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Abstract

This paper introduces a model-based reinforcement learning (MBRL) framework
that incorporates the underlying decision problem in learning the transition model
of the environment. This is in contrast with conventional approaches to MBRL
that learn the model of the environment, for example by finding the maximum
likelihood estimate, without taking into account the decision problem. Value-Aware
Model Learning (VAML) framework argues that this might not be a good idea,
especially if the true model of the environment does not belong to the model class
from which we are estimating the model.
The original VAML framework, however, may result in an optimization problem
that is difficult to solve. This paper introduces a new MBRL class of algorithms,
called Iterative VAML, that benefits from the structure of how the planning is per-
formed (i.e., through approximate value iteration) to devise a simpler optimization
problem. The paper theoretically analyzes Iterative VAML and provides finite
sample error upper bound guarantee for it.

1 Introduction

Value-Aware Model Learning (VAML) is a novel framework for learning the model of the envi-
ronment in Model-Based Reinforcement Learning (MBRL) [Farahmand et al., 2017a, 2016a]. The
conventional approach to model learning in MBRL is based on minimizing some kind of probabilistic
loss. A common choice is to minimize the KL-divergence between the empirical data and the model,
which leads to the Maximum Likelihood Estimator (MLE). Farahmand et al. [2017a, 2016a] argue
that minimizing a probabilistic loss function might not be a good idea because it does not take
into account the underlying decision problem. Any knowledge about the reward, value function, or
policy is ignored in the conventional model learning approaches in MBRL (some recent exceptions
are Joseph et al. [2013], Silver et al. [2017], Oh et al. [2017], Farquhar et al. [2018]; refer to Ap-
pendix C for a detailed literature review of MBRL). The main thesis behind decision-aware model
learning, including VAML, is that the knowledge about the underlying decision problem, which is
often available, should be considered in the model learning itself. VAML, as its name suggests, uses
the information about the value function. In particular, the formulation by Farahmand et al. [2017a]
incorporates the knowledge about the value function space in learning the model. In this work, we
suggest an alternative, and possibly simpler, approach called Iterative VAML (IterVAML, for short).

VAML defines a robust loss function and has a minP∈MmaxV ∈F structure, whereM is the transition
probability model of the environment to be learned and F is the function space to which the value
function belongs (we discuss this in more detail in Section 2). Solving this min max optimization can
be difficult in general, unless we impose some structure on F , e.g., linear function space. IterVAML
mitigates this issue by benefiting from special structure of how value functions are generated within
the approximate value iteration (AVI) framework (Section 3).

∗Homepage: http://academic.sologen.net. Part of this work has been done when the author was
affiliated with Mitsubishi Electric Research Laboratories (MERL), Cambridge, USA.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

http://academic.sologen.net


We theoretically analyze IterVAML (Section 4). We provide a finite-sample error upper bound
guarantee for the model learning that shows the effect of the number of samples and complexity of the
model on the error bound (Section 4.1). We also analyze how the errors in the learned model affect
the quality of the outcome policy. This is in the form of an error propagation result (Section 4.2).

2 Background on Value-Aware Model Learning

To formalize the framework, let us consider a discounted Markov Decision Process (MDP)
(X ,A,R∗,P∗, γ) [Szepesvári, 2010]. Here X is the state space, A is the action space, R∗ is
the reward distribution, P∗ is the transition probability kernel, and 0 ≤ γ < 1 is the discount factor.
In the RL setting, P∗ and R∗ are not known to the agent. Instead, the agent can interact with the
environment to collect samples from these distributions. The collected data is in the form of

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1, (1)

with the current state-action being distributed according to Zi = (Xi, Ai) ∼ ν(X×A) ∈ M̄(X×A),
the reward Ri ∼ R∗(·|Xi, Ai), and the next-state X ′i ∼ P∗(·|Xi, Ai). We denote the expected
reward by r(x, a) = E [R∗(·|x, a)].2

The goal of model learning is to find a P̂ that is close to P∗.3 The learned model P̂ is then used
by an MBRL algorithm to find a policy. To formalize this, let us denote Planner as an algorithm
that receives a model P̂ and returns a policy, i.e., π ← Planner(P̂). We assume that the reward
function is already known to Planner, so we do not explicitly pass it as an argument. There are many
variations on how Planner may use the learned model to obtain a new policy. For example, Planner
might be a value function-based approach that computes an estimate of the optimal value function
based on P̂ , and then returns the greedy policy of the estimated value function. Or it might be a
policy gradient method that computes the gradient of the performance with respect to (w.r.t.) the
policy using the learned model.

A fundemental question is how we should measure the closeness of P̂ to P∗. The answer to this
question depends on how Planner is going to use the model. It is possible that some aspects of the
dynamics is irrelevant to Planner. The usual approaches based on the probabilistic losses, such as
the KL-divergence that leads to MLE, ignore this dependency. Therefore, they might be less efficient
than an approach that considers how Planner is going to use the learned model.

VAML, introduced by Farahmand et al. [2016a, 2017a], is a value-based approach and assumes that
Planner uses the Bellman optimality operator defined based on P̂ to find a Q̂∗, that is

T ∗P̂ : Q 7→ r + γP̂max
a

Q, (2)

and then outputs π = π̂(·; Q̂∗), the greedy policy w.r.t. Q̂∗ defined as π̂(x;Q) = argmaxa∈AQ(x, a).
For brevity, we sometimes use T̂ ∗ instead of T ∗P̂ . The use of the Bellman [optimality] operator is
central to value-based approaches such as the family of (Approximate) Value Iteration [Gordon, 1995,
Szepesvári and Smart, 2004, Ernst et al., 2005, Munos and Szepesvári, 2008, Farahmand et al., 2009,
Farahmand and Precup, 2012, Mnih et al., 2015, Tosatto et al., 2017, Farahmand et al., 2017b] or
(Approximate) Policy Iteration (API) algorithms [Lagoudakis and Parr, 2003, Antos et al., 2008,
Bertsekas, 2011, Lazaric et al., 2012, Scherrer et al., 2012, Farahmand et al., 2016b].

VAML focuses on finding P̂ such that the difference between T ∗Q and T̂ ∗Q is small. It starts from
assuming that V is known and defines the pointwise loss (or cost) between P̂ and P∗ as

c(P̂,P∗;V )(x, a) =
∣∣∣〈P∗(·|x, a)− P̂(·|x, a) , V

〉∣∣∣
=

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣ , (3)

2Given a set Ω and its σ-algebra σΩ, M̄(Ω) refers to the set of all probability distributions defined over σΩ.
As we do not get involved in the measure theoretic issues in this paper, we do not explicitly define the σ-algebra,
and simply use a well-defined and “standard” one, e.g., Borel sets defined for metric spaces.

3Learning the expected reward r is also a part of model learning, which can be formulated as a regression
problem. For simplicity of presentation, we assume that r is known.
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in which we substituted maxaQ(·, a) in (2) with V to simplify the presentation. In the rest of the
paper, we sometimes use Pz(·) with z = (x, a) ∈ Z = X ×A to refer to the probability distribution
P(·|x, a), so PzV =

∫
P(dx′|x, a)V (x′).

Given a probability distribution ν ∈ M̄(X × A), which can be the same distribution as the data
generating one, VAML defines the expected loss function

c22,ν(P̂,P∗;V ) =

∫
dν(x, a)

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (4)

Notice that the value function V is unknown, so we cannot readily minimize this loss function, or its
empirical version. What differentiates this work from the original VAML formulation is how this
unknown V is handled. VAML takes a robust approach: It considers the worst-case choice of V in
the value function space F that is used by Planner. Therefore, it minimizes

c22,ν(P̂,P∗) =

∫
dν(x, a) sup

V ∈F

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (5)

As argued by Farahmand et al. [2017a], this is still a tighter objective to minimize than the KL-
divergence. To see this, consider a fix z = (x, a). We have supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| ≤

‖P∗z − P̂z‖1 supV ∈F ‖V ‖∞ ≤
√

2KL(P∗z ||P̂z) supV ∈F ‖V ‖∞, where we used Pinsker’s inequal-
ity. As MLE is the minimizer of the KL-divergence based on data, these upper bounds suggest
that if we find a good MLE (with small KL-divergence), we also have an accurate Bellman op-
erator. These sequences of upper bounding, however, might be quite loose. For an extreme, but
instructive, example, suppose that the value function space consists of bounded constant functions
(F = {x 7→ c : |c| <∞}). In that case, supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| is always zero, no
matter how large the total variation and the KL-divergence of two distributions are. MLE does not
explicitly benefit from these interaction of the value function and the model. Asadi et al. [2018]
show that the VAML objective supV ∈F |〈P∗(·|x, a)− P̂(·|x, a), V 〉| with the choice of 1-Lipschitz
functions for F is equivalent to the Wasserstein metric between P∗(·|x, a) and P̂(·|x, a). Refer
to Farahmand et al. [2017a] for more detail and discussion about VAML and its properties.

The loss function (5) defines the population version loss of VAML. The empirical version, which is
minimized in practice, replaces P∗ and ν by their empirical distributions. The result is

c22,n(P̂) =
1

n

∑
(Xi,Ai,X′i)∈Dn

sup
V ∈F

∣∣∣∣V (X ′i)−
∫
P̂(dx′|Xi, Ai)V (x′)

∣∣∣∣2 . (6)

The estimated probability distribution P̂ is obtain by solving the following optimization problem:

P̂ ← argmin
P∈M

c22,n(P). (7)

Farahmand et al. [2017a] provide an expression for the gradient of this objective function when F
is the space of linear function approximators, commonly used in the RL literature, andM is an
exponential family. They also provide finite sample error upper bound guarantee showing that the
minimizer of (6) converges to the minimizer of (5).

3 Iterative Value-Aware Model Learning

In this section we describe an alternative approach to formulating a value-aware model learning
method. As opposed to the original formulation (5), and its empirical version (6), it is not based on a
worst-case formulation. Instead, it defines the loss function based on the actual sequence of value
functions generated by an (Approximate) Value Iteration (AVI) type of Planner.

Consider the Value Iteration (VI) procedure: At iteration k = 0, 1, . . . ,

Qk+1(x, a)← r(x, a) + γ

∫
P∗(dx′|x, a) max

a′
Qk(x′, a′), (8)
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or more succinctly,

Qk+1 ← T ∗P∗Qk , r + γP∗Vk,

with Vk(x) , maxaQk(x, a). Here T ∗P∗ is the Bellman optimality operator defined based on the
true transition probability kernel P∗ (we similarly define T ∗P for any generic transition probability
kernel P). Because of the contraction property of the Bellman optimality operator for discounted
MDPs, we have Qk → Q∗ as k →∞. This is the basis of the VI procedure.

The intuition behind IterVAML can be developed by studying the sequence Q0, Q1, . . . generated by
VI. Starting from Q0 ← r, VI generates the following sequence

Q0 ← r

Q1 ← T ∗P∗V0 = r + γP∗r
Q2 ← T ∗P∗V1 = r + γP∗V1

...

To obtain the value of Q0, we do not need the knowledge of P∗. To obtain the value of Q1, we only
need to compute P∗V0 = P∗r. If we find a P̂ such that

P̂r = P∗r,

we may replace it with P∗ to obtain Q1 without any error, i.e., Q1 = r+γP∗r = r+γP̂r. Likewise,
for any k ≥ 1 and given Qk, in order to compute Qk+1 exactly we only need to find a P̂ such that

P̂Vk = P∗Vk.

We have two sources of errors though. The first is that we may only guarantee that

P̂Vk ≈ P∗Vk.

As a result, T ∗P̂Vk is not exactly the same as T ∗P∗Vk. IterVAML’s goal is to make the error P̂Vk−P∗Vk
as small as possible. Based on this, we define the following “idealized” optimization problem:

Given a model spaceM and the current approximation of the value function Q̂k (and therefore V̂k),
solve

P̂(k) ← argmin
P∈M

∥∥∥(P − P∗)V̂k
∥∥∥2
2

=

∫ ∣∣∣(P − P∗)(dx′|z) max
a′

Q̂k(x′, a′)
∣∣∣2 dν(z), (9)

where ν ∈ M̄(X × A) is a user-defined distribution over the state-action space. Oftentimes, this
distribution is the same as the empirical distribution generating Dn (1), hence our use of the same
notation. Afterwards, we use P̂(k) to find V̂k+1 by using the usual VI approach, that is,

Q̂k+1 ← T ∗P̂(k)Q̂k. (10)

This procedure is repeated. This is using the exact VI based on P̂(k).

This formulation is idealized as we do not have access to P∗ and ν, but only samples from them. We
use the empirical distribution instead:

P̂(k+1) ← argmin
P∈M

1

n

∑
(Xi,Ai,X′i)∈Dn

∣∣∣∣V̂k(X ′i)−
∫
P(dx′|Xi, Ai)V̂k(x′)

∣∣∣∣2 . (11)

The optimization problem minimizes the distance between the next-state expectation of V̂k according
to P and the samples V̂k(X ′) with X ′ being drawn from the true next-state distribution. In case the
integral is difficult to compute, we may replace it by samples from P , i.e.,∫

P(dx′|Xi, Ai)V̂k(x′) ≈ 1

m

m∑
j=1

V̂k(X ′i,j),
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with X ′i,j ∼ P(·|Xi, Ai) for j = 1, . . . ,m. These are “virtual” samples generated from the model.

The second source of error is that the VI cannot be performed exactly (for example because the state
space is very large), and can only be performed approximately. This leads to the Approximate Value
Iteration (AVI) procedure (also known as Fitted Value or Q-Iteration) with a function space F |A|
(the space of action-value functions), see e.g., Ernst et al. [2005], Munos and Szepesvári [2008],
Farahmand et al. [2009], Farahmand and Precup [2012], Mnih et al. [2015], Tosatto et al. [2017].
Instead of setting Q̂k+1 ← T ∗P̂(k)

Q̂k, in AVI we have

Q̂k+1 ← argmin
Q∈F |A|

1

n

∑
(Xi,Ai,Ri)∈Dn

∣∣∣∣Q(Xi, Ai)−
(
Ri + γ

∫
P̂(k+1)(dx′|Xi, Ai)V̂k(x′)

)∣∣∣∣2 .
(12)

Notice that finding Q̂k+1 is a regression problem, for which many methods to solve are available,
including the regularized variants of this empirical risk minimization problem [Farahmand et al.,
2009]. As before, we may replace the integral with virtual samples, i.e.,∫

P̂(k+1)(dx′|Xi, Ai)V̂k(x′) ≈ 1

m

m∑
j=1

V̂k(X ′i,j),

with X ′i,j ∼ P̂(k+1)(·|Xi, Ai) for j = 1, . . . ,m, for each i = 1, . . . , n. These “virtual” samples
from the model play the same role as in the hypothetical experience in the Dyna architecture [Sutton,
1990] or imagination in imagination-augmented agents by Racanière et al. [2017].

Algorithm 1 summarizes a generic IterVAML procedure. The algorithm receives a model spaceM,
the action-value function space F |A|, the space of reward functions G, and the number of iterationsK.
At each iteration k = 0, 1, . . . , it generates a fresh training dataset D(k)

n = {(Xi, Ai, Ri, X
′
i)}ni=1 by

interacting with the environment. It learns the transition model P̂(k+1) by solving (11). It also learns
the reward function r̂, by minimizing LossR, which can be the squared loss (or a robust variant). We
do not analyze learning the reward function in this work. Afterwards, it performs one step of AVI by
solving (12). These steps are repeated for K iterations.

Many variations of this algorithm are possible. We briefly remark on some of them. Here the AVI
step only uses the model P̂ . In practice, however, one may use both the learned model P̂ and the
data Dn in solving the optimization problem (12) in order to obtain better solutions, as in the Dyna
architecture [Sutton, 1990]. Moreover, the summation in (12) is Dn (or ∪ki=0D

(i)
n as stated in the

algorithm), which is the dataset of true samples. If we also learn a distribution model of ν by ν̂, we
can sample from it too. In that case, we can increase the number of samples used in solving the
regression step of IterVAML.

The algorithm as presented collects a fresh dataset at each iteration, and the optimization problems
are solved w.r.t. all collected datasets ∪ki=0D

(i)
n . This is not a requirement. We may reuse a single

dataset throughout iterations (i.e., a batch setting) or keep the data only from the past few iterations,
if the memory is a concern. One can also consider the online variant of IterVAML where instead of
solving the optimization problems up to their minimums after collecting the dataset Dn, we keep
updating the model and the value function as data arrives. In Appendix D we argue that there is no
significant difference in the convergence rate between the case of adding new datasets at each iteration
and reusing all of them in the optimization problem compared to generating a fresh dataset at each
iteration and throwing out the previous ones. Nevertheless, to simplify the theoretical analysis, we
assume that a new fresh dataset is used at each iteration, and the data collected in previous iterations
are not used, see Assumption A1 in Section 4.

We can also similarly define a policy evaluation version of IterVAML. The goal of a policy evaluation
is to find an (approximate) value of a given policy π. The difference of IterVAML for policy evaluation
with what we have already described is that instead of repeated application of the Bellman optimality
operator w.r.t. the learned model (i.e., T ∗P̂ , cf. (8)), we use the Bellman operator

(TπP̂V )(x) = r(x, π(a)) + γ

∫
P̂ (dx′|x, π(x))V (x′).
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Algorithm 1 Model-based Reinforcement Learning Algorithm with Iterative VAML
// MDP (X ,A,R∗,P∗, γ)
// K: Number of iterations
//M: Space of transition probability kernels
// F |A|: Space of action-value functions
// G: Space of reward functions
Initialize a policy π0 and a value function V̂0.
for k = 0 to K − 1 do

Generate training set D(k)
n = {(Xi, Ai, Ri, X

′
i)}ni=1 by interacting with the true environment (potentially

using πk), i.e., (Xi, Ai) ∼ νk with X ′i ∼ P∗(·|Xi, Ai) and Ri ∼ R∗(·|Xi, Ai).

