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Abstract

There has been growing interest in using neural networks and deep learning tech-
niques to create dialogue systems. Conversational recommendation is an interesting
setting for the scientific exploration of dialogue with natural language as the as-
sociated discourse involves goal-driven dialogue that often transforms naturally
into more free-form chat. This paper provides two contributions. First, until now
there has been no publicly available large-scale dataset consisting of real-world dia-
logues centered around recommendations. To address this issue and to facilitate our
exploration here, we have collected REDIAL, a dataset consisting of over 10,000
conversations centered around the theme of providing movie recommendations.
We make this data available to the community for further research. Second, we
use this dataset to explore multiple facets of conversational recommendations. In
particular we explore new neural architectures, mechanisms, and methods suitable
for composing conversational recommendation systems. Our dataset allows us
to systematically probe model sub-components addressing different parts of the
overall problem domain ranging from: sentiment analysis and cold-start recommen-
dation generation to detailed aspects of how natural language is used in this setting
in the real world. We combine such sub-components into a full-blown dialogue
system and examine its behavior.

1 Introduction

Deep-learning-based approaches to creating dialogue systems provide extremely flexible solutions
for the fundamental algorithms underlying dialogue systems. In this paper we explore fundamental
algorithmic elements of conversational recommendation systems through examining a suite of neural
architectures for sub-problems of conversational recommendation making.

It is well known that deep learning techniques require considerable amounts of data to be effective.
Addressing this need, we provide a new dataset of 10,000 dialogues to the community to facilitate the
study of discourse with natural language when making recommendations is an explicit goal of the
exchange. Our setting of interest and our new dataset, named REcommendations through DIALog
(REDIAL)1, are centered around conversations about movies where one party in the conversation
is seeking recommendations and the other party is providing recommendations. Our decision for
focusing on this domain is motivated in part by the following.

A good discussion with a friend, librarian, movie rental store clerk or movie fan can be an enjoyable
experience, leading to new ideas for movies that one might like to watch. We shall refer to this
general setting as conversational movie recommendation. While dialogue systems are sometimes
characterized as falling into the categories of goal-directed dialogue vs chit-chat, we observe that
discussions about movies often combine various elements of chit-chat, goal-directed dialogue, and
even question answering in a natural way. As such the practical goal of creating conversational
1 https://redialdata.github.io/website/

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



recommendation systems provides an excellent setting for the scientific exploration of the continuum
between these tasks.

This paper makes a number of contributions. First we provide the only real-world, two-party
conversational corpus of this form (that we are aware of) to the community. We outline the data-
collection procedure in Section 3. Second, we use this corpus to systematically propose and evaluate
neural models for key sub-components of an overall conversational recommendation system. We focus
our exploration on three key elements of such a system, consisting of: 1) Making recommendations;
we examine sampling based methods for learning to make recommendations in the cold-start setting
using an autoencoder [1]. We present this model in Section 4.3 and evaluate it in Section 5. Prior work
with such models has not examined the cold-start setting which must be addressed in our dialogue
set-up. 2) Classifying opinions or the sentiment of a dialogue participant with respect to a particular
movie. For this task throughout the dialogue whenever a new movie is discussed we instantiate
an RNN-based sentiment-prediction model. This model is used to populate the autoencoder-based
recommendation engine above. We present this model component and our analysis of its behavior
and performance in Sections 4.2 and 5 respectively. 3) We compose the components outlined above
into a complete neural dialogue model for conversation and recommendation. For this aspect of the
problem we examine a novel formulation of a hierarchical recurrent encoder-decoder (HRED) model
[2] with a switching mechanism inspired from Gulcehre et al. [3] that allows suggested movies to be
integrated into the model for the dialogue acts of the recommender. As our new dataset is relatively
small for neural network techniques, our modular approach allows one to train sub-components on
other larger data sources, whereas naïvely training end-to-end neural models from scratch using only
our collected dialogue data can lead to overfitting.

