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In this document, we will use I to denote the set of corner indices.

A Geometric structure of normalized points from a cone

Lemma A.1. Let yi = zi/‖zi‖, then yTi = riφ
T
i YP for ri = mT

i 1
‖mT

i
YP ‖

≥ 1, and φi =
(φi1, φi2, · · · , φiK)T , φij = mij∑

j
mij

.

Proof. yTi = zT
i

‖zi‖ = mT
i YP

‖mT
i

YP ‖
= mT

i 1
‖mT

i
YP ‖

mT
i

mT
i

1YP = riφ
T
i YP . Clearly ‖mT

i YP ‖ =
‖
∑
jmijyI(j)‖ ≤

∑
jmij‖yI(j)‖ =

∑
jmij = mT

i 1, so ri ≥ 1.

Proof of Lemma 2.1. Since rank(P) = K, we have VEVT = P = ρΓΘBΘTΓ. W.L.O.G,
let Θ(I, :) = I, then VPEVT = ρΓPBΘTΓ. Now VE = PV = ρΓΘBΘTΓV =
ΓΘ(ρBΘTΓ)V = ΓΘ(Γ−1

P VPEVT )V = ΓΘΓ−1
P VPE, right multiplying E−1 gives V =

ΓΘΓ−1
P VP . Also consider that VPEVT

P = ρΓPBΓP , VP is full rank.

B Identifiability of DCMMSB-type Models

Lemma B.1. For DCMMSB-type models such that f(θi) = 1, ∀i ∈ [n] for some degree 1 homoge-
neous function f (e.g., f(θ) = ‖θ‖p), the sufficient conditions for (Θ,B,Γ) to be identifiable up
to a permutation of the communities are (a) there is at least one pure node in each community, (b)∑
i γi = n, (c) B has unit diagonal.

Proof. From Lema 2.1 we have V = ΓΘΓ−1
P VP and VP is full rank. Suppose two set of parameters

{Γ(1),Θ(1),B(1)} and {Γ(2),Θ(2),B(2)} yield the same P (W.L.O.G., we abort ρ in B) and each
has a pure node set P1 and P2 and W.L.O.G., assume the permutation of the communities is fixed,
i.e., Θ

(1)
P1

= Θ
(2)
P2

= I. Then,

Γ(1)Θ(1)(Γ(1)
P1

)−1VP1 = V = Γ(2)Θ(2)(Γ(2)
P2

)−1VP2 . (3)

Taking indices P1 and P2 respectively on V, we have,

VP1 = Γ
(2)
P1

Θ
(2)
P1

(Γ(2)
P2

)−1VP2 and VP2 = Γ
(1)
P2

Θ
(1)
P2

(Γ(1)
P1

)−1VP1 . (4)

Then,

VP1 =Γ
(2)
P1

Θ
(2)
P1

(Γ(2)
P2

)−1Γ
(1)
P2

Θ
(1)
P2

(Γ(1)
P1

)−1VP1

=⇒ I =Γ
(2)
P1

Θ
(2)
P1

(Γ(2)
P2

)−1Γ
(1)
P2

Θ
(1)
P2

(Γ(1)
P1

)−1, as VP1 is full rank. (5)
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As Γ
(2)
P1

Θ
(2)
P1

(Γ(2)
P2

)−1 and Γ
(1)
P2

Θ
(1)
P2

(Γ(1)
P1

)−1 are all nonnegative, using Lemma 1.1 of [6], they are

both generalized permutation matrices. Also since Γ
(2)
P1

, (Γ(2)
P2

)−1 are diagonal matrix, Θ
(2)
P1

must be

a permutation matrix as f(θ(2)
i ) = 1, ∀i ∈ [n], and f is homogeneous with degree 1. So nodes in P1

are also pure nodes in Θ(2). With same arguments, nodes in P2 are also pure nodes in Θ(1). So the
pure nodes match up.

Now since VPEVT
P = ΓPBΓP , we have Γ

(1)
P1

B(1)Γ
(1)
P1

= VP1EVP1 = Γ
(2)
P1

B(2)Γ
(2)
P1

. As B(1)

and B(2) both have unit diagonal, we must have Γ
(1)
P1

= cΓ
(2)
P1

for c =
√

B(2)
11 /B

(1)
11 . Now substituting

P2 with P1 in Eq. (3), and using VP1 has full rank, we have,

Γ(2)Θ(2)(Γ(2)
P1

)−1 = Γ(1)Θ(1)(Γ(1)
P1

)−1 = Γ(1)Θ(1)(Γ(2)
P1

)−1/c,

which gives Γ(1)Θ(1) = cΓ(2)Θ(2), applying f(·) to rows’ transpose on both side, since f(θ(1)
i ) =

f(θ(2)
i ) = 1, ∀i ∈ [n], and f is homogeneous with degree 1, we have Γ(1) = cΓ(2). Now as

1TnΓ(1)1n = 1TnΓ(2)1n = n from condition (b), we must have c = 1, then Γ(1) = Γ(2), and this
immediately gives Θ(1) = Θ(2). Finally, Γ

(1)
P1

B(1)Γ
(1)
P1

= Γ
(2)
P1

B(2)Γ
(2)
P1

= Γ
(1)
P1

B(2)Γ
(1)
P1

, and this
gives B(1) = B(2).

C Algorithms

In this section we provide the detailed algorithms for parameter estimations of DCMMSB, OCCAM
(Algorithm A) and Topic Models (Algorithm B). These algorithms both reply on the one class SVM
(Algorithm 1) for finding the corner rays and then use those for parameter estimation, the details
of which vary from model to model. Note for Algorithm A, step 7 is to normalize rows of Θ by `1
norm, if we normalize by `2 norm, then it can be used for estimation of OCCAM.

Algorithm A SVM-cone-DCMMSB

Input: Adjacency matrix A ∈ Rn×n, number of communities K
Output: Estimated degree parameters Γ̂, community memberships Θ̂, and community interaction

matrix B̂
1: Get top-K eigen-decomposition of A as V̂ÊV̂T

2: Normalize rows of V̂ by `2 norm
3: Use SVM-cone to get pure node set C and estimated M̂
4: V̂C = V̂(C, :), get N̂C from row norms of V̂C

5: D̂ =
√

diag(N̂CV̂CÊV̂T
CN̂C)

6: F̂ = diag(M̂D̂1K)
7: Θ̂ = F̂−1M̂D̂
8: Γ̂ = nF̂/(1Tn F̂1), Γ̂C = Γ̂(C,C)
9: B = Γ̂−1

C V̂CÊV̂CΓ̂−1
C

10: B = B/maxi,j Bij

Algorithm B SVM-cone-topic

Input: Word-document count matrix A ∈ RV×D, number of topics K
Output: Estimated word-topic matrix T̂

1: Randomly splitting the words in each document to two halves to get A1 and A2
2: Normalize columns of A1 and A2 by `1 norm to get Â1 and Â2
3: Get top-K SVD of U = Â1ÂT

2 as V̂ÊV̂T

4: Normalize rows of V̂ by `2 norm
5: Use SVM-cone to get pure node set C and estimated M̂
6: Normalizing columns of M̂ by `1 norm to get T̂
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D Corner finding with One-class SVM with population inputs

Lemma D.1. If ProjConv(YT
P

)(0) is an interior point in Conv(YT
P ), then One-class SVM can find

all the K corners with mij = 1 as support vectors given yi, i ∈ [n] as inputs. And a sufficient
condition for this to hold is (YPYT

P )−11 > 0.

Proof. The primal problem of One-class SVM in [7] is

min 1
2‖w‖

2 − b s.t. wTyi ≥ b, i ∈ [n].

First of all note that b ≥ 0 because if b < 0, we can always make b = 0 to satisfy the condition and
decrees the value of the object function. From Lemma A.1, we have yTi = riφ

T
i YP . As ri ≥ 1,

if there exists (w, b) that wTyi ≥ b, i ∈ I , we have wTyi = riφ
T
i YPw = ri

∑
j φijwTyI(j) ≥

rib ≥ b, i ∈ [n]. So we can reduce the problem to using points i ∈ I as inputs. Furthermore, we
consider an equivalent primal problem and its dual:

Primal : max b Dual : min 1
2
∑
i,j

βiβjyTi yj (6)

s.t. ‖w‖ ≤ 1, wTyi ≥ b, i ∈ I s.t.
∑
i

βi = 1, βi ≥ 0, i ∈ I

The dual problem is basically to find a point in Conv(YT
P ) that has the minimum norm (closest to

origin). Now denote the optimal function value for the dual problem as LYP
and for any subset

S ⊂ I , let LYP (S,:) be the optimal value when we want to find a point in Conv(YT
P (S,:)) that has the

minimum norm.