P̂(k+1) ← argminP∈M
∥∥∥V̂k(X ′i)−

∫
P(dx′|Xi, Ai)V̂k(x′)

∥∥∥2

∪ki=0D
(i)
n

.

r̂ ← argminr∈G LossR(r;∪k
i=0D

(i)
n )

Q̂k+1 ← argminQ∈F|A|

∥∥∥Q(Xi, Ai)−
(
r̂(Xi, Ai) + γ

∫
P̂(k+1)(dx′|Xi, Ai)V̂k(x′)

)∥∥∥2

∪ki=0D
(i)
n

.

πk+1 ← π̂(·; Q̂k+1).
end for
return πK

Here we use the state-value function V instead of Q; the definition of (TπP̂Q) and the corresponding
procedure and results would be similar with slight modifications. Given an integer K, the IterVAML
procedure for policy evaluation would be

V̂0 ≈ r
P̂(1)V̂0 ≈ P∗V̂0
V̂1 ≈ TπP̂(1) V̂0

...

P̂(K)V̂K−1 ≈ P∗V̂K−1
V̂K ≈ TπP̂(K) V̂K−1,

where the approximation symbol in V̂k+1 ≈ TπP̂(k+1)
V̂k refers to finding V̂k+1 that is close to

TπP̂(k+1)
V̂k, for example by solving (12); and the approximation symbol in P̂(k+1)V̂k ≈ P∗V̂k refers

to solving the empirical version of

P̂(k) ← argmin
P∈M

∥∥∥(P − P∗)V̂k
∥∥∥2
2

=

∫ ∣∣∣(P − P∗)(dx′|x, π(x))V̂k(x′)
∣∣∣2 dνX (x).

Note that as we use state-value function instead of state-action value function, the distribution νX is
defined over M̄(X ) instead of ν ∈ M̄(X ×A) of (9).

4 Theoretical Analysis of Iterative VAML

We analyze the statistical properties of the IterVAML procedure. The analysis is divided into two
parts. First we analyze one iteration of model learning (cf. (11)) and provide an upper bound on
the error in learning the model (Theorem 1 in Section 4.1). Afterwards, we consider how errors at
each iteration propagate throughout the iterations of IterVAML and affect the quality of the learned
policy (Theorem 3 in Section 4.2). Theorem 4 combines these two results and shows how the model
learning errors affect the quality of the outcome policy.

4.1 Error Analysis for a Single Iteration

We analyze the k-th iteration of IterVAML (11) and provide an error bound on ‖(P̂(k+1) −P∗)Vk‖2.
To reduce clutter, we do not specify the iteration index k, e.g., the analyzed loss would be denoted by
‖(P̂ − P∗)V ‖2 for a fixed V .
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Consider a fixed value function V : X → R. We are given a dataset Dn = {(Xi, Ai, X
′
i)}ni=1 with

Zi = (Xi, Ai) ∼ ν(X × A) ∈ M̄(X × A), and the next-state X ′i ∼ P∗(·|Xi, Ai), as specified
in (1).

For a transition probability kernel P : X ×A → M̄(X ), and for z ∈ X ×A and x′ ∈ X , we define
the following pointwise loss functions

lP(z) = l(z;P) , |(Pz − P∗z )V |2 =

∣∣∣∣∫ (P(dx′|z)− P∗(dx′|z))V (x′)

∣∣∣∣2 ,
l̂(z, x′;P) = |PzV − V (x′)|2 .

Given a distribution ν ∈ M̄(X × A) and the empirical data Dn, we define the following ex-
pected/empirical loss functions:

L(P) = E [l(Z;P)] = ‖(Pz − P∗z )V ‖22,ν Z ∼ ν,

Ln(P) =
1

n

n∑
i=1

l(Zi;P),

L̂n(P) =
1

n

n∑
i=1

l̂(Zi, X
′
i;P).

The pointwise lP and it expected value L(P) measure how well P approximates P∗ through the lens
of value function V . These are the losses that we are interested in, but as they depend on P∗, which
is not available, they cannot be directly optimized. On the other hand, the pointwise loss l̂ and its
empirical expectation L̂n(P) are defined only based on data and can be optimized by the algorithm,
cf. (9) and (11).

At each iteration of IterVAML, given a fixed V ∈ F and a model spaceM, we solve

P̂ ← argmin
P∈M

L̂n(P). (13)

This is the same as (11). We also define

P̃ ← argmin
P∈M

L(P). (14)

This is (one of) the best models within the model spaceM. Note that P̃ is not necessarily unique.

We now enlist our set of assumptions. Some of them are technical assumptions to simplify the
analysis, and some are characterizing crucial aspects of the model learning. We shall remark on these
as we introduce them.

Assumption A1 (Samples) At the k-th iteration we are given a dataset Dn(= D(k)
n )

Dn = {(Xi, Ai, X
′
i)}ni=1, (15)

with Zi = (Xi, Ai) being independent and identically distributed (i.i.d.) samples drawn from
ν(X ×A) ∈ M̄(X ×A) and the next-state X ′i ∼ P∗(·|Xi, Ai). Furthermore, we assume that D(k)

n

and D(k′)
n for k 6= k′ are independent.

The i.i.d. assumption is to simplify the analysis, and with extra effort one can provide similar
results for dependent processes that gradually “forget” their past. The forgetting behaviour can be
characterized by the mixing behaviour of the stochastic process [Doukhan, 1994]. One can then
provide statistical guarantees for learning algorithms under various mixing conditions [Yu, 1994,
Meir, 2000, Steinwart and Christmann, 2009, Mohri and Rostamizadeh, 2009, 2010, Farahmand
and Szepesvári, 2012]. If the stochastic process forgets its past fast enough, for example if it
is an exponential β-mixing process, one can obtain convergence rates almost as fast as the i.i.d.
case [Farahmand and Szepesvári, 2012]. These techniques have also been used in the context of
reinforcement learning algorithms [Antos et al., 2008, Farahmand and Szepesvári, 2011, Lazaric et al.,
2012]. Since analyzing dependent processes often requires more complicated analysis, especially if
fast rates are to be obtained, we consider the simpler case of i.i.d. data.
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In this assumption we also require that the datasets of two different iterations are independent. This
is again to simplify the analysis. In practice, we might reuse the same dataset in all iterations.
Theoretical results by Munos and Szepesvári [2008] suggest that the dependence between iterations
may not lead to significant performance degradation.

We need to make some assumptions about the model spaceM and its complexity (i.e., capacity).
We use covering number (and its logarithm, i.e., metric entropy) of a function space (here being
the model spaceM) as the characterizer of its complexity. The covering number at resolution ε is
the minimum number of balls with radius ε required to cover the model spaceM according to a
particular metric, and is denoted by N (ε,M) (see Appendix A.2 for definitions). As ε decreases,
the covering number increases (or more accurately, the covering number is non-decreasing). For
example, the covering number for a p-dimensional linear function approximator with constraint on
the magnitude of its functions behaves like O( 1

εp ). A similar result holds when the subgraphs of a
function space has a VC-dimension p. Model spaces whose covering number grows faster are more
complex, and estimating a function within them is more difficult. This leads to larger estimation error,
as we shall see. On the other hand, those model spaces often (but not always) have better model
approximation properties too.

In order to show the finer behaviour of the error bound, we defineM as a subset of a larger family of
probability distributionsM0. Let J :M0 → [0,∞) be a pseudo-norm defined on functions inM0.
We then defineM = {P ∈ M0 : J(P) ≤ R } for some R > 0. One may think of J as a measure
of complexity of functions inM0, soM would be a ball with a fixed radius R w.r.t. J . IfM0 is
defined based on a reproducing kernel Hilbert space (RKHS), we can think of J as the inner product
norm of the RKHS.

Assumption A2 (Model Space) For R > 0, letM = MR = {P ∈ M0 : J(P) ≤ R }. There
exist constants c > 0 and 0 < α < 1 such that for any ε,R > 0 and all sequences z1:n ,
z1, . . . , zn ⊂ X ×A, the following metric entropy condition is satisfied:

logN (ε,M, L2(z1:n)) ≤ c
(
R

ε

)2α

.

Furthermore, the model space M is convex, and compact w.r.t. d∞,TV(P1,P2) =
supz∈Z

∫
|P1(dy|z)− P2(dy|z)|.

This form of the metric entropy ofM =MR is suitable to capture the complexity of large function
spaces such as some RKHS and Sobolev spaces. For example, for Wk(Rd) = Wk,2(Rd), the Sobolev
space defined w.r.t. the L2-norm of the weak derivatives up to order k, we can set α = d

2k , see
e.g., Lemma 20.6 of Györfi et al. [2002]. For smaller function spaces, such as the p-dimensional
linear function approximator mentioned above, the behaviour of the metric entropy is p log( 1

ε ), which
can be seen as having α → 0 with a certain rate, For many examples of the covering number and
metric entropy results, refer to van de Geer [2000], Györfi et al. [2002], Zhou [2003], Steinwart and
Christmann [2008], Giné and Nickl [2015].

Also note that here we require the convexity and compactness ofM. The convexity is a crucial
assumption for obtaining fast convergence rate, as was shown and discussed by Lee et al. [1998,
2008], Mendelson [2008]. The compactness w.r.t. this particular metric is a technical assumption and
it may be possible to be relaxed.

Assumption A3 (Value Function) The value function V is fixed (i.e., not dependent on Dn) and is
Vmax-bounded with Vmax ≥ 1.

This assumption is for the simplicity of the analysis. We use it in large deviation results that require
the boundedness of the involved random variables, e.g., Theorem 2.1 of Bartlett et al. [2005] or
Theorem 19.1 of Györfi et al. [2002], which we use in our proofs. There exist similar large deviation
results that hold under more relaxed assumptions, for example random variables being sub-Gaussian
or sub-exponential [van de Geer, 2000]. An example of an analysis in the RL context that relaxes the
usual boundedness assumptions is the work of Tu and Recht [2018]. The condition Vmax ≥ 1 is used
to simplify some terms in the bounds, and the results hold with smaller Vmax too.

We are now ready to state the main result of this section.
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Theorem 1. Suppose that Assumptions A1, A2, and A3 hold. Consider P̂ obtained by solving (13).
There exists a finite c(α) > 0, depending only on α, such that for any δ > 0, with probability at least
1− δ, we have∥∥∥(P̂z − P∗z )V

∥∥∥2
2,ν
≤ inf
P∈M

‖(Pz − P∗z )V ‖22,ν +
c(α)V 2

maxR
2α

1+α

√
log(1/δ)

n
1

1+α

.

Proof. We start from the observation that for any P , the pointwise loss l̂(z, x′;P) can be decomposed
as

l̂(z, x′;P) = |PzV − V (x′)|2 = |PzV − P∗zV + P∗zV − V (x′)|2

= |(Pz − P∗z )|2︸ ︷︷ ︸
=lP(z)

+ |P∗zV − V (x′)|2 + 2 [(Pz − P∗z )V ] [P∗zV − V (x′)] .

So the empirical loss function Ln(P) can be written as

Ln(P) = L̂n(P)− 1

n

n∑
i=1

∣∣P∗ZiV − V (X ′i)
∣∣2

︸ ︷︷ ︸
,eσ

+2× 1

n

n∑
i=1

[
(P∗Zi − PZi)V

] [
P∗ZiV − V (X ′i)

]
︸ ︷︷ ︸

,eI(P)

.

(16)

To provide a fast rate, we control the excess error L(P̂)− L(P̃), with P̃ being the best model in the
classM, as defined in (14). We define the following function space:

G = { z 7→ lP(z)− lP̃(z) : P ∈M} . (17)

As lP = |(Pz − P∗z )V |2 ≤ 4V 2
max and lP ≥ 0, any g ∈ G satisfies −4V 2

max ≤ g(z) ≤ 4V 2
max.

We use Theorem 5 in. Appendix A.3 to upper bound L(P) − L(P̃) by a constant multiply of the
empirical average Ln(P) − Ln(P̃), and some terms depending on the complexity of the function
space G. Let us fix δ1 > 0. With the choice of K = 2 in the aforementioned theorem, under the
conditions of the theorem, which shall be verified, there exist constants c1, c2, B > 0 such that for
any P ∈M we have that

L(P)− L(P̃) ≤ 2
(
Ln(P)− Ln(P̃)

)
+

2c1
B
r∗(G) +

(11× 8V 2
max + 2c2B) ln( 1

δ1
)

n
, (18)

with probability at least 1 − δ1. The term r∗(G) corresponds to the local Rademacher complexity
of G, defined in Appendix A.3, and is upper bounded by Proposition 10 in Appendix B.3. One can
choose c1 = 704 and c2 = 26. We shall specify the value of B later. As the inequality holds for any
choice of P ∈M, we substitute P with P̂ .

We upper bound the empirical term Ln(P̂)−Ln(P̃) by using the error decomposition (16) along the
fact that P̂ is the minimizer of L̂n withinM as

Ln(P̂)− Ln(P̃) =
[
L̂n(P̂)− eσ + 2eI(P̂)

]
−
[
L̂n(P̃)− eσ + 2eI(P̃)

]
= L̂n(P̂)− L̂n(P̃)︸ ︷︷ ︸

≤0

+2
[
eI(P̂)− eI(P̃)

]
≤ 2

[
eI(P̂)− eI(P̃)

]
. (19)

We denote

J(P̂, P̃) = eI(P̂)− eI(P̃) =
〈
P∗ZiV − V (X ′i) , (P̃Zi − P̂Zi)V

〉
n
,

,
1

n

n∑
i=1

[
P∗ZiV − V (X ′i)

]
·
[
(P̃Zi − P̂Zi)V

]
. (20)
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Therefore by choosing P = P̂ in (18) and using (19) as the upper bound for the empirical excess
error, we get that

L(P̂)− L(P̃) ≤ 4J(P̂, P̃) +
2c1
B
r∗(G) +

(88V 2
max + 2c2B) ln( 1

δ1
)

n
,

with probability at least 1− δ1.

We now turn to verifying the conditions of Theorem 5, required for the validity of (18). Condition (40)
requires us to find a functional T that satisfies the variance condition Var [f ] ≤ T (f) ≤ BE [f ].
Note that for any g ∈ G (17), we have

|g| = |lP − lP̃ | =
∣∣∣|(Pz − P∗z )V |2 − |(P̃z − P∗z )V |2

∣∣∣
=
∣∣∣(Pz − P̃z)V ∣∣∣ . ∣∣∣(Pz + P̃z − 2P∗z )V

∣∣∣ ≤ 4Vmax

∣∣∣(Pz − P̃z)V ∣∣∣ .
We upper bound the variance of g using the previous inequality and Proposition 7 in Appenix A.3 as
follows

Var [g] ≤ E
[
g2
]
≤ 16V 2

maxE
[∣∣∣(PZ − P̃Z)V

∣∣∣2] ≤ 16V 2
max(L(P)− L(P̃)) = 16V 2

maxE [g] .

So we may choose

T (g) = 16V 2
maxE

[
|(Pz − P̃z)V |2

]
,

B = 16V 2
max. (21)

Therefore, with probability at least 1− δ1, it holds that

L(P̂)− L(P̃) ≤ 4J(P̂, P̃) +
2c1

16V 2
max

r∗(G) +
(88V 2

max + 32c2V
2

max) ln( 1
δ1

)

n
. (22)

It remains to provide some upper bounds for J(P̂, P̃) and r∗(G). Proposition 10 provides an upper
bound for the local Rademacher complexity, which we shall evoke shortly. So next we focus on
J(P̂, P̃).

Consider the inner product term J(P̂, P̃) (20). Let Wi = P∗ZiV − V (X ′i) and h(z) = (P̃z − Pz)V
and define the function space

H =
{
z 7→ (P̃z − Pz)V : P ∈M

}
. (23)

With this notation, we have J(P̂, P̃) =
〈
Wi , ĥ(Zi)

〉
n

with ĥ being the function inH corresponding

to the choice of P = P̂ . Lemma 9 in Appendix B.2, which is a modulus of continuity result for
weighted sums, upper bounds this inner product. We first verify its conditions.

By construction Wi are zero-mean random variables, and they are bounded too:

|Wi| ≤ 2Vmax.

Also the assumed metric entropy condition onM implies a similar metric entropy on H: Proposi-
tion 11 in Appendix B.4 shows that

logN (ε,M, L2(z1:n)) ≤ c
(
R

ε

)2α

⇒ logN (ε,H, L2(z1:n)) ≤ c
(
VmaxR

ε

)2α

Therefore, Lemma 9 shows that for any fixed δ2 > 0, we have

J(P̂, P̃)∥∥∥(P̃Zi − P̂Zi)V
∥∥∥1−α
n

≤ sup
h∈H

〈Wi , h(Zi) 〉n
‖h‖1−αn

≤ c(α)
[
V 1+α

max + (VmaxR)α
]√ ln(1/δ2)

n
,
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with probability at least 1− δ2. After re-arranging, we get that, with the same probability,

J(P̂, P̃) ≤ c(α)
[
V 1+α

max + (VmaxR)α
] ∥∥∥(P̂Zi − P̃Zi)V

∥∥∥1−α
n

√
ln(1/δ2)

n
. (24)

In the RHS, we have the empirical norm
∥∥∥(P̂Zi − P̃Zi)V

∥∥∥
n

, which is not desirable as it has P̂ in it.
To handle that term, we first relate it to the true norm, and then upper bound it by the excess error
L(P̂)− L(P̃). Afterwards we can solve the resulting inequality for the excess error.

We use Theorem 5 again to relate the empirical norm to the true norm. To prepare for the application
of that theorem, define the function space

F =

{
z 7→

∣∣∣(Pz − P̃z)V ∣∣∣2 : P ∈M
}
. (25)

It is easy to see that for any f ∈ F ,

Var [f ] ≤ E
[
f2
]

= E
[∣∣∣(Pz − P̃)V

∣∣∣4] ≤ 4V 2
maxE [f ] .