2 Related Work
While we are aware of no large scale public dataset of human-to-human dialogue on the subject of
movie recommendations, we review some of the most relevant work of which we are aware below.
We also review a selection of prior work on related methods in Section 4 just prior to introducing
each component of our model.

Dodge et al. [4] introduced four movie dialogue datasets comprising the Facebook Movie Dialog
Data Set. There is a QA dataset, a recommendation dataset, and a QA + recommendation dataset. All
three are synthetic datasets built from the classic MovieLens ratings dataset [5]2 and Open Movie
Database3. Others have also explored procedures for generating synthetic dialogues from ratings
data [6]. The fourth dataset is a Reddit dataset composed of around 1M dialogues from the movie
subreddit4. The recommendation dataset is the closest to what we propose, however it is synthetically
generated from natural language patterns, and the answers are always a single movie name. The
Reddit dataset is also similar to ours in the sense that it consists of natural conversations on the topic
of movies. However, the exchanges are more free-form and obtaining a good recommendation is not
a goal of the discourse.

Krause et al. [7] introduce a dataset of self dialogues collected for the Amazon Alexa Prize compe-
tition5, using Amazon Mechanical Turk (AMT). The workers are asked to imagine a conversation
between two individuals on a given topic and to play both roles. The topics are mostly about movies,
music, and sport. The conversations are not specifically about movie recommendations, but have
the advantage of being quite natural, compared to the Facebook Movie Dialog Data Set. They use
this data to develop a chat bot. The chat bot is made of several components, including: a rule-based
component, a matching-score component that compares the context with similar conversations from
the data to output a message from the data, and a (generative) recurrent neural network (RNN). They
perform human evaluation of the matching-score component.

Some older work from the PhD thesis of Johansson [8] involved collecting a movie recommendation
themed dialogue corpus with 24 dialogues, consisting of 2684 utterances and a mean of 112 utterances
per dialogue. In contrast, our corpus has over 10k conversations and 160k utterances. See Serban
et al. [9] for an updated survey of corpora for data-driven dialogue systems.

The recommender-systems literature has also proposed models for conversational systems. These
approaches are goal-oriented and combine various different modules each designed (and trained)
independently [10, 11]. Further, these approaches either rely on tracking the state of the dialogue
2 https://grouplens.org/datasets/movielens/ 3 http://en.omdb.org
4 http://reddit.com/r/movie 5 https://developer.amazon.com/alexaprize
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using slot-value pairs [12, 13] or focus on different objectives such as minimizing the number of user
queries to obtain good recommendations [14]. Other approaches [15, 16, 17, 18] use reinforcement
learning to train goal-oriented dialogue systems. Sun and Zhang [18] apply it to conversational
recommendations: a simulated user allows to train the dialogue agent to extract the facet values
needed to make an appropriate recommendation. In contrast, we propose a conditional generative
model of (natural language) recommendation conversations and our contributed dataset allows one to
both train sub-modules as well as explore end-to-end trainable models.

3 REDIAL dataset collection

Here we formalize the setup of a conversation involving recommendations for the purposes of data
collection. To provide some additional structure to our data (and models) we define one person in the
dialogue as the recommendation seeker and the other as the recommender. To obtain data in this form,
we developed an interface and pairing mechanism mediated by Amazon Mechanical Turk (AMT).
Our task setup is very similar to that used by Das et al. [19] to collect dialogue data around an image
guessing game, except that we focus on movie recommendations. We pair up AMT workers and give
each of them a role. The movie seeker has to explain what kind of movie he/she likes, and asks for
movie suggestions. The recommender tries to understand the seeker’s movie tastes, and recommends
movies. All exchanges of information and recommendations are made using natural language.

We add additional instructions to improve the data quality and guide the workers to dialogue the
way we expect them to. We ask to use formal language and that conversations contain roughly
ten messages minimum. We also require that at least four different movies are mentioned in every
conversation. Finally, we ask to converse only about movies, and notably not to mention Mechanical
Turk or the task itself. See Figure 4 in the supplementary material for a screen-shot of the interface.

