A  Proofs

A.1 Measurement Noise and Bias

Proof of Proposition 1.
. 1 .1
7= [NTT(I — Px)T)] 1[NTT(I — Py)Y] (6)

By Law of Large Number,
%TTX = RB[T{(U;VT +W,)] = E(T;U) VT
%XTY = EB{(UVT + W) (U +7T; + ;)] = VE[U,' Uj]a + TVE(U, T;)
;]TTY = BT (Uia + 7T + )] = E(TiU;) o + 7E(T?)
(%X TX) = E(VU UV T+W UV T VUT Wit W W) 7t = [VEU UV T 4o L] ™
By Sherman—Morrison—Woodbury formula,
VEWU, UV + 02 L]t = L iV[(iQEUJUi)—l +VvivytvT

2 2
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and

[(ULQEUJUQ*1 + VIV =TTV THVTV) T+ ULQEUZTUZ-]*(VTV)*1
Plug ;flese terms back in [6] ’
%TT(I — Px)Y = 7E(T?) + E(T;U;)a
+E(TU)V T VEU U)WV + 62 I7'VEU, Ui
+TR(TU)V T [VEU U)WV + 0217 'VopRU, T,

= T]E(Tf) + E(T;Us)a
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Similarly,
LT~ PY)T — E(1?) ~ E(T,X)(EX] X0)E(X] 1)

1
=E(T}) - o E(TU)H

w

EWTU) + (VY)W T

Therefore, ’

E(TUi)o — s E(TU){ = EU U:) + (VIV) " E(U] U)a
E(1?) — ZE(LU){ZE(U, Uy) + (VIV) 1} IE(U, T,)
E(LU)EWU, U;) =V TV +EU, U;) ta

~ E(?) - E@U)(ZVTV) T+ EU U] E(U, 1))

The last equality once again follows from Sherman—-Morrison—Woodbury formula. O

T—T—
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Proof for Corollary [T I(VTV)~Y =1/02. (V) — 0so H[U%VTV +EU U) Y —o.

min

On the other hand, by Sherman—-Morrison—Woodbury formula,

E(TUD (VT V)™ + B U] W] )

1
= E(TU)EWU, U) T 'B(U T;) — B(TU)EWU, Uy) B V) + = VIVIT'E(U U) T 'E(U T)
g

So the denominator term satisfies that
1
E(T7)-E(TU) (5 V' V)" HEU; U)] "B Th) > B(T7)~E(TU:) [E(U; U:)] T E(U; T2)

which is bounded away from 0 by Lemma 7. Therefore, the asymptotic bias term (T)) diminishes to
0. O

Proposition 2. Given the true V, U; can be estimated by the OLS estimator for the following linear
regression: forj =1,....p
Xij = VJULT + UIE

Namely we regress X, on the design matrix V to estimate U,' . The resulting confounder estimator

isU=X V(VTV)~L. The subsequent OLS estimator for ATE based on U,Y and T is denoted as .
Under the assumptions in Proposition 1, T has the same asymptotic bias as in Proposition 1.

Proof of Proposition 2. In this case, U = U + WV (VTV)~L Moreover, 7 has the following form:
. 1 4. 1
T= [NTT(I — Py)T] 1[NTT(I — Py)Y]

1 1 1
= [T = Py)T) M T (I = Py)Ua + %TT(I — Py)T+ 17 (I = Py)e]

Take %TT P5Ua as an example.

LT pva= Lre ot LT
~ T PpUa = NTU(NU U) U Ua
where ) )
—TU ==T" "W = ET,U;
~TU =% U+WV{V V)™ - ELU,
1~ 1
(NUTU)*1 = {N[U +WvvI T +wyv vyt
1.1
- = [ EU U+ (VTV)"7!
w Uw
1 -~ 1
NUTUa =5+ wWvVTV) 1 TUa = EU; U
Therefore

1 1 1 1
NTTPUUa—>U—QETZ-UZ-[U—QIEU;UZ-—HVTV) YR Uia

w w

which is exactly equal to the limit of %TTPX U « in the proof of Proposition 1. The equivalence of
other terms can be verified similarly. O

A.2 Proof of Theorem [Tl

Proof of Theorem[I] The error of the ATE estimator in the linear regression can be written as:

#or = [T (L= P)TI [TT( = Pyl [T (1 = BT [T (1= Py)el ()
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We first bound 1 [T (I — Py)U]a:
1 1
N|TT(I — Py)Ua| = N|TT(I —~ Py)Ua—T'(I — Py)Uq|
1
= N|TT(PU — Py)Uql|