So we can choose

B = 4V 2
max,

T (f) = 4V 2
maxE [f ] , (26)

in the statement of that theorem.

Assuming that we can find a sub-root function ψ that satisfies the condition (41) of the theorem and
has the fixed point of r∗(F), which we prove and provide an explicit value of in Proposition 10 in
Appendix B.3, we have that for any fixed δ3 > 0,∥∥∥(P̂Zi − P̃Zi)V

∥∥∥2
n
≤ 2E

[∣∣∣(P̂ − P̃)V
∣∣∣2]+

c1
4V 2

max
r∗(F) +

(11× 4V 2
max + c2 × 4V 2

max) ln(1/δ3)

n
,

with probability at least 1− δ3.

We substitute this upper bound in (24) and apply Proposition 7 to upper bound E
[∣∣∣(P̂ − P̃)V

∣∣∣2]
by L(P̂)− L(P̃). To shorten the expressions, we denote c(α)

[
V 1+α

max + (VmaxR)α
]

by c(α, Vmax, R)

and
√

ln(1/δ2)
n by tn. We have

J(P̂, P̃) ≤ c(α, Vmax, R)
∥∥∥(P̂Zi − P̃Zi)V

∥∥∥1−α
n

tn

≤ c(α, Vmax, R)tn×[
2E
[∣∣∣(P̂ − P̃)V

∣∣∣2]+
c1

4V 2
max

r∗(F) +
(44V 2

max + c2 × 4V 2
max) ln(1/δ3)

n

] 1−α
2

≤ c(α, Vmax, R)tn×[
2
(
L(P̂)− L(P̃)

)
+

c1
4V 2

max
r∗(F) +

(88V 2
max + c2 × 4V 2

max) ln(1/δ3)

n

] 1−α
2

,

with probability at least 1− (δ2 + δ3).

Substituting this inequality in the upper bound on the excess risk L(P̂)− L(P̃) (22), we obtain

L(P̂)− L(P̃) ≤4c(α, Vmax, R)tn

[
2
(
L(P̂)− L(P̃)

)
+

c1
4V 2

max
r∗(F) +

(44V 2
max + c2 × 4V 2

max) ln(1/δ3)

n

] 1−α
2

+

2c1
16V 2

max
r∗(G) +

(88V 2
max + 32c2V

2
max) ln( 1

δ1
)

n
, (27)
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with probability at least 1− (δ1 + δ2 + δ3).

Notice that the excess loss E , L(P̂)− L(P̃) appears on both sides of the inequality, so we have to
solve it in order to obtain an explicit upper bound on E. This can be done by considering several
cases in which each term dominates the others, and solving the inequality for that case, and then
summing up the upper bounds to obtain an overall upper bound for E. The detailed calculations
are delegated to Proposition 12 in Appendix B.5. If we fix δ > 0 and let δ1 = δ2 = δ3 = δ/3, the
proposition shows that

E ≤c3(α)V 2
maxR

2α
1+α

[
1

n
1

1+α

+
log n

n1−
α
2

]√
ln(1/δ)

≤c4(α)V 2
maxR

2α
1+α

√
ln(1/δ)

n
1

1+α

,

with probability at least 1− δ. The last inequality is because n
−1
1+α dominates n−(1−

α
2 ) log n as n

grows. But notice that when α is very small, this happens for large n, so as a result c4(α) would be
large. To finish the proof, recall that E = L(P̂)− L(P̃) = L(P̂)− infP∈M L(P̃).

This result upper bounds the error of P̂ in approximating the next-state expectation of the value
function. The upper bound has the model (or function) approximation error (the first term) and the
estimation error (the second term). It is notable that the constant in front of the model approximation
error is one, so the best we can hope from this algorithm, in the limit of infinite data, is as good as the
best model in the model classM.

The estimation error behaves as n−1/(1+α) (0 < α < 1). This is a fast rate and can reach n−1
whenever α → 0. We do not know whether this is an optimal rate for this particular problem, but
results from regression with least-squares loss suggest that this might indeed be optimal: For a
regression function belonging to a function space that has a packing entropy in the same form as in
the upper bound of Assumption A2, the rate Ω(n−1/(1+α)) is its minimax lower bound [Yang and
Barron, 1999].

We use local Rademacher complexity and analyze the modulus of continuity of empirical processes
to obtain rates faster than what could be achieved by more conventional techniques of analyzing the
supremum of the empirical processes. Farahmand et al. [2017a] used the supremum of the empirical
process to analyze VAML and obtained n−1/2 rate, which is slower than n−1/(1+α). Notice that the
loss functions of VAML and IterVAML are different, so this is only an approximate comparison. The
rate n−1/2, however, is common in the supremum of empirical process-based analysis, so we would
expect it to hold if we used those techniques to analyze IterVAML. Finally notice that the error rate
of VAML is not necessarily slower than IterVAML’s; the present difference is at least somehow due
to the shortcoming of their simpler proof technique.

4.2 Error Propagation

We analyze how the errors incurred at each step of IterVAML propagate throughout the iterations
and affect the quality of the outcome. For policy evaluation, the quality is defined as the difference
between V π and V̂K , weighted according to a user-defined probability distribution ρX ∈ M̄(X ),
i.e., ‖V π − V̂K‖1,ρX . For the control case we consider the performance loss, which is defined as the
difference between the value of following the greedy policy w.r.t. Q̂K compared to the value of the
optimal policy Q∗, weighted according to a user-defined probability distribution ρ ∈ M̄(X ×A),
i.e., ρ(Q∗ −QπK ) (cf. Algorithm 1). This type of error propagation analysis has been performed
before by Munos [2007], Antos et al. [2008], Farahmand et al. [2010], Scherrer et al. [2012], Huang
et al. [2015], Mann et al. [2015], Farahmand et al. [2016c]. We compare some of them with our
results later.

Recall that there are two sources of errors in the IterVAML procedure. The first is the error in model
learning, which is caused because the model P̂(k+1) learned by solving the minimization problem (11)
only satisfies P̂(k+1)V̂k ≈ P∗V̂k instead of being exact. This error is studied in Section 4.1, and
Theorem 1 provides an upper bound on it.
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The second source of error is that the AVI performs the Bellman update only approximately. So
instead of having Q̂k+1 = T ∗P̂(k)

Q̂k (or its policy evaluation equivalent), the function Q̂k+1 obtained

by solving (12) is only approximately equal to T ∗P̂(k)
Q̂k. As already mentioned, this step is essentially

solving a regression problem. Hence, many of the standard error guarantees for regression can be
used here too, with possibly some minor changes.4

We first study the policy evaluation scenario, which is simpler to analyze and the results are more
accesible. Afterwards, we turn to the control problem. In order to reduce the clutter, we may drop
the dependence of the Bellman (optimality) operator on P∗, and use T ∗ and Tπ (and alike for other
policies) instead of T ∗P∗ and TπP∗ , etc. Likewise, we may use P (and its variants) instead of P∗.
Define

εk = TπP̂(k+1) V̂k − V̂k+1, k = 0, 1, . . . ,K − 1

ek =
(
P∗ − P̂(k+1)

)
V̂k. k = 0, 1, . . . ,K − 1 (28)

The function εk is the error due to the inexact application of the Bellman operator; this is the
regression error. If V̂k+1 ← TπP̂(k+1)

V̂k, this error would be zero. The function ek is the error caused

by the model error, when applied to V̂k. Theorem 1 provides an upper bound on the L2(νX )-norm of
this error, where νX ∈ M̄(X ) is the distribution used to generate data.5

Let us also define ∆k = εk + γek. The key observation is that for any k = 0, 1, . . . ,K − 1, we have

V̂k+1 = TπP̂(k+1) V̂k − εk
= TπP̂(k+1) V̂k − TπP∗ V̂k + TπP∗ V̂k − εk

= γ
(
P̂(k+1) − P∗

)
V̂k + TπP∗ V̂k − εk

= TπP∗ V̂k − (εk + γek) = TπP∗ V̂k −∆k.

This equality relates V̂k+1, generated by the algorithm, to the ideal value that could be obtained if we
applied the true Bellman operator TπP∗ to V̂k.

This error decomposition and the fact that V π = TπV π allow us to write

V π − V̂k+1 = TπV π − V̂k+1

= TπV π − TπV̂k + TπV̂k − V̂k+1

= γPπ
(
V π − V̂k

)
+ TπV̂k −

(
TπV̂k −∆k

)
= γPπ

(
V π − V̂k

)
+ ∆k.

By induction, we get6

V π − V̂K =

K−1∑
k=0

(γPπ)
K−1−k

∆k + (γPπ)
K
(
V π − V̂0

)
.

4There are at least two possible differences with the standard supervised learning results. The first is that the
data source may not be i.i.d., but be dependent as it comes from a trajectory of interaction of the agent with the
environment. In such a case, one should use results that are available for regression with dependent input data,
e.g., see Steinwart and Christmann [2009], Mohri and Rostamizadeh [2010], Farahmand and Szepesvári [2012].
The second difference is that because the target function T ∗P̂(k)Q̂k is not fixed, extra care must be considered
in order to analyze the behaviour of the algorithm. Such analysis, however, has been done before, e.g., see the
concept of inherent Bellman error by Munos and Szepesvári [2008] for analyzing the function approximation
error with a moving target and the refined analysis in Chapter 5 of Farahmand [2011].

5For policy evaluation we use the distribution νX ∈ M̄(X ), which is defined over the state space, instead of
ν ∈ M̄(X ×A), in order to define the norms. Theorem 1, even though stated for ν ∈ M̄(X ×A), holds for
νX too without any change.

6In IterVAML, V̂0 is the function that approximates the reward function r, i.e., V̂0 ≈ r.
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This equality shows how the error sequence (∆k)k affects the final outcome. We observe that the
error ∆k goes through K − 1− k steps of the dynamics Pπ, discounted by γK−1−k. This means
that the contribution of the error ∆k at a particular state x ∈ X comes from the value of ∆k at the
K − 1 − k steps ahead. Moreover, we observe that the effect of the errors in earlier iterations of
IterVAML are discounted more.

We are often interested in an average error over the state space that is weighted according to a
user-defined probability distribution ρX ∈ M̄(X ). We would like to relate it to the norm of the
errors ∆k and some properties of the MDP. The norm of ∆k may be measured according to another
probability distribution νX ∈ M̄(X ), which in general is different from ρX . For instance, νX might
be the distribution of the data Dn, which can be different from the evaluation distribution ρX (this
discrepancy would be typical under the off-policy sampling).

To obtain such a result, we first take the absolute value of both sides and then apply ρX to get∥∥∥V π − V̂K∥∥∥
1,ρX

≤
K−1∑
k=0

γK−1−kρX (Pπ)
K−1−k |∆k|+ γKρX (Pπ)K

∣∣∣V π − V̂0∣∣∣ . (29)

We want to relate ρX (Pπ)
k |∆k| to a norm of ∆k (and therefore, norms of εk and ek) and some

properties of the MDP. Before providing a more general result, we consider the illustrating case when
ρπX is the stationary distribution of Pπ, i.e., ρπXPπ = ρπX . For the stationary distribution, we have
ρπX (Pπ)k = ρπX for any k ≥ 1, so we obtain∥∥∥V π − V̂K∥∥∥

1,ρπX

≤
K−1∑
k=0

γK−1−kρπX |∆k|+ γKρπX

∣∣∣V π − V̂0∣∣∣
≤
K−1∑
k=0

γK−1−k
(
‖εk‖1,ρπX + γ ‖ek‖1,ρπX

)
+ γK

∥∥∥V π − V̂0∥∥∥
1,ρπX

.

≤
K−1∑
k=0

γK−1−k
(
‖εk‖2,ρπX + γ ‖ek‖2,ρπX

)
+ γK

∥∥∥V π − V̂0∥∥∥
2,ρπX

. (30)

This result shows that the effect of the regression error ‖εk‖2,ρπX and the modelling error ‖ek‖2,ρπX at
each iteration is comparable, with the difference of having an extra γ factor. Moreover, the errors at
the k-th iteration influence the final error by being discounted proportional to γK−k. Therefore, the
errors in latter iterations are contributing more to the value function error compared to the earlier
ones. This suggests spending more resources (e.g., number of samples, the expressiveness of function
approximation architecture, computation, etc.) on latter iterations. This observation aligns the
analysis for AVI and API by Farahmand et al. [2010], which is not surprising as IterVAML is a
particular model-based version of AVI.

The inequality (30) measures the errors εk and ek w.r.t. the stationary distribution ρπX . In order
to obtain a more general result in which the norms of εk and ek are w.r.t. another distribution νX ,
we can use a change of measure argument. Recall that for a measurable function f : X → R and
two probability measures µ1, µ2 ∈ M̄(X ), if µ1 is absolutely continuous w.r.t. µ2 (µ1 � µ2), the
Radon-Nikydom (R-N) derivative dµ1

dµ2
exists, and we have∫

f(x)dµ1 =

∫
f(x)

dµ1

dµ2
dµ2 ≤

∥∥∥∥dµ1

dµ2

∥∥∥∥
∞

∫
|f(x)|dµ2,

where ‖dµ1

dµ2
‖∞ = supx |

dµ1

dµ2
(x)|. This change of measure argument has been used before to analyze

RL algorithms, e.g., by Kakade and Langford [2002], Munos [2007]. The supremum of the R-N
derivative, however, is a crude measure of the difference between two distributions. One may provide
a more refined analysis by considering the average of R-N derivative:∫

f(x)dµ1 =

∫
f(x)

dµ1

dµ2
dµ2 =

∫
f(x)dµ1 =

∫
f(x)

dµ1

dµ2

√
dµ2

√
dµ2

≤

√∫ ∣∣∣∣dµ1

dµ2
(x)

∣∣∣∣2 dµ2

√∫
f2(x)dµ2 =

∥∥∥∥dµ1

dµ2

∥∥∥∥
2,µ2

‖f‖2,µ2
, (31)
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where we used the Cauchy-Schwarz inequality. Here the expected value of the R-N derivative w.r.t.
the probability distribution µ2 appears, which can be significantly smaller than its supremum. Refer
to Farahmand et al. [2010] for more discussions. Note than this argument can be generalized to any
(p, q)-Hölder pairs of ‖dµ1

dµ2
‖p,µ2

and ‖f‖q,µ2
by using Hölder’s inequality instead of the Cauchy-

Schwarz inequality. This has been done by Scherrer et al. [2012] to analyze Approximate Modified
Policy Iteration. We define the following concentrability coefficient.
Definition 1 (Expected Concentrability of the Future State Distribution—Policy Evaluation). Given
ρX , νX ∈ M̄(X ), policy π, and an integer number k ≥ 0, let ρ(Pπ)k denote the future state
distribution obtained when the first state is distributed according ρ and the agent follows Pπ(= P∗π)
for k steps. Define

cπVI,ρX ,νX (k) =

∥∥∥∥dρX (Pπ)k

dνX

∥∥∥∥
2,νX

,

√∫ ∣∣∣∣dρX (Pπ)k

dνX
(x)

∣∣∣∣2 dνX .

If the future state distribution is not absolutely continuous w.r.t. νX , we take cπVI,ρX ,νX (k) =∞.

The application of (31) to inequality (29) and using the just defined concentrability coefficient lead to
the following proposition.
Proposition 2 (Error Propagation for Model-based AVI for Policy Evaluation). Consider a sequence
of (V̂k)Kk=0 generated as described. Let εk = TπP̂(k+1)

V̂k − V̂k+1 (regression error) and ek =

(P∗ − P̂(k+1))V̂k (modelling error) for k = 0, 1, . . . ,K − 1. Consider probability distributions
ρX , νX ∈ M̄(X ). We have∥∥∥V π − V̂K∥∥∥

1,ρX
≤
K−1∑
k=0

γK−1−kcπVI,ρX ,νX (K − 1− k)
(
‖εk‖2,νX + γ ‖ek‖2,νX

)
+ γK

∥∥∥V π − V̂0∥∥∥
1,νX

.

We now provide a result for the model-based AVI for the control case, i.e., the Bellman optimality
operator is used. The is the extension of the result of Farahmand et al. [2010], Farahmand [2011] for
AVI to the case when a model is used and the model has some errors.

Consider a sequence of Q̂0, Q̂1, . . . , Q̂K with Q̂k+1 ≈ T ∗P̂(k+1)
Q̂k, with P̂(k+1) being an approxi-

mation of the true P , P∗. IterVAML, which consists of repeated solving of (11) and (12), is an
example of a procedure that generates these Q̂k. The result, however, is more general and does not
depend on the particular way P̂(k+1) and Q̂k+1 are produced.

We define the error functions

εk = T ∗P̂(k+1)Q̂k − Q̂k+1, k = 0, 1, . . . ,K − 1

ek =
(
P∗ − P̂(k+1)

)
max
a′

Q̂k(·, a′), k = 0, 1, . . . ,K − 1 (32)

which are similar to (28) with the difference that they are defined based on the Bellman optimality op-
erator and the action-value function. Here maxa′ Q̂k(·, a′) is the function V̂k(x) = maxa′ Q̂k(x, a′).

We define the following concentrability coefficients, similar to the coefficient introduced by Farah-
mand et al. [2010], which itself is a relaxation of the coefficient introduced by Munos [2007].
Definition 2 (Expected Concentrability of the Future State-Action Distribution). Given ρ, ν ∈
M̄(X ×A), an integer number k ≥ 0, and an arbitrary sequence of policies (πi)

m
i=1, the distribution

ρPπ1 · · · Pπk denotes the future state-action distribution obtained when the first state-action is
distributed according ρ and the agent follows the sequence of policies π1, π2, . . . , πk. Define

c̄VI,ρ,ν(k) = sup
π1,...,πk

∥∥∥∥dρPπ1 · · · Pπk
dν

∥∥∥∥
2,ν

.