Let N ∈ Rn×n be a diagonal matrix such that Nii = 1/‖zi‖, then YP = NPZP is also full
rank. If for β∗ = arg minβ LYP

(β), each coordinate is strictly larger than 0, it is easy to see that
LYP

> LYP (S,:) since YP is full rank. So a sufficient condition for One-class SVM to find all K
corners of LYP

is β∗ > 0, which means the closet point to origin in Conv(YT
P ) is an interior point

(also the projection of origin to Conv(YT
P ) ). Now we will show a sufficient condition for this.

Suppose the β∗ > 0. First let us find a hyperplane (w, d) that is through columns of YT
P with d < 0

(since YP is full rank, we must have d 6= 0). We have YPw = d1. Since the distance from origin to
hyperplane (w, d) is |d|‖w‖ , ProjConv(YT

P
)(0) is an interior point in Conv(YT

P ), we have

YT
Pβ
∗ = ProjConv(YT

P
)(0) = d

‖w‖
w
‖w‖ (7)

Then,

wTYT
Pβ
∗ = dwTw

‖w‖2 = d.

As wTYT
P = d1T , we have d1Tβ∗ = d, so 1Tβ∗ = 1. So the only condition left to be satisfied is

that β∗ > 0, using Eq. (7),

YPYT
Pβ
∗ = dYPw

‖w‖2 = d(d1)
‖w‖2 ,

so β∗ = d2

‖w‖2 (YPYT
P )−11 > 0 and all we require is:

(YPYT
P )−11 > 0.

Proof of Theorem 2.3. Using Lemma 2.1, we have:

I = VTV = VT
PΓ−1

P ΘTΓ2ΘΓ−1
P VP =⇒ (VPVT

P )−1 = Γ−1
P ΘTΓ2ΘΓ−1

P . (8)
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Since YP = NPVP , we have:

(YPYT
P )−1 = N−1

P Γ−1
P ΘTΓ2ΘΓ−1

P N−1
P . (9)

On the RHS of Eq. (9), as N−1
P , Γ−1

P and Γ are all diagonal matrix with strictly positive diagonal
elements, then diagonal of (YPYT

P )−1 must be strictly positive, as the i-th element on its diagonal is
proportional to ‖ΓΘ(:, i)‖2, and since Θ is nonnegative, we can easily get that (YPYT

P )−11 > 0.
So for DCMMSB-type models, it is always true that the closet point in Conv(YT

P ) to origin is an
interior point of Conv(YT

P ).

E Corner finding with One-class SVM with empirical inputs

Lemma E.1. Let ε = maxi ‖yi − ŷi‖. Denote (w, b) and (ŵ, b̂) be the optimal solution for the
primal problem of One-class SVM in (6) with population (y1,y2, · · · ,yn) and empirical inputs
(ŷ1, ŷ2, · · · , ŷn) respectively, then |b̂− b| ≤ ε.

Proof. First we have wTyi ≥ b, ∀i ∈ [n], and ‖wT (ŷi−yi)‖ ≤ ε. Then wT ŷi = wTyi+wT (ŷi−
yi) ≥ b − ε. As (w, b − ε) is a feasible solution of the primal problem with empirical inputs, by
optimality of b̂, we have b̂ ≥ b− ε. Similarly we can get b ≥ b̂− ε, so |b̂− b| ≤ ε.

Lemma E.2. Let (w, b), (ŵ, b̂) be the hyperplane of the optimal solution of One-class SVM with
population and empirical inputs respectively, then ‖ŵ − w‖ ≤ ζε, for ζ = 4

ηb2
√
λK(YP YT

P
)
≤

4K
η(λK (YP YT

P
))1.5 .

Proof. Let βl, l ∈ I be the solution of the dual problem in Eq. (6) with population inputs,

from the construction of this dual problem, we know w =
∑

l∈I
βlyl

‖
∑

l∈I
βlyl‖

, ‖
∑
l∈I βlyl‖ = b,

and β := (βI(1), βI(2), · · · , βI(p)) = b2(YPYT
P )−11, as shown in Lemma D.1. So w =

YT
Pβ/b = bYT

P (YPYT
P )−11. From the condition of the primal problem, ŶP ŵ ≥ b̂1, then

we have YP ŵ = ŶP ŵ − (ŶP − YP )ŵ ≥ (b̂ − ε)1 ≥ (b − 2ε)1. Then there exists a vector
c ≥ 0 such that YP ŵ = (b − 2ε)1 + c. Now let ŵ = YT

Pϕ + ŵ⊥, where YP ŵ⊥ = 0. So
YP ŵ = YPYT

Pϕ = (b− 2ε)1 + c, which gives ŵ = YT
P (YPYT

P )−1((b− 2ε)1 + c) + ŵ⊥. Since
‖ŵ‖ = 1, we have

1 = ‖ŵ‖2 = ((b− 2ε)1 + c)T (YPYT
P )−1((b− 2ε)1 + c) + ‖ŵ⊥‖2

= b21T (YPYT
P )−11 + 2b1T (YPYT

P )−1(c− 2ε1) + (c− 2ε1)T (YPYT
P )−1(c− 2ε1) + ‖ŵ⊥‖2.

Since 1 = ‖w‖2 = b21T (YPYT
P )−11, we have

0 ≤ (c− 2ε1)T (YPYT
P )−1(c− 2ε1) + ‖ŵ⊥‖2 = −2b1T (YPYT

P )−1(c− 2ε1) (10)

= −2b1T (YPYT
P )−1c + 4bε1T (YPYT

P )−11,

which uses that (YPYT
P )−1 is positive definite. This gives

2b1T (YPYT
P )−1c ≤ 4bε1T (YPYT

P )−11 = 4bε/b2

=⇒ (min
i

1T (YPYT
P )−1ei)‖c‖1 ≤ 1T (YPYT

P )−1c ≤ 2ε/b2,

and by Condition 2 we know (mini 1T (YPYT
P )−1ei) ≥ η, so ‖c‖ ≤ ‖c‖1 ≤ 2ε/(ηb2).

Let P̂ be the set of support vectors returned by empirical One-class SVM, and β̂ as the optimal
solution for the dual problem, then ŵ = ŶP̂ β̂/b̂ and

∑
j∈P̂ β̂j = 1. Now we will give an upper

bound on ‖ŵ⊥‖. For any v ∈ span(YP ), we have ‖ŵ⊥‖ ≤ ‖ŵ−v‖. Now take v = YT
P̂
β̂/b̂, since

all rows of Y lie in the span of YP , this choice of v also lies in the span of YP . Thus,

‖ŵ⊥‖ ≤ ‖ŵ− v‖ = ‖ŶT
P̂
β̂ −YT

P̂
β̂‖/b̂ = ‖

∑
j∈P̂

β̂j(yj − ŷj)‖/b̂ ≤ ε/(b− ε).

4



Now, we have

ŵ−w = YT
P (YPYT

P )−1((b− 2ε)1 + c) + ŵ⊥ − bYT
P (YPYT

P )−11 = YT
P (YPYT

P )−1(c− 2ε1) + ŵ⊥,
‖ŵ−w‖2 = (c− 2ε1)T (YPYT

P )−1(c− 2ε1) + ‖ŵ⊥‖2 ≤ cT (YPYT
P )−1c + 4ε2/b2 + ε2/(b− ε)2

≤ ‖c‖2λ1((YPYT
P )−1) + 4ε2/b2 + ε2/(b− ε)2 ≤

(
4

η2b4λK(YPYT
P )

+ 4
b2 + 1

(b− ε)2

)
ε2,

where we use Eq. (10) to get that the cross terms are non-negative for the first inequality. First
4

η2b4λK (YP YT
P

) + 4
b2 + 1

(b−ε)2 < 4
η2b4λK(YP YT

P
) + 8

b2 < 12
η2b4λK(YP YT

P
) , using ε < b/2, η < 1,

b ≤ 1, and λK(YPYT
P ) < 1. Then by taking ζ = 4

ηb2
√
λK(YP YT

P
)
, we have ‖ŵ − w‖ ≤ ζε.

Furthermore, ζ ≤ 4K
η(λK (YP YT

P
))1.5 by using

1/b2 = 1T (YPYT
P )−11 ≤ Kλ1((YPYT

P )−1) = K/λK(YPYT
P ).

