
1 Supplementary Material

For a complete treatment of the methods used, we detail the generative network model pθ and the
inference network qφ designs. We also provide pseudocode for the parameter server and worker client
algorithms. Finally, we specify experimental training and testing parameters.

1.1 BDSGD generative model

The generative model factorises as latent variable state space model:

pθ(xT−`:T , zT−`:T ) =

T∏
i=T−`

pθ(zi|zi−1)
T∏

i=T−`

pθ(xi|zi)

where pθ(zt|zt−1) is parametrized as:

zt ∼ N(Gθ(zt−1), Hθ(zt−1))

Gθ(zt−1) = (1− gt) · 1-MLP(zt−1, Identity) + gt · 2-MLP(zt−1,ReLU, Identity)

gt = 2-MLP(zt−1,ReLU,Sigmoid)

Hθ(zt−1) = 1-MLP(ReLU(Gθ(zt−1)),Softplus)

and pθ(xt|zt) is parametrized as:

xt ∼ N(Iθ(zt), Jθ(zt))

Iθ(zt) = 2-MLP(zt−1, Identity, Identity)

Jθ(zt) = 2-MLP(Iθ(zt),ReLU,Softplus)

where n-MLP( · , A,B, ...) denotes an n-layer multilayer perceptron with nonlinearities, A, B, etc.

1.2 BDSGD inference network

The inference network is a structured left-right model, conditioning on observations from the future
and past:

qφ(zT−`:T |xT−`:T ) =
T∏

i=T−`

qφ(zi|zT−`:i,xT−`:T )

where ∗ denotes scalar multiplication below and qφ(zi|zT−`:i,xT−`:T ) is parametrized as:

zt ∼ N(Kφ(zt−1,xT−`:T ), Lφ(zt−1,xT−`:T ))

Kφ(zt−1,xT−`:T ) = 1-MLP(hout, Identity)

Lφ(zt−1,xT−`:T ) = 1-MLP(Kφ(zt−1,xT−`:T ),Softplus)

hout =
1

3
∗ (1-MLP(zt−1,Tanh) + hleft + hright)

hleft = RNN(xT−`:t,ReLU)

hright = RNN(xt+1:T ,ReLU)

1.3 Parameter server and worker design

We detail the parameter server and worker client pseudo code when using BDSGD.
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Algorithm 1 parameter server

1: Input: model pθ, inference network qφ,
2: learning rate α, worker count N
3:
4: runtimes← {}
5: t← 0
6: while not converged do
7: G← 〈〉
8: xt ← 〈〉
9: c, x̃(1):(N) ← predict(pθ, qφ, runtimes)

10:
11: for 0 < j ≤ c do
12: receive 〈∇θF 〉n, xn ← any worker
13: xt ← xt ∪ xn

14: G← G+ 〈∇θF 〉n
15: end for
16: θ′ ← θ − α 1

cG
17: send θ′ → all workers
18:
19: xc ← max(xt)
20: for c < k ≤ N do
21: xk ← sample p(x̃(k); x̃(k) > xc)

22: xt ← xt ∪ xk

23: end for
24: runtimes{key : t}← xt
25: increment t
26: end while

Algorithm 2 worker

1: Input: data split X ,
2: local batch size m,
3: worker index n
4:
5: procedure compute_gradient(θ):
6: x← timestamp()
7: for i = 1 to b
8: x(z), y(z) ← sample(X)
9: 〈∇θF 〉n ← 1

m∇F (θ, x
(z), y(z))

10: end for
11: xn ← timestamp() − x
12: send 〈∇θF 〉n, xn → parameter server
13: end procedure
14:
15: θ ← initialize(θ)
16: while not converged do
17: spawn thread run compute_gradient(θ)
18: await receive θ′ ← parameter server
19: θ ← θ′

20: terminate thread
21: end while

The await parameter server udpate and thread termination mechanism in lines 18-20 of Alg. 2 can be
implemented using threads, async promises, or continuous polling of parameter server socket.

1.4 Experimental runs

We train 4 distinct neural network models in our experiments: 2-layer CNN on MNIST classification
and ResNet-16, ResNet-64, and WideResNet-16x10 on CIFAR10 classification.

The CNN is trained with a batch size of 10112 and fixed learning rates of 0.64 for BDSGD, fully
synchronous SGD, and Elfving SGD runs on a 158-worker cluster. The CNN is also trained with
Hogwild and a learning rate of 0.004 (scaled down from 0.64 by the number of workers).

The remaining WideResNet and ResNets are trained on a 2175-worker cluster uses SGD with 0.9
momentum and a linearly scaled learning rate warmup for 50 iterations from an initial learning rate of
0.001. After the warmup phase, the WideResNet model uses a learning rate of 0.12 decayed by 80%
at 200 iterations and 50% more at 350 iterations, ResNet-64 uses a 0.18 learning rate decayed by
80% at 250 iterations and 80% more at 450 iterations, and ResNEt-16 uses a 0.06 learning rate with
no decay. The models are trained to 400 iterations, 600 iterations, and 1500 iterations, respectively.

Each of these 4 models is trained with fully observed runtime information from naive synchronous
training runs of the neural network on the corresponding cluster. All generative models use a 50-
dimensional latent variable with 30-dimensional and 50-dimensional MLP link functions for the
transfer and emission functions, respectively. The RNN in the proposal network uses 200 hidden
units.

For BDSGD on CNN training, we train the generative model with Adam, using a 0.00004 learning
rate, 0.96:0.999 beta1 and beta2 values, gradient clipping at 20.0, weight decay of 0.6, and a learning
rate decay of 0.99996. and a minibatch size of 8. For the 3 BDSGD models on the 2175-cluster, we
use Adam with a minibatch size of 20 and a 0.00002 learning rate. All models are trained with a
twenty-timestep lag, i.e. ` = 20.
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