If the future state-action distribution ρPπ1 · · · Pπk is not absolutely continuous w.r.t. ν, we take
c̄VI,ρ,ν(k) =∞. Moreover, for a discount factor 0 ≤ γ < 1, define the discounted weighted average
concentrability coefficient as

C̄(ρ, ν) = (1− γ)2
∑
k≥1

kγk−1c̄VI,ρ,ν(k).

15



The definition of c̄VI,ρ,ν(k) is a generalization of cπVI,ρX ,νX in Definition 1 from a fixed policy π
to a worst case over a sequence of policies. The definition of C̄(ρ, ν) is similar to the second
order discounted future state distribution concentration coefficient of Munos [2007], with the main
difference being that it is defined for the expectation of the R-N derivative instead of its supremum.

The following theorem is our main error propagation result. It can be seen as the generalization
of the results of Farahmand et al. [2010], Munos [2007] to the case when we use a model that has
an error, whereas the aforementioned papers are for model-free case (or when the model is exact).
Because of this similarity, several steps of the proof are similar to theirs. We discuss the similarities
and differences in more detail after the theorem.

Theorem 3. Consider a sequence of action-value function (Q̂k)Kk=0, and their corresponding
(V̂k)Kk=0, each of which is defined as V̂k(x) = maxa Q̂k(x, a). Suppose that the MDP is such that
the expected rewards are Rmax-bounded, and Q̂0 is initialized such that it is Vmax ≤ Rmax

1−γ -bounded.

Let εk = T ∗P̂(k+1)
Q̂k − Q̂k+1 (regression error) and ek = (P∗ − P̂(k+1))V̂k (modelling error) for

k = 0, 1, . . . ,K − 1. Let πK be the greedy policy w.r.t. Q̂K , i.e., πK(x) = argmaxa∈A Q̂(x, a) for
all x ∈ X . Consider probability distributions ρ, ν ∈ M̄(X ×A). We have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
C̄(ρ, ν) max

0≤k≤K−1

(
‖εk‖2,ν + γ ‖ek‖2,ν

)
+ 2γKRmax

]

Proof. The key observation is that for any k = 0, 1, . . . ,K − 1, we have

Q̂k+1 = T ∗P̂(k+1)Q̂k − εk
= T ∗P̂(k+1)Q̂k − T ∗P∗Q̂k + T ∗P∗Q̂k − εk

= γ
(
P̂(k+1) − P∗

)
V̂k + T ∗P∗Q̂k − εk

= T ∗P∗Q̂k − (εk + γek) = T ∗P∗Q̂k −∆k, (33)

where we denote εk + γek by ∆k, and used

(T ∗P̂(k+1)Q̂k)(x, a)− (T ∗P∗Q̂k)(x, a) =[
r(x, a) + γ

∫
P̂(k+1)(dx′|x, a) max

a′
Q̂k(x′, a′)

]
−
[
r(x, a) + γ

∫
P∗(dx′|x, a) max

a′
Q̂k(x′, a′)

]
= γ

∫ (
P̂(k+1)(dx′|x, a)− P∗(dx′|x, a)

)
V̂k(x′).

For the rest of the proof, we may use T ∗ instead of T ∗P∗ , and P instead of P∗ to reduce clutter.

Consider the optimal policy π∗. Note that it satisfies T ∗Q∗ = Tπ
∗
Q∗ = Q∗. Also we have

T ∗Q̂k ≥ Tπ
∗
Q̂k (and in fact for any policy, including π∗). These facts in addition to the error

decomposition (33) show that

Q∗ − Q̂k+1 = Tπ
∗
Q∗ − Q̂k+1

= Tπ
∗
Q∗ − Tπ

∗
Q̂k + Tπ

∗
Q̂k − T ∗Q̂k︸ ︷︷ ︸
≤0

+T ∗Q̂k − Q̂k+1

≤ γPπ
∗
(Q∗ − Q̂k) + ∆k. (34)
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Likewise, notice that the greedy policy πk w.r.t. Q̂k satisfies T ∗Q̂k = TπkQ̂k, and T ∗Q∗ ≥ TπkQ∗.
These facts along with the previous error decomposition show that

Q∗ − Q̂k+1 = T ∗Q∗ − Q̂k+1

= T ∗Q∗ − TπkQ∗︸ ︷︷ ︸
≥0

+TπkQ∗ − Q̂k+1

≥ TπkQ∗ − Q̂k+1 = TπkQ∗ −
(
T ∗Q̂k −∆k

)
= TπkQ∗ − TπkQ̂k + ∆k

= γPπk
(
Q∗ − Q̂k

)
+ ∆k. (35)

By induction from (34),

Q∗ − Q̂K ≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1∆k + γK(Pπ

∗
)K(Q∗ − Q̂0). (36)

Likewise, from (35), we obtain

Q∗ − Q̂K ≥
K−1∑
k=0

γK−1−k (PπK−1 · · · Pπk+1) ∆k + γK (PπK−1 · · · Pπ0) (Q∗ − Q̂0). (37)

We need to relate Q∗ − QπK (the performance loss of following policy πK) to the value function
estimation error Q∗ − Q̂K . We have

Q∗ −QπK = Tπ
∗
Q∗ − TπKQπK

= Tπ
∗
Q∗ − Tπ

∗
Q̂K + Tπ

∗
Q̂K − T ∗Q̂K︸ ︷︷ ︸
≤0

+ T ∗Q̂K︸ ︷︷ ︸
=TπK Q̂K

−TπKQπK

≤ γPπ
∗
(
Q∗ − Q̂K

)
+ γPπK

(
Q̂K −QπK

)
= γPπ

∗
(
Q∗ − Q̂K

)
+ γPπK

(
Q̂K −Q∗ +Q∗ −QπK

)
= γ

(
Pπ
∗
− PπK

)(
Q∗ − Q̂K

)
+ γPπK (Q∗ −QπK ) .

By rearranging, we obtain

(I− γPπK ) (Q∗ −QπK ) ≤ γ
(
Pπ
∗
− PπK

)(
Q∗ − Q̂K

)
.

Here I is the identify operator. Therefore, we have

(Q∗ −QπK ) ≤ γ (I− γPπK )
−1
(
Pπ
∗
− PπK

)(
Q∗ − Q̂K

)
. (38)

We combine just obtained (38) with previous pointwise inequalities (36) and (37) and take the
absolute value to get

Q∗ −QπK ≤ γ (I− γPπK )
−1

[
K−1∑
k=0

γK−k−1
(

(Pπ
∗
)K−k + (PπK · · · Pπk+1)

)
|∆k|+

γK
(

(Pπ
∗
)K+1 + (PπK · · · Pπ0)

) ∣∣∣Q∗ − Q̂0

∣∣∣ ]

To simplify the notation, we introduce

αk =

{
(1−γ)γK−k−1

1−γK+1 , 0 ≤ k < K
(1−γ)γK
1−γK+1 . k = K
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One may verify that
∑K
k=0 αk = 1. We also define stochastic kernels

Ak =

{
1−γ
2 (I− γPπK )

−1 [
(Pπ∗)K−k + (PπK · · · Pπk+1)

]
, 0 ≤ k < K

1−γ
2 (I− γPπK )

−1 [
(Pπ∗)K+1 + (PπK · · · Pπ0)

]
. 0 ≤ k < K

Therefore, we have

Q∗ −QπK ≤ 2(1− γK+1)γ

(1− γ)2

[
K−1∑
k=0

αkAk|∆k|+ αKAK |Q∗ − Q̂0|

]
.

Let us call λK = 2(1−γK+1)γ
(1−γ)2 .

This last inequality is pointwise over the state-action space. To compute the expected performance
loss, we apply the probability distribution ρ ∈ M̄(X×A) to its both sides. We use Jensen’s inequality
to move ρ inside. This is possible because the sequence (αk) is positive and sums to one. We get

ρ |Q∗ −QπK | ≤ λK

[
K−1∑
k=0

αkρAk|∆k|+ αKρAK |Q∗ − Q̂0|

]
. (39)

Let us focus on ρAk|∆k|. We first expand the (I− γPπK )
−1 term. Afterwards, we do a change of

measure argument, as was shown in (31), and use the definition of c̄VI,ρ,ν (Definition 2) to upper
bound the expected R-N. derivative:

ρAk|∆k| =
1− γ

2
ρ
∑
m≥0

γm(PπK )m
[
(Pπ

∗
)K−k + (PπK · · · Pπk+1)

]
|∆k|

≤ (1− γ)
∑
m≥0

γmc̄VI,ρ,ν(K − k +m) ‖∆k‖2,ν .

We plug this upper bound back into (39), and then expand αk. We also benefit from the assumption
that |Q∗ − Q̂0| is 2Vmax-bounded, so ρAK |Q∗ − Q̂0| ≤ 2Vmax. we get

‖Q∗ −QπK‖1,ρ ≤
2(1− γK+1)γ

(1− γ)2

[
K−1∑
k=0

αk(1− γ)
∑
m≥0

γmc̄VI,ρ,ν(K − k +m) ‖∆k‖2,ν +

2αKVmax

]

≤ 2γ

1− γ

(1− γ)

K−1∑
k=0

∑
m≥0

γK−k−1+mc̄VI,ρ,ν(K − k +m) ‖∆k‖2,ν + 2γKVmax

 .
To simplify the expression, we take the maximum of ‖∆k‖2,ν over k = 0, . . . ,K − 1, and take it out
of the summation. One can also see that

K−1∑
k=0

∑
m≥0

γK−k−1+mc̄VI,ρ,ν(K − k +m) =
∑
m≥0

K−1∑
k′=1

γk
′−1+mc̄VI,ρ,ν(k′ +m)

=
∑
n≥1

nγn−1c̄VI,ρ,ν(n) =
C̄(ρ, ν)

(1− γ)2
.

So we get

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
C̄(ρ, ν) max

0≤k≤K−1
‖∆k‖2,ν + 2γKRmax

]
.

We obtain the desired result after substituting ‖∆k‖2,ν with ‖εk‖2,ν + γ ‖ek‖2,ν .
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We describe the similarities and differences of this result with those of Munos [2007], Farahmand
et al. [2010], Farahmand [2011]. The similarity between all these results is that they analyze AVI
when the errors are measured by a norm other than the supremum norm: Here the size of the errors
ek and εk is measured according to their L2(ν)-norm, and the performance loss is the difference
between Q∗ and QπK according to the L1(ρ) norm. Measuring the performance loss according
to the L1(ρ) is a natural choice as it is the loss in the value of following policy πK comparing to
the optimal one, when the initial state-action distribution is ρ. All these results are improvement
over the supremum-based norms, which can be quite conservative. Refer to the previous work for
more discussion. Similar Lp-norm-based analysis has been done for algorithms other than AVI. For
example, refer to Munos [2003], Antos et al. [2008] for API, Scherrer et al. [2012] for approximate
modified policy iteration, Farahmand et al. [2016c] for finite-horizon AVI, Huang et al. [2015] for
approximate Maximum Entropy Inverse Optimal Control (or RL), which is solved using a variant of
finite-horizon AVI that has a softmax instead of the max operator in the definition of the Bellman
operator, and Mann et al. [2015] for AVI with options.

The main difference of this result compared to the previous work is that the theorem is suitable for
MBRL when the models have errors, quantified by the (ek) sequence. On the other hand, Munos
[2007], Farahmand et al. [2010], Farahmand [2011] analyze AVI when there is no modelling error,
i.e., either the model is exactly known or we are in a model-free RL scenario and we do not need
to deal with the model error. If the model error ek = 0, the form of result is in fact quite similar to
Theorem 5.2 of Munos [2007], with some subtle, but important, differences.

The difference is that the concentrability coefficients c̄VI,ρ,ν(k) used in the definition of C̄(ρ, ν) in
this work is w.r.t. the expected value of the R-N derivative (see Definition 2). In the work of Munos
[2007], the same quantity C̄(ρ, ν) is defined w.r.t. the supremum norm of the R-N derivatives, i.e.,
supπ1,...,πk

‖dρP
π1 ···Pπk
dν ‖∞. As argued earlier here, and in more detail by Farahmand et al. [2010],

Farahmand [2011], the expected value of R-N can be a significantly smaller than its supremum. This
means that the current result captures the error propagation behaviour of AVI more accurately.

Some aspects of this result is more general compared to Farahmand et al. [2010], Farahmand [2011],
but it does not consider some finer aspects of the error propagation as they do. The result is more
general because it considers the modelling error, but the work of Farahmand et al. [2010], Farahmand
[2011] does not. On the other hand, this result does not reveal the error decaying property of
AVI: Errors in the earlier iterations of AVI are less important than the errors in later ones. This is
hidden in the current result as we take the maximum error over all iterations in the upper bound, i.e.,
max0≤k≤K−1(‖εk‖2,ν + γ ‖ek‖2,ν). A more careful, but slightly more involved analysis, would
reveal that the errors at all iteration do not contribute equality to the final performance loss. This
is apparent in the results of Farahmand et al. [2010], Farahmand [2011]. We can also observe this
behaviour in (30) and Proposition 2, which are for policy evaluation, where the errors at the k-th
iterations are multiplied by γK−1−k. We decided not to present such an analysis in order to simplify
the proof and the statement of the result.

Before stating Theorem 4, which is the direct implication of Theorems 1 and 3, we state another
assumption.

Assumption A4 (Value Function Space) The value function space F |A| is Vmax-bounded with
Vmax ≤ Rmax

1−γ , and Vmax ≥ 1.

This assumption requires that all the value functions Q̂k and V̂k generated by performing a step
of AVI (12) and used in the model learning steps (11) are Vmax-bounded. This ensures that As-
sumption A3, which is required by Theorem 1, is satisfied in all iterations. This assumption is easy
to satisfy in practice by clipping the output of the value function estimator at the level of ±Vmax.
Theoretical analysis of such a clipped value function estimator, however, is more complicated. As
we do not analyze the value function estimation steps of IterVAML, which depends on the choice of
F |A|, we ignore this issue.

Theorem 4. Consider the IterVAML procedure in which at the k-th iteration the model P̂(k+1) is
obtained by solving (11) and Q̂k+1 is obtained by solving (12). Let εk = T ∗P̂(k+1)

Q̂k − Q̂k+1 be the
regression error. Suppose that Assumptions A1, A2, and A4 hold. Consider the greedy policy πK w.r.t.
Q̂K . For any ρ ∈ M̄(X ×A), there exists a finite c(α) > 0, depending only on α, such that for any
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δ > 0, with probability at least 1− δ, we have

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

[
C̄(ρ, ν)

(
max

0≤k≤K−1
‖εk‖2,ν + γemodel(n)

)
+ 2γKRmax

]
where

emodel(n) = sup
V ∈F+

inf
P∈M

‖(Pz − P∗z )V ‖2,ν +
c(α)VmaxR

α
1+α 4
√

log(K/δ)

n
1

2(1+α)

,

and F+ =
{

maxaQ(·, a) : Q ∈ F |A|
}
.

Proof. Fix 0 < δ < 1. For each iteration k = 0, . . . ,K − 1 of IterVAML, invoke Theorem 1 with
the confidence parameter δ/K to obtain that

‖ek‖22,ν =
∥∥∥(P̂(k+1)

z − P∗z )V̂k

∥∥∥2
2,ν
≤ inf
P∈M

∥∥∥(Pz − P∗z )V̂k

∥∥∥2
2,ν

+
c(α)V 2

maxR
2α

1+α

√
log(K/δ)

n
1

1+α

,

for some c(α) > 0 and with probability at least 1− δ/K.

Since V̂k is random, we upper bound the model approximation error term by taking the supre-
mum over all possible value functions that might be encountered during IterVAML. Since any
Q̂k generated by IterVAML is a member of F |A|, their corresponding V̂ks belong to F+ ={

maxaQ(·, a) : Q ∈ F |A|
}

. Therefore, we can upper bound the model approximation error by

sup
V ∈F+

inf
P∈M

‖(Pz − P∗z )V ‖2,ν .

We apply the union bound over all k to obtain that all k = 0, . . . ,K − 1 simultaneously satisfy

‖ek‖22,ν ≤ sup
V ∈F+

inf
P∈M

‖(Pz − P∗z )V ‖22,ν +
c(α)V 2

maxR
2α

1+α

√
log(K/δ)

n
1

1+α

,

with probability at least 1− δ.

We can now apply Theorem 3 with this choice of ‖ek‖2,ν and εk, as defined in the statement of the
theorem, to obtain the desired result.

This result provides an upper bound on the quality of the learned policy πK , as a function of the
number of samples and the properties of the model spaceM and the MDP. The estimation error
due to the model learning is n

1
2(1+α) , which is discussed in some detail after Theorem 1. The model

approximation error term supV ∈F+ infP∈M ‖(Pz − P∗z )V ‖2,ν shows the interaction between the
modelM and the value function space F |A|. This quantity is likely to be conservative and can be
improved. We also note that an upper bound on ‖εk‖2,ν depends on the regression method, the choice
of F |A|, and the number of samples generated from P̂(k+1).

5 Conclusion

We have introduced IterVAML, a decision-aware model-based RL algorithm. We proved finite sample
error upper bound for the model learning procedure (Theorem 1) and a generic error propagation
result for an approximate value iteration algorithm that uses an inaccurate model (Theorem 3). The
consequence of these two results was Theorem 4, which provides an error upper bound guarantee on
the quality of the outcome policy of IterVAML.

There are several possible future research directions. One is empirical studies of IterVAML and
comparing it with non-decision-aware methods. Another direction is to investigate other approaches
to decision-aware model-based RL algorithms.
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A Background Definitions and Results

We collect some background definitions and useful results in this appendix. Section A.1 defines the
notations related to the norms of the functions. Section A.2 recalls the definition of the covering
number and metric entropy of a function space. We define the Rademacher complexity and collect
some related results in Section A.3.