1 1
< —=|Tll—=UallllPy — Py
\/> /N U

A
(\ﬁIITII)(FIIUll)(M(U U))

The first equaility follows from (I — Py )U = 0. The last inequality follows from Lemma
We then bound [T'" (I — Py)T):

1 1
N|TT(I — P;)T)| N|TT(I — Py)T +T"(Py — Py)T|

Y

1 1
—TI - P)HT - |=T"(Py — P\T

1 2 .
> —_TT(I - Py)T — —||T||?Z
> ST = Po)T = < |T|226(U.0)

Furthermore, we can bound +|T'" (I — Py )e|: TT(I — Py )e is sub-Gaussian with mean 0 and
variance o2T T (I — Py )T. By Hoeffding bound, for any ¢ > 0 and some constant ¢ > 0,

2,2
el eNt2

1 e
P(=|TT(I = Py)e| > t) < 2 77 U=F)T < 9¢~ %%
n

Take t = <7, then & |T"(I — Py )e| < <% with high probability 1 — 2 exp(—cN'/2) for some
positive constant c.

Plug these three bounds in (/) then the conclusion follows. [

Lemma 4 (Equivalence of Space Distance Metrics). The metric A(M , M) for matrices M € RN*"
and M € RN*F with orthonormal columns satisfies:

Z(M, M) < ||MMT — MMT|| < 2£(M, M)

Proof. See Lemma 1 in Cai et al. [31]]. O

Lemma 5. Suppose that T} is almost surely not a linear combination of U;. Under Assumption 3]
L T—r (I — Py)T is almost surely bounded away from 0 for any N.

Proof. Consider the asymptotic case when N — oo.
1 1
2 T( A
NT (I — Py)T ZT f—ZTU ZUU NZ
By Law of Large Number,
N
1
N2
1 1
~ LU (5 Z viu; ) Z i = E(LUDEUU T B(UT)
i=1 i=1
The result follows immediately from a matrix version of Cauchy-Schwartz Inequality [37]]. O
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A.3  Proof of Theorem

Lemma 6. Assume that ® y x, is a low-rank matrix of rank atmost r < N, p. Further assume (3, 4),
Xij —g(®;;) are sub-exponential with parameter o’ and |Q| > corNlogN for large enough constant

co. Given any (3 there exist positive constants cg, Cg, K such that for X = 2cgo’\/Np,/ ’"Nllé’f N,

the estimator from Exponential Family Matrix Completion () satisfies the following with probability
at least 1 — 4e—(1+B)1og” N _ —(1+B)log N .

. a? (®) max{o’?,1} rNlogN
& — @F < Cp—F 2 ( Ql )@l ®)
B

2nasp(P)
where 113 = Kge e >0 for some positive constant K g and ous, (P) is the spikeness ratio of
D defined as follows:

_ ”(I)HmaX\/Np

Qgp (P
o(®) =]

Proof. See Corollory 1 in Gunasekar et al. [8] for sub-Gaussian X;; — g(®;;). For sub-Exponential
case, use the Orlicz norm corresponding to sub-Exponential random variables for Lemma 3 and
Lemma 5 in Gunasekar et al. [8]] and then the same conclusion follows. O

Lemma 7 (Wedin’s Theorem). Suppose that X = UXV T is of rank r and X = X + E with the
leading r left singular vector matrix and right singular vector matrix being U and V. Then

max{||R||z2, ||S]l2} Al

max{Z(U,U), 2Z(V,V)} <
{£(U,0),£(V,V)} o (X)

where

Proof of Theorem[2] Obviously O‘\S/’}\%) < 1,80 pug > Kpe " Let ¢3 = %{jf’l} with 8 = 1,
5

then according to Lemma@ the following holds with high probability at least 1 — 4e
6_2 log N .