In addition, we ask that every movie mention is tagged using the ‘@’ symbol. When workers type
‘@’, the following characters are used to find matching movie names, and workers can choose a
movie from that list. This allows us to detect exactly what movies are mentioned and when. We
gathered entities from DBpedia that were of type <http://dbpedia.org/ontology/Film> to
obtain a list of movies, but also allow workers to add movies to the list if it is not present already. We
also obtained movie release dates from DBpedia. Note that the year or release date of a movie can be
essential to differentiate movies with the same name, but released at different dates.

Workers are (separately from the on-going discussion) asked three questions for each movie:
(1) Whether the movie was mentioned by the seeker, or was a suggestion from the recommender
(“suggested” label); (2) Whether the seeker has seen the movie (“seen” label): one of Seen it, Haven’t
seen it, or Didn’t say; (3) Whether the seeker liked the movie or the suggestion (“liked” label):
one of Liked, Didn’t like, Didn’t say. We will refer to these additional labels as movie dialogue
forms. Both workers have to answer these forms even though it really concerns the seeker’s movie
tastes. We use those ratings to validate data collection, the two workers agreeing in the forms being
generally an indicator for conscientious workers. Ideally, the two participants would give the same
answer to every form, but it is possible that their answers do not coincide (because of carelessness,
or dialogue ambiguity). The dataset released provides both workers’ answers. The movie dialogue
forms therefore allow us to evaluate sub-components of an overall neural dialogue system more
systematically, for example one can train and evaluate a sentiment analysis model directly using these
labels. We believe that predicting sentiment from dialogues poses an interesting sub-challenge within
conversational recommendation, as the sentiment can be expressed in a question-answer form over
several dialogue utterances.

In each conversation, the number of movies mentioned varies, so we have different numbers of movie
dialogue form answers for each conversation. The distribution of the different classes of the movie
dialogue form is shown in Table 1a. The liked/disliked/did not say label is highly imbalanced. This is
standard for recommendation data [20], since people are naturally more likely to talk about movies
that they like, and the recommender’s objective is to recommend movies that the seeker is likely to
like. Table 1b shows an example of conversation from the dataset.

For the AMT HIT we collect data in English and restrict the data collection to countries where English
is the main language. The fact that we pair workers together slows down the data collection since two
people must be online at the same time to do the task, so a good amount of workers is required to
make the collection possible. Meanwhile, the task is quite demanding, and we have to select qualified
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# conversations 10006
# utterances 182150
# users 956
# movie mentions 51699

seeker mentioned 16278
recommender suggested 35421

not seen 16516
seen 31694
did not say 3489

disliked (4.9%) 2556
liked (81%) 41998
did not say (14%) 7145

Table 1a. (Above) REDIAL data statistics.
For the movie dialogue forms, the numbers
shown represent the seeker’s answers.
Table 1b.(Right) Conversation excerpts
(HUMAN followed by response by
SEEKER) and model outputs (OUR pro-
posed approach compared to HRED a
generic dialogue model [2]).

HUMAN: hello, can i help you find a movie ?
HRED: hi what kind of movies do you like
OURS: hi, how can i help you ?
SEEKER: hello ! i would like to find a suspenseful, but clean family

friendly movie .
... ...
SEEKER: 2001 : a space odyssey might be a great option. anything

else that you would suggest ?
HUMAN: you can try planet of the apes the older one is quite

suspenseful and family friendly .
HRED: i haven’t seen that one yet but i heard it was good. i

haven’t seen that one. have you seen the last house on
the left ?