A.1 Function Space and Norms

Here we briefly define some of the notations that we use throughout the paper. Consider the domain
X and a function space F : X → R. We do not deal with measure theoretic considerations, so
we just assume that all functions involved are measurable w.r.t. an appropriate σ-algebra for that
space. We use M̄(X ) to refer to the set of all probability distributions defined over that space. We
use symbols such as ν, ρ, µ ∈ M̄(X ) to refer to probability distributions defined over that space. In
order to emphasize that the probability distribution is defined over a specific space such as X , we
sometimes use the subscript, e.g., νX , ρX , µX , etc.

We use ‖f‖p,ν to denote the Lp(ν)-norm (1 ≤ p <∞) of a measurable function f : X → R, i.e.,

‖f‖pp,ν ,
∫
X
|f(x)|pdν(x).

The supremum norm is defined as
‖f‖∞ = sup

x∈X
|f(x)|.

We may define empirical norms too. Let x1, . . . , xn be a sequence of points in X . We use x1:n to
refer to this sequence. The empirical measure Pn is the probability measure that puts a mass of 1

n at
each xi, i.e.,

Pn = Px1:n =
1

n

n∑
i=1

δxi ,

where δx is the Dirac’s delta function. Equivalently, Pn(A) = 1
n

∑n
i=1 I{xi ∈ A} for any measurable

subset A ⊂ X , where I{·} is the indicator function. For Dn = x1:n, the empirical L2(Pn)-norm of
function f : X → R is

‖f‖2Dn = ‖f‖2Pn =

∫
f dPn =

1

n

n∑
i=1

|f(xi)|2 .

We can define other Lp(Pn)-norms, sometimes denoted by Lp(x1:n), similarly. When there is no
chance of confusion about Dn, we may denote the empirical norm simply by ‖f‖n.

Throughout the paper we useM to denote a space of transition probability kernels. Given a transition
probability kernel P ∈M, define the L2-norm at a point z ∈ X ×A as

‖P(·|z)‖2 = ‖P(·|z)‖22 =

∫
|P(dx′|z)|2.

For a sequence z1:n , z1, . . . , zn ⊂ X ×A, we define the empirical norm L2(z1:n) of P ∈M by

‖P‖22,n =
1

n

n∑
i=1

‖P(·|zi)‖22 .

We also define the following mixed supremum-total variation distance between any P1,P2 ∈M:

d∞,TV(P1,P2) = sup
z∈Z

∫
|P1(dy|z)− P2(dy|z)| .

A.2 The Covering Number and Metric Entropy

We quote the definition of the covering number from Györfi et al. [2002].
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Definition 3 (Definition 9.3 of Györfi et al. 2002). Let ε > 0, F be a set of real-valued functions
defined on X , and νX be a probability measure on X . Every finite collection of Nε = {f1, . . . , fNε}
defined on X with the property that for every f ∈ F , there is a function f ′ ∈ Nε such that
‖f − f ′‖p,νX < ε is called an ε-cover of F w.r.t. ‖·‖p,νX .

Let N (ε,F , ‖·‖p,νX ) be the size of the smallest ε-cover of F w.r.t. ‖·‖p,νX . If no finite ε-cover
exists, take N (ε,F , ‖·‖p,νX ) =∞. Then N (ε,F , ‖·‖p,νX ) is called an ε-covering number of F and
logN (ε,F , ‖·‖p,νX ) is called the metric entropy of F w.r.t. the same norm.

Given a x1:n = (x1, . . . , xn) ⊂ X and its corresponding empirical measure Pn = Px1:n
, we can

define the empirical covering number of F w.r.t. the empirical norm ‖·‖p,x1:n
and is denoted by

Np(ε,F , x1:n) = N (ε,F , Lp(x1:n)).

A.3 Rademacher Complexity and Error Upper Bound

We briefly define Rademacher complexity, and its local variant, and quote a result regarding the
deviation of the expectation from the empirical expectation from Bartlett et al. [2005]. For more
information about Rademacher complexity, refer to Bartlett et al. [2005], Bartlett and Mendelson
[2002].

Let σ1, . . . , σn be independent random variables with P {σi = 1} = P {σi = −1} = 1/2. For a
(measurable) function space F : X → R, define

RnF = sup
f∈F

1

n

n∑
i=1

σif(Xi),

with Xi ∼ ν. The Rademacher complexity (or average) of F is E [RnG], in which the expectation is
w.r.t. both σ and Xi. One may interpret it as a complexity measure that quantifies the extent that a
function from F can fit a noise sequence of length n [Bartlett and Mendelson, 2002].

The error behaviour of an estimator can be captured by the behaviour of the supremum of an empirical
process, i.e.,

sup
f∈F

(E [f ]− En [f ]),

in which En [f ] , 1
n

∑n
i=1 f(Xi). Rademacher complexity is closely related to the supremum of the

empirical process, through the relation between the empirical process and its symmetrized process,
so studying them leads to error upper bounds for the estimator, see e.g., Theorem 8 of Bartlett and
Mendelson [2002] or Theorem 2.1 of Bartlett et al. [2005].

Nonetheless, the supremum of the empirical process may not accurately capture the behaviour of an
estimator. The error behaviour of an estimator does not depends on the supremum of E [f ]− En [f ]
over the whole F , but only around a local neighbourhood of a certain point f0 ∈ F , e.g., the
minimizer of supf∈F E [f ]. This local behaviour is better captured by studying the modulus of
continuity of an empirical process. This in turn is related to local Rademacher complexity, which we
use in this work.

We quote the first part of Theorem 3.3 of Bartlett et al. [2005], almost verbatim, which provides
an error upper bound on the difference between the expectation and empirical expectation as a
function of local Rademacher complexity of the class. Before stating the result, recall the definition
of a sub-root function: A non-negative and non-decreasing function ψ : [0,∞)→ [0,∞) is called
sub-root if r 7→ ψ(r)√

r
is non-increasing for r > 0 [Bartlett et al., 2005].

Theorem 5 (Theorem 3.3 of Bartlett et al. [2005]—First Part). Let F be a class of functions with
ranges in [a, b] and assume that there are some functional T : F → R+ and some constant B such
that for every f ∈ F ,

Var [f ] ≤ T (f) ≤ BE [f ] . (40)

Let ψ be a sub-root function and let r∗ = r∗(F) be the fixed point of ψ. Assume that for any r ≥ r∗,
ψ satisfies

ψ(r) ≥ BE [Rn{f ∈ F : T (f) ≤ r}] . (41)
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Then with c1 = 704 and c2 = 26, for any K > 1 and every x > 0, with probability at least 1− e−x,
for any f ∈ F , we have

E [f ] ≤ K

K − 1
En [f ] +

c1K

B
r∗ +

x(11(b− a) + c2BK)

n
.

Also with probability at least 1− e−x, for any f ∈ F , we have

En [f ] ≤ K + 1

K
E [f ] +

c1K

B
r∗ +

x(11(b− a) + c2BK)

n
.

We shall use r∗(F) to denote the fixed point of a ψ that satisfies (41).

The following result, which is quoted from Bartlett et al. [2005], ensures that with a high probability a
ball w.r.t. a true norm falls within a ball w.r.t. an empirical norm with a slightly larger radius whenever
the Rademacher complexity is small enough. We use this result in Proposition 10 in Appendix B.3,
where we use Dudley’s entropy integral to upper bound the Rademacher complexity by an integral of
the metric entropy. As we shall see in that proposition, we want to convert a set that is defined w.r.t.
the true norm to a set that is defined w.r.t. the empirical norm.

Proposition 6 (Corollary 2.2 of Bartlett et al. [2005]). Let F be a class of b-bounded functions. For
every x > 0 and r that satisfies

r ≥ 10bE
[
Rn
{
f : f ∈ F ,E

[
f2
]
≤ r

}]
+

11b2x

n
,

we then have {
f ∈ F : E

[
f2
]
≤ r

}
⊂
{
f ∈ F : En

[
f2
]
≤ 2r

}
,

with probability at least 1− e−x.

B Auxiliary Results

This appendix provides some auxiliary technical results that are required to prove Theorem 1.

B.1 Bernstein-Type Condition

The following proposition allows us to verify the variance condition of Theorem 5 for the function
space G (17) defined in the proof of Theorem 1. Recall that L(P) = ‖(Pz − P∗z )V ‖22,ν .

Proposition 7. Let P̃ ← argminP∈M L(P). Assume that the function space M is convex, and
compact w.r.t. d∞,TV. For any P ∈M, we have

E
[∣∣∣(PZ − P̃Z)V

∣∣∣2] ≤ L(P)− L(P̃).

Proof. For a fixed bounded function V and a transition kernel P , define the function h′P(z) =∫
P(dy|z)V (y). Let H′ = { z 7→ h′P(z) : P ∈M}. We first show that whenM is convex and

compact, the spaceH′ is convex and closed.

To see the convexity of H′, pick h′1, h
′
2 ∈ H′, with their corresponding P1,P2 ∈ M. For any

0 ≤ λ ≤ 1,

λh′1 + (1− λ)h′2 =

∫
(λP1(dy|z) + (1− λ)P2(dy|z))V (y) =

∫
Pλ(dy|z)V (y),

with Pλ = λP1 + (1−λ)P2. AsM is convex, Pλ ∈M, and as a result h′Pλ ∈ H
′. SoH′ is convex.

We now show that if M is a compact set, H′ is a closed set. To see this, equip H′ with the
supremum norm metric d∞, i.e., for h′1, h

′
2, we denote d∞(h′1, h

′
2) = ‖h′1 − h′2‖∞. We use mixed

TV-supremum metric dTV,∞(P1,P2), defined in Appendix A.1, forM.
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The function h′P is continuous from the metric space (M, d∞) to the metric space (H, dTV,∞). We
show this by verifying its Lipschitzness:

d∞
(
h′P1

, h′P2

)
= sup

z

∣∣∣∣∫ (P1(dy|z)− P2(dy|z))V (y)

∣∣∣∣ ≤ ‖V ‖∞ dTV,∞(P1,P2).

As H′ is the mapping of a compactM by the continuous function h′, H′ is also compact.7 Since
compact sets are closed, we have shown thatH′ is compact too.

After establishing these facts about H, we return to the loss function L(P) and its minimizer P̃ .
With the notation h′P = PV , we have L(P) = ‖(Pz − P∗z )V ‖22,ν = ‖h′P − h′P∗‖

2
2,ν . The function

h′P̃ = P̃V is the L2(ν)-projection of P∗V ontoH′. By the variational characterization of projection
onto a convex and closed set, we have that for any PV = h′P ∈ H′,

E
[〈
P∗ZV − P̃ZV , PZV − P̃ZV

〉]
≤ 0.

By adding and subtracting P∗ZV and re-arranging, we get that

E
[〈
P∗ZV − P̃ZV , PZV − P∗ZV + P∗ZV − P̃ZV

〉]
≤ 0

⇔E
[〈
P∗ZV − P̃ZV , PZV − P∗ZV

〉]
≤ −E

[∣∣∣(P∗Z − P̃Z)V
∣∣∣2] .

We now expand E
[∣∣∣(PZ − P̃Z)V

∣∣∣2] and use the obtained inequality for the inner product term to

get

E
[∣∣∣(PZ − P̃Z)V

∣∣∣2] = E
[
|(PZ − P∗Z)V |2

]
+ E

[∣∣∣(P∗Z − P̃Z)V
∣∣∣2]+

2E
[〈

(PZ − P∗Z)V , (P∗Z − P̃Z)V
〉]

≤E
[
|(PZ − P∗Z)V |2

]
− E

[∣∣∣(P∗Z − P̃Z)V
∣∣∣2] = L(P)− L(P̃),

which is the desired result.

B.2 Modulus of Continuity of Weighted Sum

Let G be a class of functions on Z and z1:n = z1, . . . , zn be a sequence of points in Z . Recall that Pn
is the empirical measure, i.e., Pn = Pz1:n = 1

n

∑n
i=1 δzi , and we define the empirical L2(Pn)-norm

of g as ‖g‖2n = ‖g‖2Pn = 1
n

∑n
i=1 |g(zi)|2.

Consider i.i.d. random variables W1, . . . ,Wn. We denote the weighted sum of g and the random
vector W (or their inner product) as follows:

〈 g , Wi 〉n ,
1

n

n∑
i=1

g(zi)Wi. (42)

We are interested in the behaviour of 〈 g , Wi 〉n as a function of the empirical norm ‖g‖Pn . To prove
such a result, we use an intermediate result on the supremum of the weighted sums. The following
lemma is Theorem 19.1 of Györfi et al. [2002], which we quote here for the ease of reference. This
result, in a more general form, appears as Lemma 3.2 of van de Geer [2000].
Lemma 8. Let L > 0 and W1, . . . ,Wn be independent random variables with expectation zero and
values in [−L,L]. Let z1, . . . , zn ∈ Rd, let R > 0, and let G be a class of functions g : Rd → R with
the property

1

n

n∑
i=1

|g(zi)|2 ≤ R2,

7For example, see Theorem 1.66 of Hunter and Nachtergaele [2001], which we quote here: Let f : K → Y
be continuous on K, where K is a compact metric space and Y is any metric space. Then f(K) is compact.
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for all g ∈ G. Then the metric entropy condition

√
nε ≥ 48

√
2L

∫ R
2

ε
8L

√
logN (u,G, L2(Pz1:n)du (43)

and
√
nε ≥ 36RL (44)

imply

P
{

sup
g∈G
|〈 g , Wi 〉| > ε

}
≤ 5 exp

(
− nε2

2304L2R2

)
.

We are now ready to state and prove the main result of this section. We use the peeling device in the
proof (cf. Section 5.3 of van de Geer 2000).
Lemma 9. Consider a function space G, points z1:n ⊂ Z , and random variables Wi. Assume that
the random variables Wi are i.i.d., zero mean, and bounded by L, i.e., E [Wi] = 0 and |Wi| ≤ L for
all i = 1, . . . , n. Suppose that the function space G satisfies the following metric entropy condition

logN (u,G, L2(Pz1:n)) ≤ c
(
B

u

)2α

for some constants c,B > 0 and 0 < α < 1. For any δ > 0, with probability at least 1− δ, we have

sup
g∈G

|〈 g , Wi 〉n|
‖g‖1−αPn

≤ c1(α,L,B)

√
ln(1/δ)

n
,

for some c1(α,L,B) = c2(α)[L1+α +Bα] and a finite function c2(α) > 0.

Proof. We use the peeling device to upper bound the modulus of continuity. We write

δ = P

{
sup
g∈G

|〈 g , Wi 〉n|
‖g‖1−αPn

≥ t

}

≤
∑
s≥0

P

{
sup
g∈G

|〈 g , Wi 〉n|
‖g‖1−αPn

≥ t, 2−(s+1)L I{s 6= 0} < ‖g‖Pn ≤ 2−sL

}

≤
∑
s≥0

P
{

sup
g∈G
|〈 g , Wi 〉n| ≥

(
2−(s+1)L

)1−α
t, ‖g‖Pn ≤ 2−sL

}
.

We apply Lemma 8 to each term in the RHS summation. Upon satisfaction of the conditions of
the lemma, which we shall verify, with the choice of (2−(s+1)L)1−αt as ε in the lemma, setting
R = 2−sL, and keeping L the same, we get

δ ≤
∑
s≥0

5 exp

(
−n[2−(s+1)L]2(1−α)t2

2304L2(2−sL)2

)

= 5
∑
s≥0

exp

(
− nt222α22αs

4× 2304L2(1+α)

)

≤ 5c1(α)
∑
s≥1

exp

(
− nt222αs

4× 2304L2(1+α)

)

=
5c1(α) exp

(
− nt222α

4×2304L2(1+α)

)
1− exp

(
− nt222α

4×2304L2(1+α)

)
≤ 10c1(α) exp

(
− nt222α

4× 2304L2(1+α)

)
. (45)

25



The multiplier c1(α) compensates for all those terms when 22αs is not larger than s, which is required
for the substitution in the second inequality, and can conservatively be selected as c1(α) = 1

(2α ln(2))2 .
The last inequality is satisfied under the condition that

t ≥
√

ln 2× 25 × 3× L1+α

2α
√
n

. (46)

We now verify conditions (43) and (44) of Lemma 8 for each s ≥ 1.

With our choice of R, ε, and L, the metric entropy condition (43) is satisfied if

√
n
(

2−(s+1)L
)1−α

t ≥ 48
√

2L

∫ 2−(s+1)L

0

√
logN (u,G, L2(Pz1:n)du.

Under the assumed entropy condition, the integral on the RHS is upper bounded
√
cBαu1−α

1−α with
u = 2−(s+1)L, so it is sufficient to verify that

√
n
(

2−(s+1)L
)1−α

t ≥ 48
√

2L

√
cBα

(
2−(s+1)L

)1−α
1− α

,

which can be simplified as

t ≥ c2(α)Bα√
n

(47)

for some function c2(α), which is bounded away from zero as long as α > 0.

Likewise for the condition (44) we have

√
n
(

2−(s+1)L
)1−α

t ≥ 36(2−sL)L,

which is satisfied if

t ≥ 72L1+α

√
n

. (48)

Solving (45) for δ and considering the conditions (46), (47), and (48), we get that

sup
g∈G

|〈 g , Wi 〉n|
‖g‖1−αPn

≤ c2(α)Bα√
n

+

25L1+α

[
3

√
ln
(

10c1(α)
δ

)
+ 2

]
√
n

,

with probability at least 1− δ.

B.3 Local Rademacher Complexity of F and G

We provide upper bounds for the local Rademacher complexity of function spaces F (25) and G (17),
defined in the proof of Theorem 1. We follow the same notations as in that proof.