—2log? N _

A rNlogN
1@ — @[F < GaZ, ()

2
2%sp TH(I)HF

Apply Wedin’s Theorem (Lemma [7) on ® and & with E = ® — &. Since U and V both have
orthonormal columns,

[1Bll2 < |Ella < [ E]lr

1Sll2 < [IEll2 < [|E]|

rN log N
I1Bllr < ey (®)y| =12l

o (8) = 0,(®) — | Ellz = 01(®) — | Ellr

where

By Weyl’s inequality,
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As a result,

Cotigy(®)y/ 12N ||| -
£(0,U) < - i

01 (®) — ca0ry (@) /NI -

02045;)((1)) TN\ISFNTH(I)M

IN

rN log N
UT((I)) - C2O‘Sp(q>) |Q\g TH(I)H2

r3N log N
CQasp(é),/ilmg
o (P r3N log N
ZoE) — co0sp(®))/ g

IN

Al

A.4 Proof of Theorem

Proof of Theorem 3] The conclusions immediately follow from Lemma [§] Lemma [9] Lemma [T0}
Theorem([T] and Theorem 2]

Lemma 8 (Spikeness Ratio). Under AssumptionE] the spikeness ratio ag,(®) < ¢ cv /T with high
probability 1 — N~1/2 —2 exp(—ch/Q)for some positive constant c, c’.

Proof. According to the definition, ag, (U VT ) =+/N ”ﬁjgvT” ﬂ“a" Obviously,

[0V e < max(U7V;) < max U max |5

Next, we prove that UV T ||z > o, (U )HVHF Suppose U has SVD Uy, V.5 where 3,5 =
diag(o1(U),...,0.(U)) and VIV = VVT = I,.,,.. Then
IOV = [1UnsrZexr Vi, Ve
01( ) 0 ... 0 VitV
0 o2(U) 0 Vv
=1 . — : o e
0 0 o (U)] | VTV

> llon @)V
k=1

D IvIve
k=1

= o (O)VT VIl = o (U)|IV]F

max; [|Us|| max; ||V ||
—=or(DIVIF
we can prove that the following holds with high probability at least 1 — 2 exp(—cN v ).

1 r 1
o) 2 (-0 -

Under Assumption[3} | L~'U;||? ~ x(r). Then according to Proposition 1 in [39], with probability

at least 1 — exp(—t2/2), |Us|| < Vr +tv2r +t2 < \/r +t. Lett = /3log N and take union
bound over i = 1, ..., N, then with high probability 1 — N~/ for any 1,

_1
Therefore, v, (UV ") < /NpYE

. Following the similar proof in Lemma .

| Ji J/3logN
ﬁ”UiH < (ﬁ + W)HLH
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C . r v3log N
which implies that \/% max; |U; || < (X4 + )L

VN
Therefore, with high probability 1 — N~=1/2 — 2 exp(—cN'/?),
v3log N i1V
ozsp(UVT) < Viiks og \/ﬁmaxj Vill < ey
1-C \/—‘/% — i Ve
O
Lemma 9. Under AssumptionH Z:g% > gf% with high probability 1 — 2 exp(—Cp®) given

that p*+t0 /N — 0 for some positive constant §, C.

Proof. We aim to prove [z (VU UV " — VLT LV ")z| < € for any  on the p-dimensional unit
sphere SP~*. Since 2T (VU TUVT — VLTLV ")z = 0 for # € Null(V), we only have to prove

1
max e (=VUTUVT —VLTLV "z| <e
z€SP—1NNullt (V) N

where SP~1 N Null* (V) is a r-dimensional space.

Consider §-net N for SP~1 N Null*(V), according to Lemma 5.4 in [38]),
1 1
max e (=VUTUVT-VLTLV "z| < 2max|z" —VU UV 2—2 " VL LV "¢l
z€SP—1NNullt (V) N zeN N
So we only need to prove that maxgen |2 VU UV T2 — 2 "VLTLV Tz| < £ with high proba-
bility. Note that L2 TVUTUV Tz — o TVLTLV o = L ¥.(22 — B(Z2)), where Z; = U;V T
are mutually independent with E(Z;) = 0 and E(Z2) = 2TVLTLV "2 < |[VLT|%. It follows that
the Z? — EZ? are sub-Exponential with upper bounded sub-Exponential norm (Lemma 5.14 [38]):

127 —EZ2| < 1Z]|ly, +EZ] < 2| Zil3, + EZ] < 3|[VL|*
By the Berstein Inequality (Corollary 5.17 in [38]])
2

€ €
N

SIvLl eI

Furthermore, Lemma 5.2 in [38]] implies that |A/| < 9”. So taking union bound over N gives:

1
P(L’E/(NVUTUVT —~VLTLV Nz| > %) < 2exp(—cmin{

1
P(gleaj\)ﬂx’(NVUTUVT —~ VL LV x| > ;) < 2exp(rlog9 — %min{e,GQ}N)
- . )
where K—! = mm{m’ W}'

We consider two cases:

1. For large enough p (6vp > 1), take € = $ then for some positive constant C' and

r/p‘s — 0,
1
P(max o (VU UVT-VLTLV | > g) < 2exp(rlog9 36;2 ZeN) < 2exp(—
So with probability at least 1 — 2 exp(—Cp?),
s
2V BVL ) —c _v—ep_v-Pr v
o2(UVT) = o3(VLT)+e ~ v+4¢/p v+ T'l;‘s 24w
L 48y,
which is bounded away from 0 for large enough N, p such that P < 3.
1/2468/2
2. For moderate p (6vp < 1), take ¢ = 2 ~ and then

1
P(glez}\)f( \x’(NVTUTUV —VTV)z| > =) < 2exp(rlog9 — @3[\7) < 2exp(—Cp°),

[N e)

which implies the same conclusion.
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Lemma 10. Under Assumptionﬁ ﬁ (U] is bounded for any N with high probability at least
1 —2exp(—cN/?).

Proof. Apply Theorem 5.39 in [38]] to matrix L~ U, for any ¢ > 0 and positive constants c, C, with

probability at least 1 — 2 exp(—ct?),

Ul

1
\/Nr|

<

L
N

Yo

Take t = N1/4 then the conclusion follows.

B More Numerical Results
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Figure 4: Relative RMSE for binary covariates in the low dimensional setting as in Section 4.1 and
the relative RMSE for the setting where p varies from 150 to 1500 and N = p/1.5.
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Figure 5: Relative RMSE of ATE estimators for binary covariates with N = 200, 400, . .

.,2000 and
p = N/2. Each entry is set to be missing value with equal probability 0, 0.3, or 0.5.

C Causal Effect Variational Autoencoder

Figurem shows the estimation error of the causal effect variational autoencoder (CEVAE) [9] in
the twins dataset when there are no missing values. Like Exponential Family Matrix Completion,
variational autoencoder (VAE) is another latent variable model that provides yet another way to
recover the latent confounders. In [9]], the authors combine such a latent variable model with an
outcome and treatment model and train these together in order to recover causal effects in the
presence of noisy proxies. This flexible neural-net-based model allows for additional non-linearities
that provide for better performance in this semi-synthetic example, as we explain below. Indeed,
these benefits disappear when we limit the outcome model to be linear.
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Figure 6: Relative RMSE of ATE estimators for Gaussian and Binary covariates with N =
150, 300, ...,1500 and p = 200.
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Figure 7: Performance of causal effect variational autoencoder [9]] on the twins dataset without
missingness. CEVAE follows the neural network architecture given in [9], and CEVAE Linear uses 0
hidden layer in P(Y; | T;, U;) while keeping the archetecture of other neural networks the same as
CEVAE.

In our twins data example, the proxies are synthetic: we replicate the GESTAT 10 multiple times
and independently perturb the entries of these copies with probability 0.5; each perturbed entry is
then assigned with a new value sampled from 0 to 9 uniformly at random. This means that for
a€{0,...,9}, P(X;; =a|U;) =0.5x -5 +0.5 x I(U; = a). In contrast, the matrix factorization
method based on multinomial loss assumes that P(X,; = a | U;) = exp(U;" V*)/ 3, exp(U;" V),

where Vjo, ceey ng define the complete set of loading vectors of the ;" noisy proxy [[18]. Although
this assumption drastically deviates from the true proxy generating process, using matrix factorization
still leads to considerable improvement in causal effect estimation. Thanks to its high non-linearity,
CEVAE can even better adapt to this complex synthetic emission model and learn it more faithfully,
therefore producing the better results see in Figure[7] While CEVAE has no theoretical guarantees,
our work focuses on providing the first finite-sample recovery result for a causal parameter from
high-dimensional proxy data, which is only possible in the simpler linear setting. Indeed, our work
can be seen as providing some theoretical justification for more practical methods using more complex
models.

To further study where the benefit of CEVAE stems from, we replaced the outcome model with a
linear one (i.e., no hidden layers, essentially a logistic regression) and found that the performance
deteriorated significantly (CEVAE Linear in Figure [7). This indeed suggests that the primary
improvement arises from the high flexibility of the neural networks in CEVAE. In fact, while logistic
regression on the matrix-factorization-recovered confounders improves significantly on simple logistic
regression, CEVAE with a linear outcome does as badly as simple logistic regression when the number
of proxies is large.
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