Lemma E.3. Let (ŵ, b̂) be the hyperplane of the optimal solution of One-class SVM with empirical
inputs, then b̂1 ≤ ŶP ŵ ≤ b̂1 + (ζ + 2)ε1.

Proof. Using Lemma E.2,

ŶP ŵ = YP ŵ + (ŶP −YP )ŵ ≤ YPw + YP (ŵ−w) + ε1 ≤ b1 + (ζε+ ε)1 ≤ b̂1 + (ζ + 2)ε1.

Lemma E.4. Let (w, b), (ŵ, b̂) be the hyperplane of the optimal solution of One-class SVM with
population and empirical inputs respectively, and S be the set of nodes selected as support vectors in
the optimal solution of the dual problem with empirical inputs. Then for ri defined in Lemma A.1,
ri − 1 ≤ 1

b/(2ε)−1 , ∀i ∈ S. Furthermore, ∀i ∈ [n], if ŵT ŷi ≤ b̂+ (ζ + 2)ε, then ri − 1 ≤ (ζ+4)ε
b−2ε .

Proof. First ∀i ∈ S, we have,

b̂ = ŵT ŷi = ŵTyi + ŵT (ŷi − yi) = ri
∑
j

φijŵTyI(j) + ŵT (ŷi − yi)

= ri
∑
j

φijŵT ŷI(j) + ri
∑
j

φijŵT (yI(j) − ŷI(j)) + ŵT (ŷi − yi)

≥ rib̂− riε− ε.
This gives

ri ≤
b̂+ ε

b̂− ε
=⇒ ri − 1 ≤ 2ε

b̂− ε
≤ 2ε
b− ε− ε

= 1
b/(2ε)− 1 ,

where the last step uses b ≥ b̂ − ε from Lemma E.1. Similarly, for i ∈ [n] such that ŵT ŷi ≤
b̂+ (ζ + 2)ε, we have b̂+ (ζ + 2)ε ≥ rib̂− riε− ε and this gives ri − 1 ≤ (ζ+4)ε

b−2ε .

Lemma E.5. For S defined in Lemma E.4, ∀i ∈ S, ∃j ∈ [K] such that for φij defined in Lemma A.1,
φij ≥ 1− ε1, for ε1 = 2ε

bλK(YP YT
P

) . Furthermore, ∀i ∈ [n], if ŵT ŷi ≤ b̂+ (ζ + 2)ε, then ∃j ∈ [K],

φij ≥ 1− ε2, for ε2 = (ζ+4)ε
(b+(ζ+2)ε)λK(YP YT

P
) <

2ζε
bλK (YP YT

P
) .

Proof. By Lemma E.4 we have ri ≤ 1 + 1
b/(2ε)−1 = 1

1−2ε/b . As yi = riφ
T
i YP , we have 1 =

‖yi‖ = ri‖φTi YP ‖, so ‖φTi YP ‖ ≥ 1 − 2ε/b. Let y−k =
∑
j 6=k

φij

1−φik
yI(j), ∀k ∈ [K]. then

φTi YP = φikyI(k) + (1− φik)y−k. It is easy to see that ‖y−k‖ ≤ 1, then

‖φTi YP ‖2 ≤ φ2
ik + (1− φik)2 + 2φik(1− φik)yTI(k)y−k,

yTI(k)y−k =
∑
j 6=k

φij
1− φik

yTI(k)yI(j) ≤ max
j 6=k

yTI(k)yI(j) ≤ max
i 6=l

yTI(i)yI(l).
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Using 2xT1 x2 = ‖x1‖2 + ‖x2‖2 − ‖x1 − x2‖2 for any same length vectors x1 and x2, and

‖yI(i) − yI(l)‖2 = ‖(ei − el)TYP ‖2 = (el − ej)TYPYT
P (ei − el)

≥ 2 min
‖x‖=1

xTYPYT
Px = 2λK(YPYT

P ),

we have maxi6=l yTI(i)yI(l) ≤ 1− λK(YPYT
P ). Then,

(1− 2ε/b)2 ≤ ‖φTi YP ‖2 ≤ φ2
ik + (1− φik)2 + 2φik(1− φik)(1− λK(YPYT

P ))
= 1− 2φik(1− φik)λK(YPYT

P ),

which gives φik(1 − φik) ≤ 2ε
bλK (YP YT

P
) := ε1, ∀k ∈ [K]. Since

∑
k φik = 1, we must have

∃j ∈ [K], φij ≥ 1 − ε1. Similarly, for i ∈ [n] such that ŵT ŷi ≤ b̂ + (ζ + 2)ε, we have
ri − 1 ≤ (ζ+4)ε

b−2ε from Lemma E.4, then φTi YP = 1
ri
≥ 1 − (ζ+4)ε

b+(ζ+2)ε , and this gives that φik(1 −
φik) ≤ (ζ+4)ε

(b+(ζ+2)ε)λK (YP YT
P

) := ε2 < 2ζε
bλK (YP YT

P
) , using ζ ≥ 4 and (ζ + 2)ε ≥ 0. Also since∑

k φik = 1, we must have ∃j ∈ [K], φij ≥ 1− ε2.

Remark E.1. Lemma E.5 shows that for One-class SVM with empirical inputs, the support vectors
selected are all nearly corner points. Lemma E.3 shows that each corner point is closed to the
hyperplane (ŵ, b̂) selected by One-class SVM by (ζ + 2)ε, and then Lemma E.5 shows that points
close to hyperplane (ŵ, b̂) by (ζ + 2)ε are all nearly corner points. So choosing points that are
(ζ + 2)ε close to (ŵ, b̂) will guarantee us all the K corner points and some nearly corner points.

Lemma E.6. Let Sc = {i : ŵT ŷi ≤ b̂+ (ζ + 2)ε}, then ∀i, j ∈ Sc, for ε3 = ε+ (ζ+4)ε
b−2ε , we have

‖φi − φj‖
√
λK(YPYT

P )− 2ε3 ≤ ‖ŷi − ŷj‖ ≤ ‖φi − φj‖
√
λ1(YPYT

P ) + 2ε3.

Proof. First we have, ‖ŷi − φTi YP ‖ = ‖ŷi − riφTi YP + (ri − 1)φTi YP ‖ ≤ ε+ (ζ+4)ε
b−2ε := ε3,

where last step is by Lemma E.4. This gives ‖(ŷi − ŷj) − (φiYP − φjYP )‖ ≤ 2ε3, then we
have ‖φTi YP − φTj YP ‖ − 2ε3 ≤ ‖ŷi − ŷj‖ ≤ ‖φTi YP − φTj YP ‖+ 2ε3. Combing with

‖φi − φj‖
√
λK(YPYT

P ) ≤ ‖φTi YP − φTj YP ‖ ≤ ‖φi − φj‖
√
λ1(YPYT

P ),

we have the result.

Lemma E.7. Let Sc = {i : ŵT ŷi ≤ b̂+ (ζ + 2)ε)}, then there exists exact K clusters in Sc, given

ε ≤ cε η(λK (YP YT
P ))3

K1.5
√
κ(YP YT

P
)
, for some constant cε.

Proof. First because I ∈ Sc from Lemma E.3, there exists at least K clusters in Sc. By Lemma E.5,
∀i ∈ Sc, ∃ki ∈ [K], φiki

≥ 1− ε2. If ki = kj , by Lemma E.6,

‖ŷi − ŷj‖ ≤ ‖φi − φj‖
√
λ1(YPYT

P ) + 2ε3 ≤
√

3ε2
√
λ1(YPYT

P ) + 2ε3.

This means if j is a corner point, i will be close to it, and will be in the same cluster as long as there
is enough separation between different clusters. Now we will prove this is true. Similarly, if ki 6= kj ,

‖ŷi − ŷj‖ ≥ ‖φi − φj‖
√
λK(YPYT

P )− 2ε3 ≥
√

2(1− 2ε2)
√
λK(YPYT

P )− 2ε3.