OURS: star wars : the force awakens is also a good one return
of the jedi all good movies

SEEKER: those sound good ! i ’m going to look into those movies.
HUMAN: i hope you enjoy, have a nice one
HRED: have you seen foxcatcher ? it ’s about a man who has a

rich guy.
OURS: i hope i was able to help you find a good movie to watch
SEEKER: thank you for your help ! have a great night ! good bye

Note: We provide additional conversation examples and model outputs in the supplementary material.

workers. HIT reward and qualification requirement were decisive to get good conversation quality
while still ensuring that people could get paired together. We launched preliminary HITs to find
a compromise and finally set the reward to $0.50 per person for each completed conversation (so
each conversation costs us $1, plus taxes), and ask that workers meet the following requirements:
(1) Approval percentage greater than 95; (2) Number of approved HITs greater than 1000; and
(3) They must be in the United States, Canada, the United Kingdom, Australia or New Zealand.

4 Our Approach
We aim at developing an agent capable of chatting with a partner and asking questions about their
movie tastes in order to make movie recommendations. One might therefore characterize our system
as a recommendation “chat-bot”. The complete architecture of our approach is illustrated in Figure 1.
Starting from the bottom of Figure 1, there are four sub-components: (1) A hierarchical recurrent
encoder following the HRED [2] architecture, using general purpose representations based on the
Gensen model [21]; (2) A switching decoder inspired by Gulcehre et al. [3], modeling the dialogue
acts generated by the recommender; (3) After each dialogue act our model detects if a movie entity has
been discussed (with the @identifier convention) and we instantiate an RNN focused on classifying
the seeker’s sentiment or opinion regarding that entity. As such there are as many of these RNNs as
there are movie entities discussed in the discourse. The sentiment analysis RNNs are used to indicate
the user opinions forming the input to (4), an autoencoder-based recommendation module [1]. The
autoencoder recommender’s output is used by the decoder through a switching mechanism. Some
of these components can be pre-trained on external data, thus compensating for the small data size.
Notably, the switching mechanism allows one to include the recommendation engine, which we
trained using the significantly larger MovieLens data. We provide more details for each of these
components below and describe the training procedure in the supplementary materials.

4.1 Our Hierarchical Recurrent Encoder

Our dialogue model is reminiscent of the hierarchical recurrent encoder-decoder (HRED) architecture
proposed and developed in Sordoni et al. [2] and Serban et al. [22]. We reuse their hierarchical
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Figure 1: Our proposed model for conversational recommendations.

architecture, but we modify the decoder so that it can take explicit movie recommendations into
account and we modify the encoder to take general purpose sentence (GenSen) representations
arising from a bidirectional Gated Recurrent Unit (GRU) [23] as input. Since our new dataset here
consists of about 10k dialogues (which is relatively small for deep learning techniques), we use
pre-trained GenSen representations obtained from the encoder outlined in Subramanian et al. [21].
These representations have led to higher performance across a variety of new tasks in lower data
regimes (e.g. with only 10k examples). We use the embeddings and first layer of the GenSen sentence
encoder which are pre-trained on multiple language tasks and we keep them frozen during training
of our model. To deal with the issue of how to process movies discussed in the dialogue using the
@movie for movie entities, @movie tokens in the input are replaced by the corresponding word
tokens for the title of the movie.

More formally, we model each utterance Um as a sequence of Nm words Um = (wm,1, ..., wm,Nm
)

where the tokens wm,n are either words from a vocabulary V or movie names from a set of movies
V �. We also use a scalar sm ∈ {−1, 1} appended to each utterance to indicate the role (recommender
or seeker) such that a dialogue of M utterances can be represented as D = ((U1, s1) , ..., (UM , sM )).
We use a GRU to encode utterances and dialogues. Given an input sequence (i1, ..., iT ), the network
computes reset gates rt, input gates zt, new gates nt and forward hidden state

−→
h t as follows:

rt = σ
�
Wirit +Whr

−→
h t−1 + br

�
, zt = σ

�
Wizit +Whz

−→
h t−1 + bz

�

nt = tanh
�
Winit + bin + rt ◦ (Whn

−→
h t−1 + bhn)

