three have similar success rates. But within those two
groups, the proposed model always has a smaller ambiguity..
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