In order to have enough separation between p clusters, we need
√

2(1− 2ε2)
√
λK(YPYT

P )− 2ε3 =
√

2
√
λK(YPYT

P )− 2
√

2ε2
√
λK(YPYT

P )− 2ε3

> c′(
√

3ε2
√
λ1(YPYT

P ) + 2ε3),

for some constant c′ > 2. This is equivalent to show
√

2 > (2
√

2 +
√

3c′
√
κ(YPYT

P ))ε2 + 2 + 2c′√
λK(YPYT

P )
ε3.
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As

(2
√

2 +
√

3c′
√
κ(YPYT

P ))ε2 + 2 + 2c′√
λK(YPYT

P )
ε3

≤(2
√

2 +
√

3c′
√
κ(YPYT

P )) 2ζε
bλK(YPYT

P )
+ 2 + 2c′√

λK(YPYT
P )

(
ε+ (ζ + 4)ε

b− 2ε

)

≤c1

√
κ(YPYT

P )ζε
bλK(YPYT

P )
+ c2

λK(YPYT
P )
ζε

b
≤ c3

√
κ(YPYT

P )ε
λK(YPYT

P )
4K

η(λK(YPYT
P ))1.5

√
K√

λK(YPYT
P )

≤c4
K1.5

√
κ(YPYT

P )
η(λK(YPYT

P ))3 ε,

where ci, i ∈ [4] are some constants we do not specify and we use 1/b2 ≤ K/λK(YPYT
P ) in the

second last inequality. So a sufficient condition for separated clusters is c4
K1.5
√
κ(YP YT

P
)

η(λK(YP YT
P

))3 ε <
√

2,
which is

ε ≤ cε
η(λK(YPYT

P ))3

K1.5
√
κ(YPYT

P )
,

for some constant cε.

F Consistency of inferred parameters

Lemma F.1. For set C returned by Algorithm 1, there exits a permutation matrix Π ∈ RK×K that
‖ŶC −ΠYP ‖F ≤ ε4, for ε4 = cY Kζ

(λK(YP YT
P

))1.5 ε and cY is some constant.

Proof. By Lemma E.5, we know that ∀i ∈ Sc, ∃j ∈ [K] such that φij ≥ 1− ε2. Then we have:

‖ŷi − yI(j)‖ ≤ ‖ŷi − yi‖+ ‖yi − yI(j)‖ ≤ ε+ ‖ri
∑
l

φilyI(l) − riyI(j)‖+ ‖(ri − 1)yI(j)‖

≤ ε+ ri((1− φij) + ‖
∑
l 6=j

φilyI(l)‖) + (ri − 1)

≤ ε+
(

1 + (ζ + 4)ε
b− 2ε

)
(2ε2) + (ζ + 4)ε

b− 2ε (by Lemma E.4)

≤
(

1 + 4ζ
b

)
ε+ 4ε2 <

cY ζ

bλK(YPYT
P )
ε ≤ cY

√
Kζ

(λK(YPYT
P ))1.5 ε,

where we use ε ≤ b/(4ζ) and ζ ≥ 4. And cY is a constant. Then ‖ŶC−ΠYP ‖F ≤ cY Kζ
(λK(YP YT

P
))1.5 ε.

Lemma F.2. Let maxi ‖eTi (Z− Ẑ)‖ = ε0, then ‖yi − ŷi‖ ≤ 2ε0
‖zi‖ .

Proof. First note that by definition ‖‖zi‖ − ‖ẑi‖‖ ≤ ε0, then,

‖yi − ŷi‖ =
∥∥∥∥ zi
‖zi‖

− ẑi
‖ẑi‖

∥∥∥∥ =
∥∥∥∥‖ẑi‖zi − ‖zi‖ẑi‖zi‖‖ẑi‖

∥∥∥∥ =
∥∥∥∥‖ẑi‖(zi − ẑi) + (‖ẑi‖ − ‖zi‖)ẑi

‖zi‖‖ẑi‖

∥∥∥∥
≤
∥∥∥∥‖ẑi‖(zi − ẑi)
‖zi‖‖ẑi‖

∥∥∥∥+
∥∥∥∥ (‖ẑi‖ − ‖zi‖)ẑi

‖zi‖‖ẑi‖

∥∥∥∥ ≤ ∥∥∥∥zi − ẑi
‖zi‖

∥∥∥∥+
∥∥∥∥‖ẑi‖ − ‖zi‖‖zi‖

∥∥∥∥ ≤ 2ε0
‖zi‖

.
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Proof of Theorem 2.8. First let us get some important intermediate bounds. Using Weyl’s inequality,

|σi(ŶC)− σi(YP )| ≤ ‖ŶC −ΠYP ‖ ≤ ε4
|λi(ŶCŶT

C)− λi(YPYT
P )| = |σ2

i (ŶC)− σ2
i (YP )| ≤ (σi(ŶC) + σi(YP ))ε4

≤ (2σi(YP ) + ε4)ε4.
Secondly,

‖(ŶCŶT
C)−1‖ = 1

λK(ŶCŶT
C)
≤ 1
λK(YPYT

P )− (2σK(YP ) + ε4)ε4
≤ 2
λK(YPYT

P )
,

where we use (2σK(YP ) + ε4)ε4 < λK(YPYT
P )/2. Then,

‖Π(YPYT
P )−1 − (ŶCŶT

C)−1Π‖ = ‖(ΠYP (ΠYP )T )−1 − (ŶCŶT
C)−1‖

=‖(ΠYP (ΠYP )T )−1(ΠYP (ΠYP )T − ŶCŶT
C)(ŶCŶT

C)−1‖
≤‖(YPYT

P )−1‖‖ΠYP (ΠYP )T − ŶCŶT
C‖‖(ŶCŶT

C)−1‖
≤2‖(YPYT

P )−1‖2(‖ΠYP − ŶC‖‖(ΠYP )T ‖+ ‖ŶC‖‖(ΠYP )T − ŶT
C‖)

≤2‖(YPYT
P )−1‖2((‖YP ‖+ ‖ŶC‖)‖ŶC −ΠYP ‖)

≤2‖(YPYT
P )−1‖2(2‖YP ‖ε4 + ε24).

Note that M = ZYT
P (YPYT

P )−1. Let maxi ‖eTi (Z− Ẑ)‖ = ε0, then,

‖eTi (M− ẐŶT
C(ŶCŶT

C)−1Π)‖ = ‖eTi (ZYT
P (YPYT

P )−1 − ẐŶT
C(ŶCŶT

C)−1Π)‖
=‖eTi ((Z− Ẑ)YT

P (YPYT
P )−1)‖+ ‖eTi (Ẑ(YP −ΠT ŶC)T (YPYT

P )−1)‖
+ ‖eTi (ẐŶT

C(Π(YPYT
P )−1 − (ŶCŶT

C)−1Π))‖
≤‖eTi (Z− Ẑ)‖‖YP ‖‖(YPYT

P )−1‖+ ‖eTi Ẑ‖‖ŶC −ΠYP ‖‖(YPYT
P )−1‖

+ ‖eTi Ẑ‖‖ŶC‖‖Π(YPYT
P )−1 − (ŶCŶT

C)−1Π‖
≤(‖eTi (Z− Ẑ)‖‖YP ‖+ ‖eTi Ẑ‖‖ŶC −ΠYP ‖)‖(YPYT

P )−1‖
+ 2‖eTi Ẑ‖‖ŶC‖‖(YPYT

P )−1‖2(2‖YP ‖ε4 + ε24)
≤‖(YPYT

P )−1‖(‖YP ‖ε0 + 13‖YP ‖2‖eTi Z‖‖(YPYT
P )−1‖ε4)

≤
‖YP ‖ε0 + 13κ(YPYT

P )‖eTi Z‖ cY Kζ
(λK(YP YT

P
))1.5 ε

λK(YPYT
P )

≤ cMκ(YPYT
P )‖eTi Z‖Kζ

(λK(YPYT
P ))2.5 ε := εM,i

where we uses ε4 ≤ ‖YP ‖/2, ε0 < ‖eTi Z‖ε/2 for relaxations.

G Equivalence of using V̂ and V̂V̂T as input of Algorithm 1

Lemma G.1. For DCMMSB-type models, let ui = UTei = vi/‖vi‖, yi = YTei = Vvi/‖Vvi‖,
ûi = ÛTei = v̂i/‖v̂i‖, ŷi = ŶTei = V̂v̂i/‖V̂v̂i‖ where V = (v1,v2, · · · ,vn)T and V̂ =
(v̂1, v̂2, · · · , v̂n)T are population and empirical eigenvectors respectively. One-class SVM using
rows of U (or Û) and rows of Y (or Ŷ) will return the same solution β.

Proof. Since yi = Vvi/‖Vvi‖ = Vvi/‖vi‖ = Vui, and ŷi = V̂v̂i/‖V̂v̂i‖ = V̂v̂i/‖v̂i‖ = V̂ûi,
we have yTi yj = uTi VTVuj = uTi uj and ŷTi ŷj = ûTi V̂T V̂ûj = ûTi ûj . It is easy to see that
One-class SVM using rows of U (or Û) and rows of Y (or Ŷ) have the same objective function
(Eq. 6) and thus will have the same solution of βi, i ∈ [n].