�
,

−→
h t = (1− zt) ◦ nt + zt ◦

−→
h t−1

Where the W∗∗ and b∗ are the learned parameters. In the case of a bi-directional GRU, the backward
hidden state

←−
h t is computed the same way, but takes the inputs in a reverse order. In a multi-layer

GRU, the hidden states of the first layer
�−→
h

(1)
1 , ...,

−→
h

(1)
T

�
(or the concatenation of the forward and

backward hidden states of the first layer

�−→
h

(1)
1←−

h
(1)
1

�
, ...,

�−→
h

(1)
T←−

h
(1)
T

�
for a bi-directional GRU) are passed

as inputs to the second layer, and so on. For the utterance encoder words are embedded in a 2048
dimensional space. Each utterance is then passed to the sentence encoder bi-directional GRU. The

final hidden state of the last layer is used as utterance representation u =

�−→
h

(−1)
T←−

h
(−1)
T

�
. We obtain a

sequence of utterance representations u1, ...,uM . To assist the conversation encoder we append a
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binary-valued scalar sm to each utterance representation um, indicating if the sender is the seeker
or the recommender. The sequence u�

1, ...,u
�
M is passed to the conversation encoder unidirectional

GRU, which produces conversation representations at each step of the dialogue: h1, ...,hM .

4.2 Dynamically Instantiated RNNs for Movie Sentiment Analysis

In a test setting, users would not provide explicit ratings about movies mentioned in the conversation.
Their sentiment can however be inferred from the utterances themselves. Therefore, to drive our
autoencoder-based recommendation module we build a model that takes as input both the dialogue
and a movie name, and predicts for that movie the answers to the associated movie dialogue form. We
remind the reader that both workers answer the movie dialogue form, but it only concerns the seeker’s
movie tastes. It often happens that the two workers do not agree on all the answers to the forms. It
may either come from a real ambiguity in the dialogue, or from worker carelessness (data noise). So
the model predicts different answers for the seeker and for the recommender. For each participant it
learns to predict three labels: the “suggested” label (binary), the “seen” label (categorical with three
classes), the “liked” label (categorical with three classes) for a total of 14 dimensions.

Let us denote D = {(xi, yi) , i = 1..N} the training set, where xi = (Di,mi) is the pair of a
dialogue Di and a movie name mi that is mentioned in Di and

yi = (ysuggi , yseeni , ylikedi� �� �
seeker’s answers

, y� suggi , y� seeni , y� likedi� �� �
recommender’s answers

), (1)

are the labels in the movie dialogue form corresponding to movie mi in dialogue Di. So if 5 movies
were mentioned in dialogue D, this dialogue appears 5 times in a training epoch.

The model is based on a hierarchical encoder (Section 4.1). For sentiment analysis, we modify the
utterance encoder to take the movie m into account. After the first layer of the utterance encoder
GRU (which is pre-trained), we add a dimension to the hidden states that indicate for each word if
it is part of a movie mention. For example if we condition on the movie The Sixth Sense, then the
input ["<s>", "you", "would", "like", "the", "sixth", "sense", ".", "</s>"] produces the movie mention
feature: [0, 0, 0, 0, 1, 1, 1, 0, 0]. The utterance and conversation encoding continue as described in
Section 4.1 afterwards, producing dialogue representations h1, ...,hM at each dialogue step.

The dialogue representation at the last utterance hM is passed in a fully connected layer. The
resulting vector has 14 dimensions. We apply a sigmoid to the first component to obtain the
predicted probability that the seeker answered that the movie was suggested by the recommender
osuggi . We apply a softmax to the next three components to obtain the predicted probabilities for the
seeker’s answer in the not-seen/seen/did-not-say variable oseeni . We apply a softmax to the next three
components to obtain the predicted probabilities for the seeker’s answer in the disliked/liked/did-
not-say variable olikedi . The last 7 components are treated the same way to obtain the probabilities
of answers according to the recommender o� sugg, o� seen, o� liked. We denote the parameters of the
neural network by θ and oi = fθ(xi) =

�
osuggi , oseeni , olikedi , o� suggi , o� seeni , o� likedi

�
, the prediction of

the model. We minimize the sum of the three corresponding cross-entropy losses.