Proposition 10. Under the condition that logN (u,M, L2(Pn)) ≤ c
(
R
u

)2α
with 0 < α < 1, we

have

r∗(F), r∗(G) ≤ c1(α)V 4
maxR

2α
1+α

n
1

1+α

+
336V 4

max log n

n
,

where c1(α) = c′

(1−α)
2

1+α
, with possibly different finite constant c′ > 0 for each case.

Proof. We find sub-root functions ψ(r) with the fixed points r∗(G) and r∗(F) such that they satisfy
the conditions of Theorem 5.
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Fixed Point r∗(G). Recall that

G = { z 7→ lP(z)− lP̃(z) : P ∈M} .

We want to find a sub-root ψ(r) with the fixed point r∗(G) such that

ψ(r) ≥ BE [Rn{g ∈ G : T (g) ≤ r}] ,

for any r ≥ r∗(G), and for T (g) andB that satisfy the conditions specified in the theorem. According
to (21), we can choose T (g) = 16V 2

maxE
[
|(Pz − P̃z)V |2

]
and B = 16V 2

max. So we have

ψ(r) ≥ 16V 2
maxE

[
Rn

{
g ∈ G : 16V 2

maxE
[
|(Pz − P̃z)V |2

]
≤ r
}]

.

As g2(z) ≤ 16V 2
max|(Pz − P̃z)V |2, the set

{
g : E

[
g2
]
≤ r

}
is a superset of { g : T (g) ≤ r }, so

we verify the following relaxed condition instead:

ψ(r) ≥ 16V 2
maxE

[
Rn
{
g ∈ G : E

[
g2(Z)

]
≤ r
}]
. (49)

We may use Dudley’s entropy integral to relate the covering number and Rademacher complexity,
see e.g., Theorem 3.5.1 and Theorem 2.3.7 of Giné and Nickl [2015], or Theorem A.7 of Bartlett
et al. [2005] (originally from Dudley).8 But the covering number appearing in the Dudley’s integral is
w.r.t. the empirical norm, as opposed to the true norm we have here. We use Proposition 6, which is
originally Corollary 2.2 of Bartlett et al. [2005], to relate these upper bounds. As g is 4V 2

max-bounded,
the condition of the proposition would be satisfied if

r ≥ 10× 4V 2
maxE

[
Rn
{
g : g ∈ G,E

[
g2
]
≤ r

}]
+

11(4Vmax)2 log n

n
, (50)

in which case we have{
g ∈ G : E

[
g2
]
≤ r

}
⊂
{
g ∈ G : En

[
g2
]
≤ 2r

}
,

with probability at least 1− 1
n . By the definition of the Rademacher complexity, if F1 ⊂ F2, it holds

that Rn(F1) ≤ Rn(F2), see e.g., Theorem 12 of Bartlett and Mendelson [2002]. So whenever this
subset relation is true, which holds with probability at least 1− 1

n , we can compare the Rademacher
complexities of both sides. The failure event of the subset relation has probability at most 1/n, so its
effect on the Rademacher complexity is at most 4V 2

max/n. Thus, we can write

E
[
Rn
{
g ∈ G : E

[
g2
]
≤ r

}]
≤ E

[
Rn
{
g ∈ G : En

[
g2
]
≤ 2r

}]
+

4V 2
max

n
. (51)

We choose the following ψ, which satisfies both conditions (49) and (50):

ψ(r) =
(
16V 2

max ∨ 10× 4V 2
max

)
E
[
Rn
{
g ∈ G : E

[
g2
]
≤ r

}]
+

11(4V 2
max)2 log n

n
. (52)

Consider the fixed point r∗ = r∗(G) = ψ(r∗(G)). By evoking (51), it can be seen that it satisfies

r∗ ≤ ψ(r∗) = 40V 2
maxE

[
Rn
{
g ∈ G : En

[
g2
]
≤ 2r∗

}]
+

176V 4
max log n+ 40V 2

max × 4V 2
max

n
.

(53)

We can now use Dudley’s entropy integral to upper bound the Rademacher complexity with the
integral of covering numbers at different scales. For any r > 0, we have

E
[
Rn
{
g ∈ G : En

[
g2
]
≤ r

}]
≤ c√

n

∫ √r
0

√
logN (u, { g ∈ G : En [g2] ≤ r } , L2(PZ1:n) du

≤ c√
n

∫ √r
0

√
logN (u,G, L2(PZ1:n

) du.

8The upper bound of the integral in the latter paper does not need to go up to infinity when the function space
is bounded in the norm.
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The covering number assumption logN (u,M, L2(Pn)) ≤ c(Ru )2α along Proposition 11 show that

logN (u,G, L2(Pn)) ≤ c
(

2V 2
maxR

u

)2α

.

With this choice of the covering number, the entropy integral is

c′(V 2
maxR)α r

1−α
2

(1− α)
√
n

.

We plug this upper bound of the Rademacher complexity into (53) to obtain the implicit inequality

r∗ ≤ c1V
2

max(V 2
maxR)α

(1− α)
√
n

r∗
1−α
2 +

176V 4
max log n+ 160V 4

max

n
. (54)

We solve this inequality to obtain that

r∗(G) ≤ c1V
4

maxR
2α

1+α

(1− α)
2

1+αn
1

1+α

+
336V 4

max log n

n
.

Fixed Point r∗(F). The proof is very similar to the proof for the previous part with the main
difference being in the selection of B and T (f), which happens to be inconsequential. Recall that

F =

{
z 7→

∣∣∣(Pz − P̃)V
∣∣∣2 : P ∈M

}
.

For this function space, according to (26), we can choose B = 4V 2
max and T (f) = 4V 2

maxE [f ]. With
a similar argument leading to (49), we need to verify

ψ(r) ≥ 4V 2
maxE

[
Rn
{
f ∈ F : E

[
f2(Z)

]
≤ r
}]
.

As f is 4V 2
max-bounded, which is the same as g, the constants in condition (50) and upper bound (51)

remains unchanged, so we can choose

ψ(r) =
(
4V 2

max ∨ 10× 4V 2
max

)
E
[
Rn
{
g ∈ F : E

[
f2
]
≤ r

}]
+

11(4V 2
max)2 log n

n
.

As the first term is 40V 2
max, this choice of ψ becomes the same as (52), with the difference only

in having the Rademacher complexity of subsets of G instead of F . We provide an upper bound
for E

[
Rn
{
g ∈ F : E

[
f2
]
≤ r

}]
using Dudley’s integral with the covering number of F instead

instead of G. Proposition 11 provides the same upper for the covering number of F and G as a
function of the upper bound of G. Therefore, the Dudley’s integral would lead to the same implicit
inequality as (54), and we get the same upper bound for r∗(F) as that of r∗(G).

B.4 Covering Number of F , G, andH

We provide covering number results for slight generalization of function spaces H (23), G (17),
and F (25) defined in the proof of Theorem 1 as a function of the covering number of M. The
generalization is that this result is valid for any P ′ instead of a specific P̃ .
Proposition 11. For a fixed probability transition kernel P ′ and a Vmax-bounded function V , define

H = { z 7→ (Pz − P ′z)V : P ∈M} ,
G = { z 7→ lP(z)− lP′(z) : P ∈M} ,

F =
{
z 7→ |(Pz − P ′z)V |

2
: P ∈M

}
.

For any sequence z1:n ⊂ Z , we have

N (ε,H, L2(z1:n)) ≤ N
(

ε

Vmax
,M, L2(z1:n)

)
,

N (ε,G, L2(z1:n)) ≤ N
(

ε

2V 2
max

,M, L2(z1:n)

)
,

N (ε,F , L2(z1:n)) ≤ N
(

ε

2V 2
max

,M, L2(z1:n)

)
.
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Proof. For any h1, h2 ∈ H, and for any sequence z1:n ⊂ Z , we have

1

n

n∑
i=1

|h1(zi)− h2(zi)|2 =
1

n

n∑
i=1

|(P1(·|zi)− P2(·|zi))V |2

=
1

n

n∑
i=1

∣∣∣∣∫ (P1(dy|zi)− P2(dy|zi))V (y)

∣∣∣∣2
≤ 1

n

n∑
i=1

[
Vmax

∫
|P1(dy|zi)− P2(dy|zi)|

]2
=
V 2

max

n

n∑
i=1

‖P1(·|zi)− P2(·|zi)‖21

≤ V 2
max

n

n∑
i=1

‖P1(·|zi)− P2(·|zi)‖22 .

So an ε-cover on { z 7→ P(·|z) : P ∈M} w.r.t. L2(z1:n) induces an Vmaxε-cover on H w.r.t. the
same measure.

The proof of the covering number upper bound for G is similar. For g1, g2 ∈ G, we have

|g1(z)− g2(z)|2 = |lP1
(z)− lP2

(z)|2

≤ |(P1(·|z)− P2(·|z))V |2 × |(P1(·|z) + P1(·|z)− 2P∗(·|z))V |2

≤ (2Vmax)2 |(P1(·|z)− P2(·|z))V |2 .

We take summation over z1:n on both sides. Notice that |(P1(·|zi)−P2(·|zi))V |2 terms are the same
as those appearing in the previous case, so by continuing the same calculations, we can provide an
upper bound that has the multiplicative constant of 4V 4

max instead of V 2
max of the previous case. So an

ε-cover onM induces a 2V 2
maxε-cover on G w.r.t. L2(z1:n).

Finally, for the case of F , we see that for f1, f2 ∈ F , we have

|f1(z)− f2(z)|2 = |[(P1(·|z)− P2(·|z))V ] [(P1(·|z) + P2(·|z)− 2P ′(·|z))V ]|2

≤ (2Vmax)2 |(P1(·|z)− P2(·|z))V |2 .
This is the same as the case of G, so we obtain the same upper bound for the covering number of
F .

B.5 Simplification of the Excess Error Inequality (27)

The following proposition simplifies (27). We use the same notations and definitions as in the proof
of Theorem 1.
Proposition 12. Consider the inequality (27), which is implicit in E , L(P̂)− L(P̃). Assume that
0 < α < 1, and Vmax, R ≥ 1. Fix δ > 0 and let δ1 = δ2 = δ3 = δ/3. The following explicit upper
bound for E hold:

E ≤ c(α)V 2
maxR

2α
1+α

[
1

n
1

1+α

+
log n

n1−
α
2

]√
ln(1/δ),

for a bounded function c(α) > 0, which is independent of n, Vmax, R, and δ.

Proof. We re-write inequality (27)

E ≤4c(α, Vmax, R)tn

[
2E︸︷︷︸
,(a1)

+
c1

4V 2
max

r∗(F) +
(44V 2

max + c2 × 4V 2
max) ln(1/δ3)

n︸ ︷︷ ︸
,(a2)

] 1−α
2

+

2c1
16V 2

max
r∗(G) +

(88V 2
max + 32c2V

2
max) ln( 1

δ1
)

n
, (A) + (B).
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Here (A) refers to the first term in the RHS and (B) refers to the second and third terms; (a1) and (a2)
refer to terms within the bracket.

The argument to solve the implicit inequality is based on considering several cases in which each
term dominates the others, and solving the inequality for that case. The overall upper bound for E is
obtained by adding the upper bounds obtained in each case.

We either have (A) ≥ (B) or vice versa. In the former case, either (a1) ≥ (a2) (which we call Case
(i)) or (a2) > (a1) (Case (ii)). Case (iii) is when (B) > (A). We analyze these cases. In the rest, we
let δ > 0 and set δ1 = δ2 = δ3 = δ/3.

Case (i): (A) ≥ (B) and (a1) ≥ (a2). In this case, we have

E ≤ 2× 4c(α, Vmax, R)(4E)
1−α
2 t0.

We solve for E, expand c(α, Vmax, R), and use the assumption that Vmax ≥ 1 and 2α
1+α < 1 for the

range of 0 < α < 1 to get that

E ≤ 2
2(4−α)
1+α c(α, Vmax, R)

2
1+α

(
ln( 1

δ2
)

n

) 1
1+α

≤ c(α)

[
V 2

max + V
2α

1+α
max R

2α
1+α

](
ln( 1

δ2
)

n

) 1
1+α

≤ c1(α)
[
V 2

max + VmaxR
2α

1+α

]( ln( 1
δ )

n

) 1
1+α

. (55)

Case (ii): (A) ≥ (B) and (a1) < (a2). We have

E ≤2× 4c(α, Vmax, R)tn

[
2

(
c1

4V 2
max

r∗(F) +
(44V 2

max + c2 × 4V 2
max) ln(1/δ3)

n

)] 1−α
2

.

Proposition 10 shows that for our choice of function space, the local Rademacher complexity satisfies

r∗(F) ≤ c2(α)V 4
maxR

2α
1+α

n
1

1+α

+
336V 4

max log n

n
.

Therefore,

E ≤ 8× 2
1−α
2 c(α, Vmax, R)tn

[
c3(α)V 2

maxR
2α

1+α

n
1

1+α

+
c′2V

2
max log(n/δ3)

n

] 1−α
2

≤ c4(α)
[
V 1+α

max + (VmaxR)α)
] [V 1−α

max R
α(1−α)

1+α

n
1

1+α

√
ln(1/δ3) +

V 1−α
max (log(n/δ3))

1−α
2
√

ln(1/δ2)

n1−
α
2

]

≤ c5(α)
(
V 2

max ∨ Vmax
)
R

2α
1+α

√
ln(1/δ)

n
1

1+α

+ c6(α)
(
V 2

max + VmaxR
α
)

(log n)
1−α
2

(
ln(1/δ)

n

)1−α2
,

where we expanded c(α, Vmax, R) by its definition as c(α)
[
V 1+α

max + (VmaxR)α
]

and used the fact
that 0 < α < 1 to simplify some of the terms. After some manipulations, and using the simplifying
assumptions that Vmax, R ≥ 1, we obtain

E ≤ c7(α)V 2
maxR

2α
1+α

[
1

n
1

1+α

+
(log n)

1−α
2

n1−
α
2

]√
ln(1/δ). (56)

Case (iii): (A) < (B). We have

E ≤ 2× 2c1
16V 2

max
r∗(G) +

2(88V 2
max + 32c2V

2
max) ln( 1

δ1
)

n
.
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We upper bound r∗(G) by Proposition 10 to get

E ≤ c1
4V 2

max

[
c8(α)V 4

maxR
2α

1+α

n
1

1+α

+
336V 4

max log n

n

]
+

2(88V 2
max + 32c2V

2
max) ln( 1

δ1
)

n

≤ c9(α)

[
V 2

maxR
2α

1+α

n
1

1+α

+
V 2

max log(n/δ)

n

]
. (57)

By adding the upper bounds of (55), (56), and (57) we obtain

E ≤c1(α)
[
V 2

max + VmaxR
2α

1+α

]( ln( 1
δ )

n

) 1
1+α

+

c7(α)V 2
maxR

2α
1+α

[
1

n
1

1+α

+
(log n)

1−α
2

n1−
α
2

]√
ln(1/δ) + c9(α)

[
V 2

maxR
2α

1+α

n
1

1+α

+
V 2

max log(n/δ)

n

]

≤c10(α)V 2
maxR

2α
1+α

[
1

n
1

1+α

+
log n

n1−
α
2

]√
ln(1/δ)

≤c10(α)V 2
maxR

2α
1+α

√
ln(1/δ)

n
1

1+α

.

C Brief Comparative Survey of Model-based RL

In this section we summarize and discuss some previous work that has studied the problem of model
learning for MBRL, and compare their approach with VAML and IterVAML, whenever appropriate.
We start by discussing some results from value-based MBRL (Section C.1), and afterward briefly
present some policy-search-based approaches to MBRL (Section C.2). We present some examples
of methods that have particularly focused on using DNN to represent the model (Section C.3). We
review and compare some recent work that implicitly or explicitly incorporate the decision problem in
the model learning, both in the context of MRBL (Section C.4) as well as non-RL decision problems
(Section C.4.1). Finally, we briefly mention the issue of the distribution mismatch in model learning
(Section C.5). We note that the division of prior work into these categories is not rigid, and a single
paper might belong to several categories at the same time.

C.1 Value-based MBRL

Model-based RL has a long history in the RL literature. The Dyna architecture is a prototypical
value-based MBRL algorithm in which learning and planning are integrated [Sutton, 1990]. Based on
the observed data from the environment (a real experience), a Dyna agent updates the value function
using model-free RL algorithms, such as Q-learning or its variants. Meanwhile, it keeps updating the
model of the environment too. The model is used to generate “hypothetical” experience (or simulated
experience or “imaginary” experience), which can be fed to a value-based planning algorithm to
update the value function. The Dyna architecture is quite generic and allows many choices in its
instantiation. For example, the planner can be a Q-learning agent that uses the experience generated
by the model as if they are coming from the environment (sample backup) or it can be a dynamic
programming one that uses full backups, or anything in between.

Even though the Dyna architecture does not prescribe any particular model learning method, its
instantiations often use a model learning method that ignores the underlying decision problem. For
example, the work of Sutton [1990] learns a deterministic model of the environment by recording the
next-state reached from each state-action pair into a lookup table. For stochastic environments, Peng
and Williams [1993] use a lookup table to count the state transitions, thus calculating the empirical
estimate of the transition probabilities. This estimate can be seen as a MLE with multinomial
distribution. In contrast to IterVAML, these approaches do not consider the value function in learning
the model.

IterVAML can be seen as a variant of Dyna where the model learning is value-aware and the planning,
which is performed by a step of approximate value iteration, is interleaved with the model learning.
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As already mentioned in Section 3, it is possible to use the data from real experience not only to learn
the model but also to update the value function. This makes IterVAML closer to the spirit of Dyna
where both real and imaginary data are used for planning, with the crucial difference that the model
learning takes the value function into account.

One of the key results of MBRL is the equivalence between model-free RL and MBRL under certain
conditions. Parr et al. [2008], Sutton et al. [2008] show that if the value function is represented by a
linear function approximator of a set of features, the solution of Least-Squares Temporal Difference
(LSTD) algorithm [Bradtke and Barto, 1996] is the same as the value function of a MBRL that uses a
linear model to learn the expected next-feature vector. We believe this is an important result, so we
explain it in more detail.