Remark G.1. By Lemmas G.1, D.1, and Theorem 2.3, One-class SVM with yi = Vvi/‖Vvi‖,
i ∈ [n] as inputs can find all the K corners corresponding to the pure nodes as support vectors for
DCMMSB-type models. Furthermore, as ŶC = ÛCV̂T ,

M̂ = ẐŶT
C(ŶCŶT

C)−1 = V̂V̂T V̂ÛT
C(ÛCV̂T V̂ÛC)−1 = V̂ÛT

C(ÛCÛC)−1,

which shows that outputs of Algorithm 1 using V̂ and V̂V̂T as input are same.
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H DCMMSB-type models properties

Lemma H.1. For DCMMSB-type models, if ‖θi‖p = 1, for p = 1 (DCMMSB) or p = 2 (OCCAM),
then we have γi/

√
λ1(ΘTΓ2Θ) ≤ ‖vi‖ ≤ γi/

√
λK(ΘTΓ2Θ), and γi/

√
λ1(ΘTΓ2Θ) ≤ ‖vi‖ ≤

γi/
√
λK(ΘTΓ2Θ), ∀i ∈ I .

Proof. Eq. (8) gives ((Γ−1
P VP )(Γ−1

P VP )T )−1 = ΘTΓ2Θ, then,

max
i
‖eTi (Γ−1

P VP )‖2 = max
i

eTi (Γ−1
P VP )(Γ−1

P VP )Tei ≤ max
‖x‖=1

xT (Γ−1
P VP )(Γ−1

P VP )Tx

= λ1((Γ−1
P VP )(Γ−1

P VP )T ) = 1/λK(ΘTΓ2Θ)
min
i
‖eTi (Γ−1

P VP )‖2 = min
i

eTi (Γ−1
P VP )(Γ−1

P VP )Tei ≥ min
‖x‖=1

xT (Γ−1
P VP )(Γ−1

P VP )Tx

= λK((Γ−1
P VP )(Γ−1

P VP )T ) = 1/λ1(ΘTΓ2Θ).

By Lemma 2.1, ∀i ∈ [n], if ‖θi‖p = 1, for p = 1 or 2,

‖vi‖ = γiθ
T
i Γ−1

P VP ≤ γi max
i
‖θi‖‖Γ−1

P VP ‖ ≤ γi/
√
λK(ΘTΓ2Θ),

where we use ‖θi‖ ≤ ‖θi‖p = 1 for 0 < p ≤ 2. Similarly,

‖vi‖ ≥ γi min
i
‖θi‖1 min

i
‖ei(Γ−1

P VP )‖ ≥ γi/
√
λ1(ΘTΓ2Θ).

Note that if ‖θi‖p = 1, as ‖θi‖2 ≤ K1/2−1/p‖θi‖p = K1/2−1/p, for models with p > 2, we need
to add a model specifically parameter ψ = K1/2−1/p to the upper bound of ‖vi‖. For simplicity we
omit this and only consider cases when 0 < p ≤ 2.

Lemma H.2. For DCMMSB-type models whose eigenvectors has the form in Lemma 2.1, if using
Z = VVT , M = ΓΘΓ−1

P N−1
P , then:

λ1(YPYT
P ) ≤ κ(ΘTΓ2Θ), λK(YPYT

P ) ≥ 1/κ(ΘTΓ2Θ), and κ(YPYT
P ) ≤ (κ(ΘTΓ2Θ))2.

Proof. For DCMMSB-type models, we have V = ΓΘΓ−1
P VP , and (VPVT

P )−1 =
Γ−1
P ΘTΓ2ΘΓ−1

P by Lemma 2.1 and Theorem 2.3 (Eq. 8). Note that YP = NPZP , then we
have

λ1(YPYT
P ) = λ1(NPZPZTPNP ) = λ1(NPVPVT

PNP ) = λ1(NPΓP (ΘTΓ2Θ)−1ΓPNP )
≤ (λ1(NPΓP ))2λ1((ΘTΓ2Θ)−1) ≤ (max

i∈I
γi/‖vi‖)2/λK(ΘTΓ2Θ)

≤ λ1(ΘTΓ2Θ)/λK(ΘTΓ2Θ) = κ(ΘTΓ2Θ) (by proof of Lemma H.1)

Note that Nii = 1/‖eTi Z‖ = 1/‖eTi VVT ‖ = 1/‖eTi V‖. Similarly, we have:

λK(YPYT
P ) = λK(NPΓP (ΘTΓ2Θ)−1ΓPNP ) ≥ (λK(NPΓP ))2λK((ΘTΓ2Θ)−1)
≥ (min

i∈I
γi/‖vi‖)2/λ1(ΘTΓ2Θ) ≥ λK(ΘTΓ2Θ)/λ1(ΘTΓ2Θ)

= 1/κ(ΘTΓ2Θ) (by proof of Lemma H.1)

And finally we have,

κ(YPYT
P ) ≤ (κ(ΘTΓ2Θ))2.

Lemma H.3. For DCMMSB-type models, let vi = VTei, v̂i = V̂Tei, zi = Vvi, ẑi = V̂v̂i,
yi = Vvi/‖Vvi‖, and ŷi = V̂v̂i/‖V̂v̂i‖, i ∈ [n]. Also let ε0 = maxi ‖zi − ẑi‖, then,

‖yi − ŷi‖ ≤
2ε0
‖vi‖

≤
2ε0
√
λ1(ΘTΓ2Θ)
γi

.
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Proof. From Lemma F.2, we have

‖yi − ŷi‖ ≤
2ε0
‖Vvi‖

= 2ε0
‖vi‖

≤
2ε0
√
λ1(ΘTΓ2Θ)
γi

,

where the last step uses Lemma H.1.

Lemma H.4. For DCMMSB-type models, λ∗(P) ≥ ρλ∗(B)λK(ΘTΓ2Θ).

Proof. Let X = BΘTΓ2ΘB, it easy to see that X is full rank and positive definite, then

λ∗(P) = ρλ∗(ΓΘBΘTΓ) = ρ
√
λK(ΓΘBΘTΓ2ΘBΘTΓ) = ρ

√
λK(ΓΘXΘTΓ)

= ρ
√
λK(X1/2ΘTΓ2ΘX1/2) = ρ

√
λK(XΘTΓ2Θ) ≥ ρ

√
λK(X)λK(ΘTΓ2Θ)

≥ ρ
√

(λK(B))2(λK(ΘTΓ2Θ))2 = ρλ∗(B)λK(ΘTΓ2Θ),

where we use that LLT and LTL have the same leading K eigenvalues for a matrix L ∈ Rn×K with
rank K < n.

I DCMMSB error bounds

Lemma I.1. For DCMMSB-type models, if θi ∼ Dirichlet(α), let α0 = 1TKα, αmax = maxi αi,
αmin = minαi, ν = α0/αmin, then

P
(
λ1(ΘTΓ2Θ) ≤

3γ2
maxn

(
αmax + ‖α‖2)

2α0(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)
P
(
λK(ΘTΓ2Θ) ≥ γ2

minn

2ν(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)
P
(
κ(ΘTΓ2Θ) ≤ 3γ

2
max
γ2

min

αmax + ‖α‖2

αmin

)
≥ 1− 2K exp

(
− n

36ν2(1 + α0)2

)
P
(
λ∗(P) ≥ γ2

minλ
∗(B)

2ν(1 + α0)ρn
)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)
where λ∗(P) is the K-th singular value of P.

Proof. First note that

λ1(ΘTΓ2Θ) = λ1(ΓΘΘTΓ) ≤ (λ1(Γ))2λ1(ΘΘT ) = (λ1(Γ))2λ1(ΘTΘ).

Here we use that XXT and XTX have the same leading K eigenvalues for X ∈ Rn×K with rank
K < n. Also, as ΘT (Γ2 − γ2

minI)Θ is positive semidefinite, we have

λK(ΘTΓ2Θ) = λK(ΘT (Γ2 − γ2
minI)Θ + γ2

minΘTΘ) ≥ λK(ΘT (Γ2 − γ2
minI)Θ) + λK(γ2

minΘTΘ)
≥ γ2

minλK(ΘTΘ)

By Lemma A.2 of [5],

P
(
λ1(ΘTΘ) ≤

3n
(
αmax + ‖α‖2)

2α0(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)
P
(
λK(ΘTΘ) ≥ n

2ν(1 + α0)

)
≥ 1−K exp

(
− n

36ν2(1 + α0)2

)
P
(
κ(ΘTΘ) ≤ 3αmax + ‖α‖2

αmin

)
≥ 1− 2K exp

(
− n

36ν2(1 + α0)2

)
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So κ(ΘTΓ2Θ) = λ1(ΘT Γ2Θ)
λK(ΘT Γ2Θ) ≤

γ2
max
γ2

min
κ(ΘTΘ) ≤ 3γ

2
max
γ2

min

αmax+‖α‖2

αmin
with high probability. Using

Lemma H.4, we have,

λ∗(P) ≥ ρλ∗(B)λK(ΘTΓ2Θ) ≥ γ2
minλ

∗(B)
2ν(1 + α0)ρn,

with probability at least 1−K exp
(
− n

36ν2(1+α0)2

)
.