4.3 The Autoencoder Recommender

At the start of each conversation, the recommender has no prior information on the movie seeker
(cold start). During the conversation, the recommender gathers information about the movie seeker
and (implicitely) builds a profile of the seeker’s movie preferences. Sedhain et al. [1] developed a
user-based autoencoder for collaborative filtering (U-Autorec), a model capable of predicting ratings
for users not seen in the training set. We use a similar model and pre-train it with MovieLens data [5].

We have M users, |V �| movies and a partially observed user-movie rating matrix R ∈ RM×|V �|. Each
user u ∈ {1, ...,M} can be represented by a partially observed vector r(u) =

�
Ru,1, ...,Ru,|V �|

�
.

Sedhain et al. [1] project r(u) in a smaller space with a fully connected layer, then retrieve the full
ratings vector r̂(u) = h(r(u); θ) with another fully connected layer. So during training they minimize
the following loss:

LR(θ) =
M�

u=1

�r(u) − h(r(u); θ)�2O + λ�θ�2 (2)
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where � ·�O is the L2 norm when considering the contribution of observed ratings only and λ controls
the regularization strength.

To improve the performance of this model in the early stage of performing recommendations (i.e. in
cold-start setting) we train this model as a denoising auto-encoder [24]. We denote by Nu the number
of observed ratings in the user vector r(u). During training, we sample the number of inputs kept
p uniformly at random in {1, ..., Nu − 1}. Then we draw p inputs uniformly without replacement
among all the observed inputs in r(u), which gives us a noisy user vector r̃(u). The term inside the
sum of Equation 2 becomes �r(u) − h(r̃(u); θ)�2O. The validation procedure is not changed: the
complete input from the training set is used at validation or test time.

4.4 Our Decoder with a Movie Recommendation Switching Mechanism

Let us place ourselves at step m in dialogue D. The sentiment analysis RNNs presented above predict
for each movie mentioned so far whether the seeker liked it or not using the previous utterances.
These predictions are used to create an input rm−1 ∈ R|V �| for the recommendation system. The
recommendation system uses this input to produce a full vector of ratings r̂m−1 ∈ R|V �|. The
hierarchical encoder (Section 4.1) produces the current context hm−1 using previous utterances. The
recommendation vector r̂m−1 and the context hm−1 are used by the decoder to predict the next
utterance by the recommender.

For the decoder, a GRU decodes the context to predict the next utterance step by step. To select
between the two types of tokens (words or movie names), we use a switch, as Gulcehre et al. [3] did for
the pointer softmax. The decoder GRU’s hidden state is initialized with the context hm−1, and decodes
the sentence as follows: h�

m,0 = hm−1, h�
m,n = GRU(h�

m,n−1, wm,n), vm,n = softmax
�
Wh�

m,n

�
,

vm,n ∈ R|V | is the predicted probability distribution for the next token wm,n+1, knowing that
this token is a word. The recommendation vector r̂m−1 is used to obtain a predicted probability
distribution vector v�

m,n ∈ R|V �| for the next token wm,n+1, knowing that this token is a movie name:
v�
m,n = softmax(r̂m−1) = v�

m,0 ∀n. Where we note that we use the same movie distribution v�
m,0

during the whole utterance decoding. Indeed, while the recommender’s message is being decoded, it
does not gather additional information about the seeker’s movie preferences, so the movie distribution
should not change. A switching network conditioned on the context hm−1 and the hidden state h�

m,n
predicts the probability dm,n that the next token wm,n+1 is a word and not a movie name.