Let us first recall the LSTD solution. Suppose that we represent the value function V by a function
within the value function space F =

{
V (x) = φ>(x)w : w ∈ Rp

}
, where φ(x) ∈ Rp is the basis

(or feature) function. For simplicity, assume that the state space is finite X = {x1, . . . , xn}. In
general, n � p. The n × p matrix Φ = [φ>(x1); . . . ;φ>(xn)]> indicates the effect of applying
the basis function to each of states. The LSTD solution is the fixed point of the projected Bellman
operator, i.e., V = ΠFT

πV , where ΠF is the projection onto F . When F is the linear function space
as defined above, the solution is VTD(x) = φ>(x)wTD with wTD = (Φ>Φ− γΦ>P∗Φ)−1Φ>r. This
is called linear fixed-point solution and is the same solution to which a TD method will convergence,
under proper conditions.

The considered MBRL is based on the linear model in the feature space. The goal of such a model is
to learn a p × p matrix transformation P̂φ that approximately maps the feature vector φ(x) to the
expected value of the next-feature vector E [φ(X ′)|X = x], where X ′ ∼ P∗(·|x). That is, the goal is
to find P̂φ such that ΦP̂φ ≈ P∗Φ. One may also learn a reward function rφ such that Φrφ ≈ r. The
matrix P̂φ is not a stochastic matrix, so it does not have a probabilistic interpretation. Nevertheless,
one may treat it as a transition matrix and define a corresponding value function in the feature space
Ṽ (φ(x)) = φ>(x)

∑
k≥0 γ

kP̂kφrφ. One may call the matrix P̂φ the Linear Expected Model (LEM)
or more accurately linear expected-feature model, as it is a linear model that predicts the expected
value of next features.

The surprising fact is that the value function Ṽ (φ(x)) obtained by using LEM coincides with the
value function obtained by LSTD, a model-free algorithm. The equivalence of VTD(x) and Ṽ (φ(x))
is shown by Theorem 3.1 of Parr et al. [2008] and Theorem 3.3 of Sutton et al. [2008]. This is an
interesting result as it indicates that with certain choices of value function and model representations
as well as model learning and value learning procedures, the result of a model-free and model-based
RL algorithms are the same.

There are some similarities between VAML, IterVAML, and LEMs. The desire to have a model
satisfying ΦP̂φ ≈ P∗Φ can be expressed as minimizing the loss function (cf. Eq. (4) of Parr et al.
2008)

min
P̂φ∈Rp×p

∑
x

∥∥∥P̂>φ φ(x)− EX′∼P∗(·|x) [φ(X ′)]
∥∥∥2
2
.

We may compare this minimization problem with the minimization problem (9) of IterVAML
and (5) of VAML. LEM finds a linear transformation that matches the expected next-state feature
vector EX′∼P∗(·|x) [φ(X ′)]. IterVAML finds a transition probability kernel such that the next-state

expectation of the value function V̂k matches the expected value function EX′∼P∗(·|x)
[
V̂k(X ′)

]
. A

crucial difference is that IterVAML searches in the space of transition probability kernels, whereas
the matrix obtained by LEM does not have a probabilistic interpretation. The comparison with the
loss of VAML is less obvious because of taking the supremum of V over F . When F is a linear
function space, however, the minimization problem becomes

min
P̂∈M

∫
dν(x)

∥∥∥EX′∼P̂(·|x) [φ(X ′)]− EX′∼P∗(·|x) [φ(X ′)]
∥∥∥2
2
,

as shown by Farahmand et al. [2017a]. This is similar to the minimization problem of LEM except
that it searches in the transition probability spaceM instead of in Rp×p.

There are some extensions of LEMs, which we briefly mention. One direction is to extend model
learning of MDPs, which has primitive actions, to semi-MDPs and options [Sutton et al., 1999].
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This extension allows actions to be temporally extended. Sorg and Singh [2010] introduce Linear
Option Expectation Model. The model is similar to P̂φ above, with the difference that it is a matrix
transformation that maps the current features to the expected feature value at an option’s termination,
instead of the expected value of the features at the next-state. A similar equivalence exists between the
value function obtained using the Linear Option Expectation Model and the solution of an extension
of LSTD to the option framework.

Related to LEM is the work of Grünewälder et al. [2012] that directly estimates the conditional
mean embedding operator, i.e., the mapping V 7→

∫
P(dx′|x, a)V (x′) for all V in an RKHS. The

computational cost of that work is improved by Lever et al. [2016]. See also Yao et al. [2014] who
introduce the concept of pseudo-MDP and factored linear action models, which relaxes the constraint
that P should be a probability kernel, and Ávila Pires and Szepesvári [2016] who analyzed and
provided policy error bounds of such models.

We briefly note that work of Ormoneit and Sen [2002] for learning the transition probability kernel
P by a particular finite approximation that is obtained by smoothing kernel. The method uses the
estimated finite MDP to find the approximate value function. A computational improvement of that
work is the method of Barreto et al. [2011] that finds a smaller finite approximation of the transition
probability kernel using the stochastic factorization trick. These methods learn a transition model
that does not explicitly benefit from the structure of the value function beyond the required condition
that the value function should be Lipschitz continuous (cf. Lemma 2 of Ormoneit and Sen [2002]).
This is in contrast with VAML and IterVAML that explicitly take the value function space F or the
current estimate of the value function V̂k into account.

C.2 Policy-Search MBRL

Learning a model to be used in conjunction with a policy search algorithm has also been explored in
RL as well as in control engineering. We briefly describe a few methods.

Deisenroth et al. [2015] propose the PILCO (Probabilistic Inference for Learning Control) algorithm
that performs policy gradient w.r.t. the estimated Gaussian Process (GP) model of the environment.
GP allows one to maintain a probability distribution over models, which in turn defines a probability
distribution over future states. The probability of future states can be used to compute the gradient
of the performance w.r.t. the policy parameters. PILCO is a Bayesian framework that computes
the Bayesian average of the policy gradients w.r.t. the posterior distributions of the future states,
which presumably leads to better estimates compared to one that is obtained using MLE or MAP. The
Bayesian averaging is performed analytically, but the computations require several approximations:
approximating the next-state distribution conditioned on the Gaussian distribution of the current state
by a Gaussian, approximating the distribution over the action of a nonlinear policy with a Gaussian
state by a Gaussian, and being limited to special types of reward functions whose expectation over
a Gaussian distribution can be computed analytically. These approximations notwithstanding, they
show good empirical results in some real-world physical control problems.

PILCO is quite different from IterVAML. First of all, PILCO is a policy search algorithm whereas
IterVAML is a value-based approach. PILCO is a Bayesian framework and maintains an uncertainty
set over the estimated model. In contrast, IterVAML, as formulated in this paper, is not, as it only
returns a single estimated model. PILCO decomposes the model learning and planning part, and does
not incorporate the decision problem into model learning. This is in contrast with IterVAML where
the decision problem, through the estimated value function, guides the model learning.

Some models have certain structures/regularities that can be exploited to facilitate policy search. This
is common in control engineering where there are relatively straightforward procedures to find a
policy (i.e., controller) when the dynamics has some special structure, such as when it is a linear
dynamical system or is nonlinear but feedback linearizable. With these structures, finding a policy
can be formulated as an algebraic problem, which often lead to an analytical solution. For example,
designing a feedback policy for a linear dynamical system described by x(t+ 1) = Ax(t) +Bu(t)
(with x ∈ Rd being the state and u ∈ Rp an action, and matrices A ∈ Rd×d and B ∈ Rd×p
describing the dynamics and its interaction with the input action) can be formulated as finding a
matrix K ∈ Rp×d such that the eigenvalues of A − BK have certain properties, for example all
of them be within a unit circle, which guarantees stability. The (feedback) policy would then be
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u(t) = −Kx(t). This is merely an example; there are many methods in control engineering that can
deal with more complex dynamics, including some classes of nonlinear dynamics.

Sometimes the structure of the dynamics is known, but the exact parameters describing it is not,
e.g., we know that x(t + 1) = Ax(t) + Bu(t), but A and B are unknown. We may use data to
estimate the unknown parameters, and use the estimated model to design a policy. Estimation of the
unknown parameters is called system identification in the control engineering literature, and is the
same as model learning in the sense we use in this paper. The field of adaptive control studies how
one may find a policy with desirable properties when the dynamical system is unknown. A common
approach is based on estimation of the model (for example, by minimizing the squared error between
prediction and the observed data, which in turn can be seen as finding a MLE under a Gaussian noise
assumption), and finding a policy based on the most recent estimated model, assuming that the model
is the correct one. The estimation and policy search modules are run concurrently and online, and
both the model and the policy get updated as more data become available. The design principle
based on the assumption that the estimated model is the actual one is called the certainty equivalence
principle. And having separate model estimation and policy search modules is sometimes called
indirect adaptive control (in contrast to direct adaptive control where a separate model is not directly
estimated).

This brief description of adaptive control shows that there are clear parallels between MBRL and
(indirect) adaptive control. Both of them estimate a model, and use it in order to find a good
policy. Many adaptive control methods do not find a value function, but directly find a policy; hence
mentioning it in this section. The main difference, however, is that one often makes more assumptions
about the model in control engineering, compared to in RL, e.g., the model is assumed to be a linear
dynamical system with unknown parameters. The adaptive control literature is vast, and we do not
attempt to summarize it here. Some textbooks are Astrom and Wittenmark [1994], Krstic et al. [1995],
and a recent survey is by Benosman [2018].

Levine and Abbeel [2014] propose learning a time-varying linear Gaussian dynamical system. A
linear model is not generally accurate and expressive enough as a global model of a complex
environment (e.g., a robot), but it is sufficient for finding a local policy, which is optimal w.r.t.
the linear model and the quadratic approximation to the reward (or cost). This is done through an
Iterative Linear Quadratic Regulator-like (iLQR) procedure [Li and Todorov, 2004]: iLQR iteratively
estimates a linear model, finds a locally optimal policy using Linear Quadratic Regulator (LQR)
design, and uses the local policy to rollout trajectories to collect more data, and hence improve the
local linear models. The original iLQR paper [Li and Todorov, 2004] assumes dynamics is known,
but Levine and Abbeel [2014] learn it. As is common in methods developed in control engineering,
iLQR benefits from the linear structure of the local models to easily find locally optimal policy
through the LQR procedure, which has an algebraic formulation. The limitation of iLQR is that the
obtained policy is valid only locally. Levine and Abbeel [2014] formulate the problem of learning a
globally valid policy as a supervised learning problem of fitting a global policy to the local policies,
i.e., minimizing the KL-divergence between the global policy and the local policies. This procedure,
which is called Guided Policy Search, allows one to learn a global policy that is more complex than
local policies, as fitting a complex policy through a supervised learning procedure is often easier
than directly solving the globally optimal policy. Levine et al. [2016] use a variant of this procedure
to learn to control a robot by visual observations. The work of Levine and Abbeel [2014] can be
seen as an example of benefiting from the special structure of a model in order to find a good policy,
and enhance it using techniques from ML. The model learning part of that work, however, does not
benefit from the underlying decision problem, which is in contrast to VAML and IterVAML.

C.3 DNN-based MBRL

Several papers focus on MBRL methods that use DNN to represent the model. Even though in many
cases the underlying learning principle is not limited to DNN, we summarize them here because
of their special focus on DNN-related techniques. There are some other papers that also use DNN,
for example Predictron by [Silver et al., 2017] and Value Prediction Network (VPN) by [Oh et al.,
2017], but we have categorized them in a separate section (Section C.4) as we want to emphasize
their decision-aware interpretation instead of their use of DNN. A recent survey on deep RL by Li
[2018] overviews several model-based DRL approaches.
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Oh et al. [2015] develop a model learning algorithm for environments with an image-like observation,
e.g., images from Atari games. They design DNN architectures that predict the next image conditioned
on the previous images and the current action. The architecture first extracts features from the images
using a series of convolutional layers and a fully connected layer. Since an observed image may
not be a state of the environment, one has to somehow summarize the history of observations to
provide an approximation to the true state of the system. In one of the architectures, this is done by
considering a fixed-window of the past observations as the input to the network, while in the other an
LSTM module accumulates the output of the previous feature extraction layers, which are only given
the latest observation. These define the encoder of the architecture. To incorporate the effect of the
current action, a linear transformation of the action representation, which is a vector, is multiplied to
the output of the encoder. The decoder of the network converts the obtained representation to the
prediction of the next image through a series of deconvolutions.

The model is deterministic and may not perform well in stochastic environments with significant
stochasticity. The loss function is the squared loss, and is minimized over multiple time steps in the
future, by unrolling the model. Because of this choice of the loss, this model learning procedure is
not decision aware.

The experiments of the paper evaluate the quality of the learned models in various ways. One is
by considering how well a DQN trained on real images can control the environment defined by
the learned model (with occasional resetting to the ground state). This result seems to be more an
indication of the robustness of DQN in controlling the learned model, and not an indication of how
the learned model can be helpful to plan a policy that performs well in the true environment. The
paper also uses the learned model to guide exploration. The samples generated by the learned model
are not used to train DQN, i.e., the model is not used in a Dyna-style architecture.

Watter et al. [2015] propose the embed to control (E2C) method, which can be viewed as a policy
search-based MBRL algorithm. E2C constructs a latent representation z of the agent’s observation x,
which is potentially high-dimensional, using a variational auto-encoder (VAE)-style formulation. It
learns the transition model of the agent in the latent representation, i.e., it learns P(zt+1|zt, at). E2C
uses locally optimal planners, such as iLQR [Li and Todorov, 2004], that are based on linearization
of the dynamics. A key aspect of E2C is that instead of linearizing the estimated transition model in
the latent space, it enforces the transition model to be a (time-varying) linear model. That is, it learns
a model in the form of ẑt+1 = Atzt +Btat + ηt with At and Bt being time-varying matrices that
depends on zt. The predicted latent variable ẑt+1 is compared with the latent representation zt+1 of
the real observed data xt+1, which is obtained by the decoder of the VAE. This time-varying linear
form of the learned model makes it compatible with methods such as LQR that work with linear
dynamical systems.

Ha and Schmidhuber [2018] study the problem of learning a representation and model of the
environment, focusing on problems where the observations o is high-dimensional (specifically a
visual input) but may not be the true state x of the agent in the environment, i.e., input alone does
not contain all information about the past. The suggested approach encodes the (visual) observation
ot onto a lower-dimensional representation ōt by using a VAE. It then uses an RNN to learn the
dynamics of the environment, which is a function of ōt as well as the hidden state ht of the RNN.
The paper uses Mixture Density Network combined with an RNN to model the distribution of the
next approximate state, i.e., it learns P(ōt+1|ōt, ht, at). This probabilistic model is a notable aspect
of this work that distinguishes it from the use of LSTM by Oh et al. [2015], which only learns a
deterministic model. The learned dynamics is used to “dream” rollouts (or generate rollouts based on
virtual samples) of following a policy π, which can then be optimized, for example by an evolutionary
strategy algorithm as is done in that paper.

The focus of Ha and Schmidhuber [2018] is different from ours. Their goal is to find a good
and compact predictive model of the environment, but their model learning is not decision aware.
Therefore, their method may learn a representation and a model that captures aspects of the observation
that are not relevant to the decision task. This is in fact noted in their Discussion. It is suggested that
by learning a model that predicts the reward, one may alleviate this shortcoming. This is along our
idea of learning a model that is tied to some aspects of the decision problem. But note that learning
a reward of the current time step (i.e., r̂(ōt) or r̂(ōt, ht)) alone or even a predictive model of the
reward for the next time step (i.e., r̂(ōt+1)) is not enough for learning a value-aware model of the
environment; it ignores the fact that the value function depends not only on the reward of the current
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step and the next step, but also on all the rewards in the future. Of course this idea can be extended by
trying to predict all future rewards (i.e., r̂(ōt+k) for k = 0, 1, . . . ). This would be somehow similar
to IterVAML.

C.4 Decision-Aware MBRL

Incorporating the decision problem into model learning is one of the key aspect of this work. Iter-
VAML is closely related to the VAML framework of Farahmand et al. [2017a, 2016a], which argues
that learning a model by conventional probabilistic losses, such as minimizing the KL divergence,
might be an overkill. Farahmand et al. [2017a] show that when we have a model approximation error
(i.e., the true model of the environment does not belong to the model class from which the estimator
is selected), the difference between the solution of the maximum likelihood estimate and VAML’s can
be significant. Beside VAML, which is reviewed in Section 2, and IterVAML, which is introduced
and discussed in detail in Section 3, there are some other papers that find a model that is somehow
related to the decision problem that should be solved. We summarize them in this section.

Joseph et al. [2013] note that a model with minimum prediction error does not necessarily lead to
a policy with the best performance. They define a model gradient procedure that maximizes the
performance. The method is similar to a policy gradient algorithm, but instead tunes the parameters
of the model.

Predictron [Silver et al., 2017] learns an abstract model of the environment by enforcing that the
predicted value by the model is close to the observed values. This is done by ensuring that the
rollout-based estimates of multi-step returns, according to the learned model, matches the returns
observed from interacting with the true environment. Concretely, it learns a transition model P̂ , a
reward model r̂, a value function model V̂ , and a discount model γ̂ such that its k-step returns

Ĝk =

k−1∑
i=0

[⊗
γ̂1:i

]
P̂(i)r̂ +

[⊗
γ̂1:k

]
V̂k,

where
⊗
γ̂1:i =

∏i
j=1 γ̂j with the convention

⊗
γ̂1:0 = 1, and V̂k denoting the value function

estimated at the k-th step, be close to the return G = R1 + γ1R2 + . . . observed from the true
environment. Predictron also uses a consistency loss that ensures that various k-step returns Ĝk
are close to a weighted sum of them. Note that the model learned by predictron is abstract in the
sense that the discount factor γ̂ can be varying, therefore, the number of steps predicted by the model
does not correspond to the time steps in the true model. Predictron is presented only for the value
prediction task, and does not incorporate any policy optimization/improvement aspect.