Lemma I.2. For DCMMSB-type models, we have (YPYT
P )−11 ≥ (mini γi)2

λ1(ΘT Γ2Θ)Θ
T1. Further-

more, if θi ∼ Dirichlet(α), with probability larger than 1 − 1/n3 − K exp
(
− n

36ν2(1+α0)2

)
,

(YPYT
P )−11 ≥ (mini γi)2

2λ1(ΘT Γ2Θ)
n
ν 1 ≥ γ2

min
3γ2

max

1
ν1, where ν =

∑
αi

minαi
.

Proof. First note that, for diagonal matrices D ∈ Rm×m≥0 and Γ ∈ Rn×n≥0 that have strictly positive
elements on the diagonal, and some matrices G ∈ Rm×m≥0 and H1 ∈ Rn×m≥0 , H2 ∈ Rn×m≥0 we have

DGD1 ≥ (min
i

Dii)2G1, (11)

HT
1 ΓH21 ≥ min

i
ΓiiHT

1 H21. (12)

Eq. (11) is true because
DGD1− (min

i
Dii)2G1 =DGD1−min

i
DiiGD1 + min

i
DiiGD1− (min

i
Dii)2G1

=(D−min
i

DiiI)GD1 + min
i

DiiG(D−min
i

DiiI)1 ≥ 0,

where last step follows that D, G and (D−mini DiiI) are all non-negative. Eq. (12) can be proved
in a similar way. Now use these on Eq. (9), we have

(YPYT
P )−11 = N−1

P Γ−1
P ΘTΓ2ΘΓ−1

P N−1
P 1 ≥

(
min
i

‖vI(i)‖
γI(i)

)2

ΘTΓ2Θ1

≥
(

min
i

‖vI(i)‖
γI(i)

)2

(min
i
γi)2ΘT1 ≥ (mini γi)2

λ1(ΘTΓ2Θ)ΘT1,

where the last step follows Lemma H.1. By Lemma C.1. of [4], we know if rows of Θ are from
Dirichlet distribution with parameter α = (α0, α2, · · · , αK), α0 =

∑
i αi, ν = α0/mini αi,

ΘT1 ≥ n

ν

(
1−OP

(√
ν logn
n

))
1

with probability larger than 1 − 1/n3. Now by Lemma I.1, we have, with probability larger than
1− 1/n3 −K exp

(
− n

36ν2(1+α0)2

)
,

(YPYT
P )−11 ≥ (mini γi)2

λ1(ΘTΓ2Θ)ΘT1 ≥ (mini γi)2

λ1(ΘTΓ2Θ)
n

ν

(
1−OP

(√
ν logn
n

))
1

≥ 2γ2
minα0(1 + α0)

3γ2
maxn (αmax + ‖α‖2)

n

ν

1
21 = γ2

minαmin(1 + α0)
3γ2

max (αmax + ‖α‖2)1 ≥ γ2
min

3γ2
max

1
ν

1.

We use a crucial result from [5] that shows row-wise eigenspace concentration for general low rank
matrix.
Theorem I.3 (Row-wise eigenspace concentration [5]). Suppose P has rank K, maxi,j Pij ≤ ρ.
Let Aij = Aji ∼ Ber(Pij), V and V̂ are P and A’s top-K eigenvectors respectively. If
P(maxi ‖V:,i‖∞ >

√
ρ) ≤ δ1, and for some constant ξ > 1, ρn = Ω((logn)2ξ) and

P(λ∗(P) < 4√nρ(logn)ξ) < δ2, then for a fixed i ∈ [n], with probability at least 1 − δ1 − δ2 −
O(Kn−3),

‖eTi (V̂V̂T −VVT )‖ = O

(
min{K,κ(P)}

√
Knρ

λ∗(P)

)(
(min{K,κ(P)}+ (logn)ξ) max

i
‖V:,i‖∞ + (K + 1)n−2ξ

)
.
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Proof of Theorem 3.1. First by Lemma H.3,

‖yi − ŷi‖ ≤
2ε0
‖vi‖

≤
2ε0
√
λ1(ΘTΓ2Θ)
γi

.

Also using Lemma H.1,

max
j
‖V:,j‖∞ ≤ max

i
‖vi‖ ≤ max

i
γi/
√
λK(ΘTΓ2Θ),

By Lemma I.1, we have maxj ‖V:,j‖∞ ≤ maxi γi/
√
λK(ΘTΓ2Θ) with probability at least 1− δ1

for δ1 ≤ K exp
(
− n

36ν2(1+α0)2

)
. Also from the condition of ν, maxi γi/

√
λK(ΘTΓ2Θ) ≤ √ρ.

Then it is easy to see P(maxi ‖V:,i‖∞ >
√
ρ) ≤ δ1. Also, from the condition of λ∗(B)/ν, we have

4√nρ(logn)ξ ≤ γ2
minλ

∗(B)
2ν(1+α0) ρn. Then combined with Lemma I.1, P(λ∗(P) < 4√nρ(logn)ξ) < δ2

is satisfied with δ2 ≤ K exp
(
− n

36ν2(1+α0)2

)
. Also we have,

max
i
γi/
√
λK(ΘTΓ2Θ) ≥ max

i
γi/
√
λ1(ΘTΓ2Θ) ≥

√
2/(3n)� (K + 1)n−2ξ

with high probability. Then by Theorem I.3 we have

ε0 = O

(
min{K,κ(P)}

√
Knρ

λ∗(P)

)(
(min{K,κ(P)}+ (logn)ξ) max

i
‖V:,i‖∞ + (K + 1)n−2ξ

)
= Õ

(
min{K2, (κ(P))2}

√
Knρ

ρλ∗(B)λK(ΘTΓ2Θ)

)
γmax√

λK(ΘTΓ2Θ)
.

with probability at least 1− δ1 − δ2 −O(Kn−3) = 1−O(Kn−3). So,

‖yi − ŷi‖ ≤
2ε0
√
λ1(ΘTΓ2Θ)
γi

= Õ

(
min{K2, (κ(P))2}

√
Kn

√
ρλ∗(B)λK(ΘTΓ2Θ)

)
γmax

√
κ(ΘTΓ2Θ)
γi

.

And using Lemma I.1,

ε = max
i
‖yi − ŷi‖ = Õ

(
γmax min{K2, (κ(P))2}

√
κ(ΘTΓ2Θ)

√
Kn

γminλ∗(B)λK(ΘTΓ2Θ)√ρ

)

= Õ

(
γmax min{K2, (κ(P))2}

√
κ(ΘTΓ2Θ)K0.5ν(1 + α0)

γ3
minλ

∗(B)√nρ

)
with probability at least 1−O(Kn−2).

Proof of Theorem 3.2. Note that P = ρΓΘBΘTΓ = VEVT , we have ρΓPBΓP = VPEVT
P ,

then ρNPΓPBΓPNP = NPVPEVT
PNP = YPVEVTYT

P . As B has unit diagonal, let
B(i, i) = c2, then c2ργ2

I(i)/‖vI(i)‖2 = ρeTi NPΓPBΓPNPei = eTi YPVEVTYT
Pei := d2

i .