Such a switching mechanism allows to include an explicit recommendation system in the dialogue
agent. One issue of this method is that the recommendations are conditioned on the movies mentioned
in the dialogue, but not directly on the language. For example our system would be unable to
provide recommendations to someone who just asks for “a good sci-fi movie”. Initial experiments
conditioning the recommendation system on the dialogue hidden state led to overfitting. This could
be an interesting direction for future work. Another issue is that it relies on the use of the ‘@’ symbol
to mention movies, which could be addressed by adding an entity recognition module.

5 Experiments

We propose to evaluate the recommendation and sentiment-analysis modules separately using estab-
lished metrics. We believe that these individual metrics will improve when modules are more tightly
coupled in the recommendation system and thus provide a proxy to overall dialogue quality. We also
perform an utterance-level human evaluation to compare responses generated by different models in
similar settings.

Evaluating models in a fully interactive setting, conversing with a human, is the ultimate testing
environment. However, evaluating even one response utterance at a time is an open challenge (e.g.,
[25]). We leave such evaluation for future work.

Movie sentiment analysis performance: We use the movie dialogue forms from our data to train
and evaluate our proposed RNN-based movie sentiment analysis formulation. The results obtained for
the seeker’s answers and the recommender’s answers are highly similar, thus we present the results
only for the seeker’s answers. We focus on understanding if models are able to correctly infer the

7



(a) (top row) Confusion matrices for the seen label. (bottom row)
Confusion matrices for the liked label. (left column) Baseline
GRU experiment. (middle) Our method with separate objectives
(right) Our method, jointly trained. We also provide Cohen’s
kappa coefficient for each matrix.

(b) Confusion matrix for the Cartesian
product predictions of seen and liked la-
bels using our method.

Figure 2: Confusion matrices for movie sentiment analysis on the validation set.

seen vs not seen, and liked vs not liked assessments from the forms. Because of the class imbalance
(i.e. 81% of movies were liked, vs 4.9% which were disliked), we weight the loss to compensate.

We compare with two simpler approaches. First, a baseline approach in which we pass the GenSen
encodings of the sentences between the first and the last mention of a movie into a GRU layer. This
is followed by a fully connected layer from the last hidden state. The prediction is made from the
mean probability over all the sentences. Second, instead of using a single hierarchical encoder that is
jointly trained to predict the three labels (suggested, seen and liked), we train the same model with
only one of the three objectives (seen or liked) and demonstrate that the joint training regularizes the
model. Figure 2a shows the confusion matrices for the seen and liked prediction tasks for, from left to
right, the baseline model, our model trained on single objectives, and our method outlined in Section
4.2 and illustrated in the blue region of Figure 1. We also provide Cohen’s kappa coefficient [26] for
each model and prediction task. Cohen’s kappa measures the agreement between the true label and
the predictions. For each prediction task, our jointly trained model has a higher kappa coefficient than
the two other baselies. The full confusion matrix for the Cartesian product of predictions is shown in
Figure 2b. All results are on the validation set.

Table 2: RMSE for movie recommendations. RMSE is shown for ratings on a 0–1 scale. For the
MovieLens experiment, we show the RMSE on a 0.5-5 scale in parenthesis.

Experiments on REDIAL (validation RMSE)

Training procedure Experiments on MovieLens No pre-training Pre-trained on MovieLens

Standard Baseline 0.181± 0.001 (0.813) 0.125 0.075
Denoising Autorec 0.171± 0.0006 (0.769) 0.127 0.072

Movie recommendation quality: We use the “latest” MovieLens dataset6, that contains 26 million
ratings across 46,000 movies, given by 270,000 users. It contains 2.6 times more ratings, but also
across 4.6 times more movies than MovieLens-10 M, the dataset used in Sedhain et al. [1]. First,
we evaluate the model on the MovieLens dataset. Randomly chosen user-item ratings are held out
for validation and test, and only training ratings are used as inputs. Following Sedhain et al. [1], we
sampled the training, validation, and test set in a 80-10-10 proportion, and repeated this splitting
procedure five times, reporting the average RMSE.

