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1 Model architecture details

Our model is based on a ResNet-50 backbone with a dilation in the last block. ROCK block is applied
on the conv5 feature map, whose spatial dimensions are divided by 16 with respect to the input
image (i.e. 30 × 40 for 480 × 640 inputs) with a width of 2048. The encoder is composed of two
convolutions that are shared across all auxiliary tasks (1× 1 and 3× 3 convolutions, both into 512
channels). The last convolution is 1× 1 but the number of output channels is task-dependent. It is
S = 27 for scene classification, 128 for depth estimation, and 3× 128 for surface normal estimation.
The predictor is composed of pooling only. It is a global average pooling for scene predictions, and a
channel-wise average pooling (i.e. reducing the width to 1) for depth predictions and for each one of
the three components of surface normal predictions. The decoder consists in a 1× 1 convolution into
2048 channels for each task separately. All convolutions are followed by Batch Normalization [5]
and ReLU modules, except for those just before predictors (last task-specific convolution of the
encoder) that have linear activation functions. We then use a SSD detection block [9] with 6 additional
prediction feature maps, learned with the same setup as in the original paper [9].

2 Experimental setup

Object detection is performed on the same 19 object classes as [2, 4] and is evaluated with three
common metrics (mAP@0.5, mAP@0.75 and mAP@[0.5:0.95]) to thoroughly analyze proposed
improvements. As additional auxiliary tasks, we use scene classification into S = 27 scene classes,
depth estimation and surface normal estimation. The ground truths for the first two tasks are provided
along with NYUv2 dataset, and we use the targets computed by [11] for the normal prediction task.

We use the SSD framework [9] with a ResNet-50 [3] backbone architecture pre-trained on Ima-
geNet [10]. Detection is performed on the output of the conv5 block of ResNet (or its refined version
when using our auxiliary block) and on 6 additional feature maps randomly initialized. We train
the networks using Adam optimizer [6] with a batch size of 8 for 30,000 iterations with a learning
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Figure 1: Visualization of outputs. The original images are presented in (a). Outputs of the detection
baseline and ROCK are illustrated in (b) and (c) respectively. Column (d) depicts scene classification
through heatmaps of ground truth scene classes (i.e. the maps just before global average pooling).
Columns (e) and (f) show predictions for depth prediction and surface normal estimation respectively.

rate of 5 · 10−5, then we lower it to 5 · 10−6 and keep training for 10,000 more iterations. We use
the data augmentation from SSD [9] but with fixed aspect ratio for the crops. All examples are then
resized to 480× 640 pixels, flipped with probability 0.5, and some color data augmentation [7] is
finally applied. Annotations for depth and surface normal estimation are modified accordingly to
keep geometries of the scenes (see [1] for details). Classification and localization losses have weights
of 1 and 3 respectively. Loss weights of auxiliary tasks are set to 3 for scene classification and depth
estimation, and to 30 for normal estimation (we use a factor of 10 for this task as advised by [1]).
Finally, we use the same matching strategy and classification prior as [8], and post-process detections
with NMS using a threshold of 0.3.

3 Visualization of results

Additional visualizations are given in Figure 1.
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