Since our estimation for c2ργ2
I(i)/‖vI(i)‖2 is eTi ΠT ŶCV̂ÊV̂T ŶT

CΠei, and note that ‖E‖ ≤
maxi ‖eTi P‖1 = O(ρn), ‖Ê‖ ≤ ‖E‖ + ‖A − P‖ = O(ρn) using Weyl’s inequality and The-
orem 5.2 of [3], and ‖VEVT − V̂ÊV̂T ‖ ≤ λK+1(A) + ‖P−A‖ ≤ 2‖P−A‖ = O(√ρn). Let
d̂2
i = eTi ŶCV̂ÊV̂T ŶT

Cei, then we have,

|d2
i − d̂2

π(i)| = ‖eTi YPVEVTYT
Pei − eTi ΠT ŶCV̂ÊV̂T ŶT

CΠei‖

≤‖eTi (YP −ΠT ŶC)VEVTYT
Pei‖+ ‖eTi ΠT ŶC(VEVT − V̂ÊV̂T )YT

Pei‖
+ ‖eTi ΠT ŶCV̂ÊV̂T (YT

P − ŶT
CΠ)ei‖

≤‖eTi (YP −ΠT ŶC)‖‖E‖+ ‖VEVT − V̂ÊV̂T ‖+ ‖Ê‖‖eTi (YP −ΠT ŶC)‖
≤O(ρn)ε4/

√
K +O(√ρn).
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Using Lemma H.1, c
√
ρλK(ΘTΓ2Θ) ≤ di ≤ c

√
ρλ1(ΘTΓ2Θ), and by Lemma I.1,

λ1(ΘTΓ2Θ) ≤ 3γ2
maxn(αmax+‖α‖2)

2α0(1+α0) , λK(ΘTΓ2Θ) ≥ γ2
minn

2ν(1+α0) , then we have di ≥ c
√

γ2
minρn

2ν(1+α0) ,

and di ≤ c
√

3γ2
maxρn(αmax+‖α‖2)

2α0(1+α0) with probability at least 1−2K exp
(
− n

36ν2(1+α0)2

)
. Then, using

Lemma H.2,

|di − d̂π(i)| ≤
O(ρn)ε4/

√
K +O(√ρn)

minj(dj + d̂π(j))
≤
O(ρn)ε4/

√
K +O(√ρn)√

ρλK(ΘTΓ2Θ)

≤
O(ρn/

√
K) cY Kζ

(λK(YP YT
P

))1.5 ε+O(√ρn)√
ρλK(ΘTΓ2Θ)

= O

(
K0.5(κ(ΘTΓ2Θ))1.5ζ

√
ρn√

λK(ΘTΓ2Θ)
ε

)

= O

(
K1.5(κ(ΘTΓ2Θ))3√ρn

η
√
λK(ΘTΓ2Θ)

ε

)
.

Let D = diag(d1, d2, · · · , dK) and D̂ = diag(d̂1, d̂2, · · · , d̂K), then D = c
√
ρ(NPΓP ). Now as

we estimate c
√
ρ(ΓΘ) by ĉ

√
ρ̂Γ̂Θ̂ = M̂D̂, we have

‖eTi (c√ρΓΘ− ĉ
√
ρ̂Γ̂Θ̂Π)‖ = ‖eTi (MD− M̂D̂Π)‖ ≤ ‖eTi (M− M̂Π)D‖+ ‖eTi M̂Π(D−ΠT D̂Π)‖

≤‖eTi (M− M̂Π)‖‖D‖+ ‖eTi M̂‖‖D−ΠT D̂Π‖ ≤ εM,i max
j
dj + (‖eTi M‖+ εM,i) max

j
|dj − d̂π(j)|

≤εM,i max
j
dj + (γi max

j∈I
‖vj‖/γj + εM,i) max

j
|dj − d̂π(j)|

≤c
√
ρλ1(ΘTΓ2Θ)εM,i +

(
γi√

λK(ΘTΓ2Θ)
+ εM,i

)
O

(
K1.5(κ(ΘTΓ2Θ))3√ρn

η
√
λK(ΘTΓ2Θ)

ε

)
,

where we use ‖eTi M‖ = ‖eTi ΓΘΓ−1
P N−1

P ‖ ≤ γi‖θi‖maxj∈I ‖vj‖/γj and ‖θi‖ ≤ 1 for
DCMMSB and OCCAM for the last inequality. As

εM,i = cMκ(YPYT
P )‖eTi Z‖Kζ

(λK(YPYT
P ))2.5 ε ≤ cMκ(YPYT

P )‖eTi Z‖K
(λK(YPYT

P ))2.5
4K

η(λK(YPYT
P ))1.5 ε

≤ c1‖eTi Z‖(κ(ΘTΓ2Θ))6K2

η
ε ≤ c1γi(κ(ΘTΓ2Θ))6K2

η
√
λK(ΘTΓ2Θ)

ε.

Then

ε5 = ‖eTi (c√ρΓΘ− ĉ
√
ρ̂Γ̂Θ̂Π)‖

=c
√
ρλ1(ΘTΓ2Θ)εM,i +

(
γi√

λK(ΘTΓ2Θ)
+ εM,i

)
O

(
K1.5(κ(ΘTΓ2Θ))3√ρn

η
√
λK(ΘTΓ2Θ)

ε

)

=c
√
ρλ1(ΘTΓ2Θ)c1γi(κ(ΘTΓ2Θ))6K2

η
√
λK(ΘTΓ2Θ)

ε+O

(
γi
K1.5(κ(ΘTΓ2Θ))3√ρn

ηλK(ΘTΓ2Θ) ε

)
=O

(
max

{
K0.5(κ(ΘTΓ2Θ))3.5,

n

λK(ΘTΓ2Θ)

}
γiK

1.5(κ(ΘTΓ2Θ))3√ρ
η

ε

)
.

As |c√ργi − ĉ
√
ρ̂γ̂i| = ‖eTi (c√ρΓΘ − ĉ

√
ρ̂Γ̂Θ̂Π)1‖ ≤

√
Kε5, let Xi = eTi c

√
ρΓΘ and X̂i =

eTi ĉ
√
ρ̂Γ̂Θ̂Π, then for DCMMSB, ‖Xi‖1 = c

√
ργi, ‖X̂i‖ ≤ ‖X̂i‖1 = ĉ

√
ρ̂γ̂i; for OCCAM,
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‖Xi‖ = c
√
ργi‖eTi Θ‖ = c

√
ργi and ‖X̂i‖ = ĉ

√
ρ̂γ̂i. So we have,

‖eTi (Θ− Θ̂Π)‖ =

∥∥∥∥∥ Xi

c
√
ργi
− X̂i

ĉ
√
ρ̂γ̂i

∥∥∥∥∥ ≤ ‖Xi − X̂i‖
c
√
ργi

+
∥∥∥∥c√ργi − ĉ√ρ̂γ̂ic
√
ργiĉ
√
ρ̂γ̂i

∥∥∥∥ ‖X̂i‖

≤ ε5
c
√
ργi

+
√
K

c
√
ργi

ε5 = O

( √
K

γi
√
ρ
ε5

)

=O
(

max
{
K0.5(κ(ΘTΓ2Θ))3.5,

n

λK(ΘTΓ2Θ)

}
K2(κ(ΘTΓ2Θ))3

η
ε

)
=Õ

(
max

{
K0.5(κ(ΘTΓ2Θ))3.5,

n

λK(ΘTΓ2Θ)

}
γmaxK

2.5 min{K2, (κ(P))2}(κ(ΘTΓ2Θ))3.5√n
γminηλ∗(B)λK(ΘTΓ2Θ)√ρ

)
=Õ

(
γmaxK

2.5 min{K2, (κ(P))2}n3/2

γminηλ∗(B)λ2
K(ΘTΓ2Θ)√ρ

)
. (when κ(ΘTΓ2Θ) = Θ(1))

Note that this bound works for both DCMMSB and OCCAM, and λK(ΘTΓ2Θ) = Ω(n), so the
bound is about Õ

(
1/√ρn

)
. specifically, for DCMMSB,

‖eTi (Θ− Θ̂Π)‖ =Õ
(
γmaxK

2.5 min{K2, (κ(P))2}n3/2

γminηλ∗(B)λ2
K(ΘTΓ2Θ)√ρ

)
=Õ

(
γmaxK

2.5 min{K2, (κ(P))2}ν2(1 + α0)2

γ5
minηλ

∗(B)√ρn

)
.

J Topic model error bounds

J.1 Eigenspcae concentration for topic models

Consider the following setup similar to [1].

Aij
iid∼ Binomial(N,Aij) For i ∈ [V ], j ∈ [D] (13)

Here A is the probability matrix for words appearing in documents. Furthermore, we have A = TH,
where T is the word to topic probabilities with columns summing to 1 and H is the topic to document
matrix with columns summing to 1. Also note that,

∑
i ‖eTi AAT ‖1 = D, since the columns of

A sum to one. We will construct a matrix A1AT
2 , where A1 and A2 are obtained by dividing the

words in each document uniformly randomly in two equal parts. For simplicity denote N1 = N/2.
Consider the matrix U = A1AT

2
N2

1
. We have E[U] = AAT .

Lemma J.1. For topic models, we have (YPYT
P )−11 ≥ mini ‖eT

i T‖1
λ1(TT T) 1 ≥ mini ‖eT

i T‖1
K 1, where T is

the word-topic probability matrix.