We also examine how the model performs on the ratings from our data (REDIAL), with and without
pre-training on MovieLens. This experiment ignores the conversational aspect of our data and focuses
only on the like/dislike ratings provided by users. We chose to consider only the ratings given by
the movie seeker, and to ignore the responses where he answered “did not say either way”. We
end up with a set of binary ratings for each conversation. To place ourselves in the setting of a
recommender that meets a new movie seeker (cold-start setting), we consider each conversation as a
6 https://grouplens.org/datasets/movielens/latest/, retrieved September 2017.
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separate user. Randomly chosen conversations are held out for validation, and each rating, in turn, is
predicted using all other ratings (from the same conversation) as inputs. We binarize the Movielens
observations—they range between 0.5 and 5— for pre-training, by choosing a threshold that gives a
similar distribution of 0s and 1s as in our data. Knowing that our data has 94.3% of “liked” ratings,
we chose a rating threshold of 2: ratings higher or equal are considered as “liked”, ratings lower are
considered as “disliked”. The binarized MovieLens dataset now has 93.7% of “liked” ratings. In each
experiment, for the two training procedures (standard and denoising), we perform a hyper-parameter
search on the validation set.

Table 2 shows the RMSE obtained on the test set. In the experiment on the MovieLens dataset, the
denoising training procedure brings a slight improvement on the standard training procedure. After
pre-training on MovieLens, the performances of the models on our data is significantly improved.

Figure 3: Results of human
assessment of dialogue quality.
The percentages are relative to
the total number of ranking tasks,
so that bars of the same color
sum to 1.

Overall dialogue quality assessment: We run a user study to
assess the overall quality of the responses of our model compared
to HRED. Ten participants were each presented with ten complete
real dialogues from our validation set, performing 56 ranking tasks–
1 for each recommender’s utterance in those ten dialogues. At
the point where the human recommender provided their response
in the real dialogue we show: the text generated by our HRED
baseline, our model, and the true response in a random order. The
participant is asked to give the dialogue responses a rank from
1–3, with 1 being the best and 3 the worst. We allow ties so that
multiple responses could be given the same rank (e.g., rankings
of the form 1, 2, 2 were possible if the one response was clearly
the best, but the other two were of equivalent quality). In Figure 3,
we show the percentage of times that each model was given each
ranking. The true response was ranked first 349 times, our model
267 times, and HRED 223 times.

6 Discussion and Conclusions

We presented REDIAL a new, high-utility dataset of real-world, human generated conversations
around the theme of providing movie recommendations. 10,000 conversations will likely be insuf-
ficient to train an end-to-end neural model from scratch, we believe that this shortage of data is
a systematic problem in goal-oriented dialogue settings and needs to be adressed at the modeling
side. We use this dataset to explore a novel modular formulation of a fully neural architecture for
conversational movie recommendations. The dataset has been collected in such a way that subtasks
such as sentiment analysis and movie recommendation can be explored and evaluated separately or
within the context of a complete dialogue system.

We introduced a novel overall architecture for this problem domain which leverages general purpose
sentence representations and hierarchical encoder-decoder architectures, extending them with dynam-
ically instantiated RNN models that drive an autoencoder-based recommendation engine. We find
tremendous benefit from this modularization in that it allows one to pre-train the recommendation
engine on other larger data sources specialized for the recommendation task alone. Further, our
proposed switching mechanism allows one to integrate recommendations within a recurrent decoder,
mixing high quality suggestions into the overall dialogue framework.

Our proposed architecture is not specific to movies and applies to other types of products, given that
a conversational recommendation dataset is available in that domain. Our utterance-level evaluation
compares the responses generated by different models in a given context, controlling for confounding
variables to some extent. In that context, our model outperforms the HRED baseline. However, we
did not yet evaluate whole conversations between our model and a human user. Future works could
improve this evaluation setting by asking more precise questions to the human evaluators. Instead
of asking which response is the best in a general way, we could ask for example which response
provides the best recommendation given the context, or which is the most fluent. This would allow us
to gain insight on what parts of the model could be improved.
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