Predictron, VAML, and IterVAML are similar as they all learn models that somehow minimize the
error in the value prediction. The difference is in the way the value prediction error is defined, as well
as the semantic of the considered model. In predictron, the value prediction error is the difference
between the prediction of the returns according to the learned model Ĝk and the true return G, which
is an unbiased estimate of the value function. As such, to obtain these noisy samples from the
value function according to the true model of the environment, predictron requires generating rollout
trajectories within the true environment. On the other hand, VAML and IterVAML do not assume
having access to the environment for the purpose of estimating the true value of a state. The value
prediction error in IterVAML is based on the most recent estimate of the value function obtained
through a model-based AVI procedure. The value estimation part of IterVAML is therefore not based
on rollouts of the true model, but based on performing AVI. This is similar to the difference between
Monte Carlo estimate of the value function vs. the bootstrapped estimate used by VI, AVI, and TD
learning.

The difference of predictron and VAML is more significant. VAML does not consider any single
value function in defining the value prediction error, but considers a class of value functions. As
indicated in (5), VAML minimizes the worst case error over a value function class F .

Predictron allows learning the discount factor, as opposed to the more conventional fixed discount
factor at all time steps. The models learned by VAML and IterVAML have the same temporal
structure as the true MDP model of the environment, but the abstract model learned by predictron
does not necessarily correspond to the environment’s time steps.
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Value Prediction Network (VPN) [Oh et al., 2017] also incorporates some aspects of the decision
problem in model learning, in a way similar to predictron and IterVAML. It learns a model and a
value function such that the value of the predicted k-step future states matches the estimated value of
the real observed state.

We describe VPN in more detail, while omitting some aspects of VPN in order to simplify the
discussion. VPN learns a deterministic transition model P̂ and the value function estimator V̂ such
that certain consistencies are satisfied. A backup tree-based planning module uses P̂ in order to
estimate the state-action pairs. This planning module uses V̂ in order to bootstrap the estimate. Let us
denote the result by Q̂d, where d refers to the tree depth using in planning. The estimate Q̂d depends
on both P̂ and V̂ . This planning module is used for action selection as well as providing the target
values for learning the value function V̂ , as shall be described shortly.

The procedure for model and value function learning works as follows. Suppose that we have
a trajectory X1, A1, R1, . . . , Xn, An, Rn, Xn+1, with actions selected by the tree-based planning
module (e.g., by selecting the greedy action w.r.t. Q̂d at any state) and the state transitions coming
from the true dynamics of the environment, i.e., P∗. VPN unrolls the estimated model P̂ for k-steps
from the initial state X1 to obtain X̂k+1 (for values of k between 1 to n − 1). The predicted state
X̂k+1 is different from the true state Xk+1. Instead of making sure that the predicted and the true
states are close, for example by minimizing the `2-distance between them as is done by Oh et al.
[2015], VPN compares the estimates of their values. Specifically, it aims to enforce V̂ (X̂k+1) to be
close to the true value V ∗(Xk+1) at state Xk+1. As the true value V ∗(Xk+1) is unknown, VPN uses
a bootstrapped MC estimate of the return instead.9 It computes the bootstrapped (n− k)-step return

Ĝk+1 = Rk+1 + γRk+2 + . . .+ γn−k max
a′

Q̂′d(Xn+1, a
′).

This is an estimate of the true value at state Xk+1 that is based on the true reward obtained from
interacting with the environment, and the backup tree-based estimate of the value function Q̂′d
obtained from the previous estimate of the value function V̂ ′ (this V̂ ′ is the same as the target
network in DQN, and is occasionally replaced by the most recent estimate V̂ ). The loss function of
VPN is then |V̂ (X̂k+1) − Ĝk+1|2, for various k-step ahead values, as well as initial state X1. An
omitted detail is that VPN learns the reward and discount models too, as the model allows varying
discount factor. This is similar to predictron. Moreover, VPN learns a mapping from observations o
to features/abstract state x, and the planning and value/model estimation are performed in the latter
space.

A closely related method to VPN is TreeQN of Farquhar et al. [2018]. The tree-based planning of
TreeQN is an integrated part of a DNN that predicts the backup tree-based value function estimate Q̂d.
The architecture learns P̂ , which is used to expand the tree, as well as V̂ , which is used to evaluate
the value of a state. This integration of planning and value estimation within DNN is in contrast with
VPN where V̂ is represented by a DNN, but Q̂d is computed outside of the DNN architecture. As a
result of this integration, Q̂d is end-to-end differentiable. The paper benefits from this differentiability
by defining a loss function in the form of |Q̂d(X̂k+1)− Ĝk+1|2 instead of |V̂ (X̂k+1)− Ĝk+1|2 of
VPN. In other words, it finds a P̂ and V̂ such that the backup tree-based estimate (according to P̂
and V̂ ) of the value function Q̂d is close to a bootstrapped MC estimate of the value function, which
is obtained by following the true dynamics P∗ and using the previous value function estimate V̂ ′ to
bootstrap. Farquhar et al. [2018] also present an actor-critic variant, called ATreeC, which we do
not discuss.

VPN, TreeQC, predictron, and IterVAML have similarities. First, we compare VPN and predictron.
Since TreeQN is quite similar to VPN and our comparison is at a higher level than the difference
between TreeQN and VPN, we do not discuss TreeQN any further. Both VPN and predictron predict
values using the learned model, and train their network to ensure that the predicted values are close to
the real values, or an estimate thereof. VPN uses the learned model to plan using a specific planning
module, while predictron, as presented, is only for policy evaluation, and not control. A difference in

9The paper does not present the method in this way, and only provides a loss function to be minimized. This
interpretation is in light of VAML and IterVAML.
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their model learning procedure is that VPN uses a bootstrapped MC estimate of the value instead of
the return obtained from the true environment.

VPN and IterVAML are also similar. IterVAML, as presented and theoretically analyzed, considers
looking only one step ahead (k = 1) instead of multiple steps ahead of VPN, i.e., only the predicted
state X̂2, starting from X1, is used for comparison. Moreover, instead of computing multiple-step
ahead bootstrapped return R2 + γR3 + · · ·+ γn−1 maxa′ Q̂

′
d(Xn+1, a

′), IterVAML uses V̂ ′(X2),
which corresponds to the value function estimated at the previous iteration of IterVAML. From this
perspective, the model learning aspect of IterVAML as presented can be seen as a simplified version
of VPN that is more clear and amenable to analysis.10 Another important difference between them
is that the model learned by VPN is deterministic, whereas the model of IterVAML is a stochastic
model.

These algorithmic differences are beside the empirical focus of Silver et al. [2017], Oh et al. [2017],
Farquhar et al. [2018] and the theoretical focus of this paper.

C.4.1 Other Decision-Aware Model Learning Methods

There are some other work outside reinforcement learning and sequential decision making that either
argue in favour of or explicitly consider incorporating the decision problem in learning a model.
Many of them follow the same theme: The decision making problem is formulated as an optimization
problem, for example a linear program or a stochastic program. Some aspect of the optimization
problem, however, is not known and should be estimated from data. For example, it might be the
coefficients of the cost function [Elmachtoub and Grigas, 2017, Kao and Van Roy, 2014] or the
probability distribution in a stochastic program [Donti et al., 2017]. The conventional approach
estimates the unknown parameters independently of the optimization problem. This approach is
sometimes called “Predict, then Optimize" [Elmachtoub and Grigas, 2017]. The aforementioned
papers, on the other hand, incorporate some aspects of the optimization in estimating the model. They
are examples of the concept of decision-aware model learning, which is formulated and developed in
the context of RL in this work.

Bengio [1997] is one of the earliest work arguing that when the ultimate goal is decision making,
and not prediction, it might be beneficial to directly optimize the desired criteria instead of training a
good predictor first and then training another module that takes the predictor’s output as its input and
optimizes the desired decision loss. This is the same argument as the decision-aware model learning,
of which VAML and IterVAML are examples.

Tulabandhula and Rudin [2013] explicitly incorporate the decision cost of using a predictive model
into the model estimation procedure. They consider tasks such as scheduling medical staff or deciding
what house to purchase. If the parameters of the tasks are known (e.g., the duration to finish a job, or
the price of a house), these tasks can be formulated as a linear programm or {0, 1}-knapsack problem,
or other well-studied decision theoretic optimization-based formulations. Since the parameters of the
task (e.g., the time to finish a job, or the price of a house based on its location) are not known, we can
use a predictive model for the parameters based on historic data. The conventional approach is to first
learn a predictive model, using loss functions that only pays attention to the quality of predictions,
and then use the predictive model to estimate the (operational) cost of the task based on the predicted
parameters, e.g., the predicted total time of finishing jobs, or the predicted total price of purchased
houses among a selection of available ones. In the context of MBRL, this is similar to first learning a
good model of the environment using MLE (or other probabilistic approaches), and then using the
learned model for planning. The suggested approach, however, incorporates the operational cost
in addition to the estimation loss while learning the predictive model f . This involves solving an
optimization problem within the optimization problem corresponding to the model estimation part,
i.e.,

f̂ ← argmin
P∈M

Ln(f) + λ1J(f) + λ2 min
π
Loperation(f, π),

where Ln(f) is an estimation cost (e.g., the squared error on the data points), J(f) is the regularizer,
and Loperation is the cost associated with the decision problem. Here we use π to denote the solution
of the decision problem, for example the purchased houses.

10Note that the algorithmic idea of IterVAML had been briefly discussed by Farahmand et al. [2016a] prior
to the publication of VPN [Oh et al., 2017] and predictron [Silver et al., 2017]. The detailed description and
analysis, however, are new to this work.
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Kao and Van Roy [2014] propose a decision-aware estimator of an unknown covariance matrix. They
consider this problem: Given samples from a Gaussian distribution with an unknown covariance
matrix Σ∗, optimize an objective function that depends on Σ∗. More concretely, the goal is to find the
action (decision) vector a ∈ Rp such that c>a− a>Σ∗a is maximized. As Σ∗ is unknown, we have
to estimate it from data. When certain structure is known about the covariance matrix, for example if
it has a low-rank factor, one can use Principal Component Analysis (PCA) to estimate a low-rank
approximation Σ̂ of Σ∗ based on the empirical covariance matrix. After estimating Σ̂, one can then
optimize the objective function using Σ̂ instead of Σ∗. This two-step approach (i.e., estimation and
optimization), which is reminiscent of conventional model learning and planning in MBRL, does
not take into account the objective function that should be maximized in the estimation process. The
paper formulates the covariance estimation problem as maximizing f(Σ) = maxa c

>a− a>Σa over
Σ such that P {Σ|data} is larger than a certain threshold and Σ satisfies certain structural properties.
They empirically and theoretically show that this approach can be more efficient than the covariance
estimation procedure that does not incorporate the decision problem.

Elmachtoub and Grigas [2017] consider an optimization problem with unknown linear objective and
known convex constraint. The unknown part of the objective depends on an observed covariate x in a
way that can be estimated from data. More concretely, we have a reward function r(x, a) = r(x)>a
with r : X → Rp being an unknown function of x, and a ∈ Rp being the action (or decision) to be
found. We are given a dataset in the form of {(Xi, r(Xi))}ni=1. The goal is to solve maxa∈C r(x, a)
for a given x, with C being a convex set.

The conventional “Predict, then Optimize" approach first estimates r̂ : X → Rp based on data
using a prediction-only loss function (e.g., squared loss), and then solves maxa∈C r̂(x)>a. Their
approach, on the other hand, incorporates the optimization problem in the loss function. If we
denote the solution of the optimization for a given r ∈ Rp by a∗(r) = argmaxa∈C r

>a, their loss
is `(r, r̂) = r>[a∗(r̂)− a∗(r)]. This can be interpreted as the regret of choosing the optimal action
according to r̂ compared to choosing the optimal action according to the true reward r. The estimation
problem is formulated as finding the empirical risk minimizer of

min
r̂

1

n

n∑
i=1

`(r(Xi), r̂(Xi)),

or its regularized variant, within some function space. The challenge is that the loss function `(r, r̂)
is not continuous in r̂. Their solution is to provide a convex surrogate upper bound for this loss
function, by benefitting from the convexity of C and linearity of the objective (their loss, however, is
not necessarily differentiable).

Donti et al. [2017] consider the stochastic programming problem where the objective (and potentially
constraints) are known, but the distribution of the random variable is not. As before, the conventional
approach is to ignore the optimization problem and use data along with a probabilistic loss function
to estimate the distribution, e.g., by finding the MLE solution within a parametric model. The
decision-aware model learning approach, which they call task-based model learning, is to adapt the
model such that the solution obtained by optimizing the stochastic programming w.r.t. the estimated
model performs well on the true model.

C.5 Distribution Mismatch in MBRL

An important issue that we have not addressed is the question of how to choose the data distribution
ν. One particular concern is that the error of a single-step model may accumulate in such a way
that the multi-step predictions become useless. Talvitie [2014], Venkatraman et al. [2015] suggest
hallucinated replay to mitigate this issue. This is further analyzed by Talvitie [2017], who shows that,
among other things, the hallucinated replay might not be a good solution for stochastic dynamics.
The selection of data distribution to learn a good model is an issue that deserves further research.

D Data Collection in IterVAML vs. MLE

We make a few remarks regarding how IterVAML and MLE might be compared in terms of data
collection and storage.
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Converting the model learning step of Algorithm 1 to an online update might be less straightforward
compared to MLE. The reason is that the loss function of IterVAML depends on V̂k and changes at
each iteration. To solve

P̂(k+1) ← argmin
P∈M

‖V̂k(X ′i)−
∫
P(dx′|Xi, Ai)V̂k(x′)‖2

∪ki=0D
(i)
n
,

we have to store all datasets ∪ki=0D
(i)
n . In contrast, MLE does not depend on V̂k, so it might be easier

to design an online update without keeping all the datasets. For example, if the state and action spaces
are finite, MLE only requires counters to keep track of state transitions, which can easily be updated
online. This is less straightforward in IterVAML. We would like to make a few remarks about this.

It is conceivable that as IterVAML proceeds, V̂k converges to V ∗ (which should happen in the ideal
case of exact VI and no modelling error P̂Vk = P∗Vk at each step of IterVAML), so the model
learning loss functions of IterVAML converge too. If this is the case, at least approximately, throwing
out the data from previous iterations and gradual updating of P̂(k+1) from its previous value (e.g.,
by performing stochastic gradient descent starting from P̂(k)) may be reasonable. Studying this
possibility requires further research.

In real-world applications where samples are expensive, keeping all datasets may not be the main
challenge, and keeping the whole batch of data can be reasonable. Note that our theoretical analysis,
however, assumes that the datasets of two different iterations are independent (Assumption A1). This
is only to simplify the analysis, and in practice we might reuse the same dataset in all iterations.
Theoretical results by Munos and Szepesvári [2008] suggest that the dependence between iterations
may not lead to significant performance degradation.

That being said, suppose that we want to strictly follow the prescription of the current theoretical
result, which requires a fresh data of size n in each iteration. The total number of data points used by
each iteration of IterVAML will be n, but for MLE, under the same fresh sample collection strategy,
gradually grows from n to Kn, with K being the total number of iterations. Surprisingly, the effect
of using fresh data after each iteration or keep adding them does not have a significant influence
on the convergence rate. The reason, briefly speaking, is that in AVI errors decrease as γK but the
statistical difference between having K times more samples is only sub-linear in K. To optimally
balance them we can pick a small K, hence a small rate-wise benefit in having K more times data.

To be more concrete, consider a simpler setup of policy evaluation with samples from the stationary
distribution of the policy. Inequality (30) in Section 4.2 provides an error propagation result for this
case. We consider two scenarios:

In Scenario (A), we divide a total budget of N samples to K independent batches of N
K samples

each, each of them is used to learn a model P̂(k) for k = 1, . . . ,K. This is the setting of this paper’s
analysis that satisfies Assumption A1.

In Scenario (B), which is closer to the setup of a conventional model learning that does not require
throwing out data, we keep adding N

K data points at each iteration, so that by the K-th iteration
we have N samples in total. To be generous to this scenario, we assume that there are N samples
throughout all iterations, which leads to extra bias in favour of Scenario (B), especially in earlier
iterations. We would like to compare the error upper bounds of these two scenarios from the model
learning perspective.

Assume that the only source of error is due to the model error, i.e., ‖εk‖ = 0 and ‖ek‖2,ρπX = emodel.
Theorem 1 shows that given n samples in estimating the model, the statistical part of the error for
IterVAML (i.e., emodel) behaves as n−

1
2(1+α) . We ignore the model approximation error part of the

theorem. We make a simplifying assumption that a similar theorem exists for the conventional
MLE-based model learning, that is, learning an MLE model has the same sample complexity as
learning an IterVAML model. This is not proven in this paper.

Under these assumptions, we conclude that the first term in (30) is O(n−
1

2(1+α) ), and its second term
is O(Qmaxγ

K). We can find a K to optimally balance these two terms in both scenarios. Instead,
we simply pick K = c lnN

ln(1/γ) with c > 1. With this choice, the second term is 1
Nc . Since 1

Nc for
c > 1 is faster than any statistical rate, the second term is negligible. So we focus on the first term

and compare it in both scenarios. In scenario (A), we get
(
lnN
N

) 1
2(1+α) and in Scenario (B), we get
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(
1
N

) 1
2(1+α) . The difference in the rate is only logarithmic. This shows that even if we throw out data

after each iteration, the effect in the rate is not significant for some good, but not necessarily optimal,
choice of K.

We emphasize that this analysis is based on the assumption that we do not reuse datasets in IterVAML,
which is likely not needed and can be relaxed.
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