Proof. Noting that T = ΓΘ for topic models, where γi = Γii = ‖eTi T‖1. Following the steps of
Lemma I.2, we find

(YPYT
P )−11 ≥ mini γi

λ1(ΘTΓ2Θ) (ΓΘ)T1 = mini γi
λ1(TTT)TT1 = mini γi

λ1(TTT)1 ≥ mini ‖eTi T‖1

K
1,

where the last step is true because λ1(TTT) ≤ trace(TTT) =
∑
i ‖Tei‖2 ≤ K.

So η ≥ mini ‖eT
i T‖1

λ1(TT T) ≥ mini ‖eT
i T‖1

K .

Lemma J.2. Using Eq (13), we see that under Assumption 3.1,

P

‖U−AAT ‖F ≥

√
50D log max(V,D)

N1

 ≤ 2
(max(V,D))3 .
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Proof. Recall that from Assumption 3.1, gik = eTi AAT ek. Let R := U−AAT .

Rik =
∑D
j=1 A1(ij)A2(kj)

N2
1

− gik

Note that E[Rij ] = 0, and A1(ij)A2(kj)/N2
1 is bounded by 1. Also A1(i, j) and A2(i, j) are

independent. For independent X := A1(ij)/N1, Y := A1(kj)/N1,

var(XY ) = var(X)var(Y ) + var(X)E[X]2 + var(Y )E[Y ]2 ≤ 3A1(ij)A2(kj)
N1

var(Rik) ≤ 3gik/N1

When gik = 0, Uik = 0. When gik > 0, using Bernstein’s inequality, we have:

P (|Rik| ≥ tik) ≤ 2 exp
(
− t2ik

2(3gik/N1 + tik/3)

)
,

Setting, tik =
√

50 log max(V,D)gik/N1, we see that,∑
i,k

t2ik = 50 log max(V,D)
∑
ik

gik/N1 = 50 log max(V,D)D/N1

Then,

P

‖R‖2
F ≥

∑
i,k

t2ik

 ≤ V 2 max
i,k

P (|Rik| ≥ tik) ≤ 2V 2/(max(V,D))5 ≤ 2/(max(V,D))3.

This yields the result.

Lemma J.3. Using Eq (13), we see that, under Assumption 3.1, there exists constants C, r such that,

P
(
‖U−AAT ‖ ≥ Cr

√
D log max(V,D)

N

)
≤ 2

(max(V,D))r .

Proof. We use the Matrix Bernstein bound in [8]. Let Sk := A1kAT
2k

N2
1
−AkAT

k , where Mk is the

kth column of matrix M. Note that E[Sk] is the V × V zeros matrix. We also see that by symmetry
of the random splitting, E[SkSTk ] = E[STk Sk].
We will now note some theoretical properties of the Sk matrices. Let X be a vector of size V , such
that, Xi ∼ Binomial(N1, ai).

E[XTX]
N2

1
=

V∑
i=1

E[X2
i ]

N2
1

=
V∑
i=1

E[Xi]2 + var(Xi)
N2

1

=
V∑
i=1

N2
1 a

2
i +N1ai(1− ai)

N2
1

=
(

1− 1
N1

)
‖a‖2 + 1

N1
(14)

Furthermore, let

Cov(X) = Σ, Σij = N1ai(1− ai)1(i = j) (15)

Then,

E[SkSTk ] = E
[

A1kAT
2kA2kAT

1k
N4

1
−AkAT

kAkAT
k

]
(By independence) = E[AT

2kA2k]E[A1kAT
1k]

N4
1

− ‖Ak‖2AkAT
k

(By Eq (14) and (15)) =
(

1
N1

+ ‖Ak‖2(1− 1
N1

)
)(

Σk

N2
1

+ AkAT
k

)
− ‖Ak‖2AkAT

k

= ‖Ak‖2 Σk

N2
1

+ 1− ‖Ak‖2

N1

(
Σk

N2
1

+ AkAT
k

)
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Since ‖Σk‖ ≤ N1‖Ak‖1 = N1, ‖A‖2
F ≤ D,

v(S) =

∥∥∥∥∥∑
k

E[SkSTk ]

∥∥∥∥∥ ≤ 2‖A‖
2
F

N1
+ D

N2
1
≤ D

N1

(
2 + 1

N1

)
.

Furthermore,

‖Sk‖ ≤ ‖Ak‖2 + ‖A1k‖‖A2k‖
N2

1
≤ 2 =: L

So the Matrix Bernstein bound gives us:

P
(
‖
∑
k

Sk‖ ≥ t
)
≤ 2V exp

(
− t2/2
v(S) + Lt/3

)
= 2V exp

(
− t2/2

3D/N1 + 2t/3

)
Using t = Cr

√
D log max(V,D)/N , and using the condition in Assumption 3.1, we get the bound.

Proof of Lemma 3.3. First note the proof is under Assumption 3.1. Let R = U−AAT . Using the
Davis-Kahan Theorem [9], we see that there exists an orthogonal matrix O:

‖V̂O−V‖F ≤
√

8(2λ1(AAT ) + ‖R‖2) min(
√
K‖R‖2, ‖R‖F )

λ2
K(AAT ) ,

where λ1 and λK are the largest and Kth largest singular values (and also eigenvalue) of AAT

respectively. Thus,

‖V̂O−V‖F ≤
√

8(2λ1(AAT ) + ‖R‖2) min(
√
K‖R‖2, ‖R‖F )

λ2
K(AAT )

≤
√

8
2λ1(AAT ) + Cr

√
D log max(V,D)/N

λK(AAT )2

√
D log max(V,D)

N
max

(
Cr
√
K,
√
C
)

≤ λ1(HHT )λ1(TTT)
λ2
K(HHT )λ2

K(TTT)OP

(√
KD log max(V,D)

N

)

= κ(HHT )κ(TTT)
λK(TTT) OP

(√
K log max(V,D)

DN

)
,

where the third inequality follows Lemma H.4 with P = AAT , ΓΘ = T, B = HHT and ρ = 1.
Now we bound ε0 = maxi ‖zi − ẑi‖ = ‖eTi (V̂V̂T −VVT )‖ as:

‖eTi (V̂V̂T −VVT )‖ ≤ ‖V̂V̂T −VVT ‖2 ≤ ‖(V̂O−V)OT V̂T + V(V̂O−V)T ‖

= κ(HHT )κ(TTT)
λK(TTT) OP

(√
K log max(V,D)

DN

)
.

By Lemma H.3, ‖yi − ŷi‖ ≤ 2ε0
‖vi‖ ≤

2ε0
√
λ1(TT T)
‖eT

i
T‖1

. So,

ε = max
i
‖yi − ŷi‖ = κ(HHT )(κ(TTT))1.5

minj ‖eTj T‖1
√
λK(TTT)

OP

(√
K log max(V,D)

DN

)
.
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J.2 Parameter estimation for topic models

Proof of Theorem 3.4. For topic models, M = TD, where T = ΓΘ, D = (NPΓP )−1, γi = Γii =
‖eTi T‖1. For empirical estimation we have M̂ = T̂D̂, where D̂(i, i) = ‖M̂(:, i)‖1. First we have
∀i ∈ K, ‖T(:, i)‖1 = 1, then ‖M(:, i)‖1 = D(i, i) = ‖vI(i)‖/γI(i). Let π be the permutation
function for permutation matrix Π in Theorem 2.8, then,

|D(i, i)− D̂(π(i), π(i))| = |‖M(:, i)‖1 − ‖M̂(:, π(i))‖1| ≤ ‖M(:, i)− M̂(:, π(i))‖1

=
V∑
j=1
|M(j, i)− M̂(j, π(i))| ≤

V∑
j=1
‖M(j, :)− M̂(j, :)Π‖1

=
V∑
j=1
‖eTj T‖1

‖M(j, :)− M̂(j, :)Π‖1

‖eTj T‖1

≤ K max
j

‖M(j, :)− M̂(j, :)Π‖1

‖eTj T‖1
≤ K1.5 max

j

‖M(j, :)− M̂(j, :)Π‖
‖eTj T‖1

≤ K1.5 maxj εM,j

minj ‖eTj T‖1
:= εD

Note that TTT = ΘTΓ2Θ, and from Lemma H.1, we know

1/
√
λ1(TTT) ≤ ‖vi‖/γi ≤ 1/

√
λK(TTT), ∀i ∈ [n]

Using Lemma H.2, we have λ1(YPYT
P ) ≤ κ(ΘΓ2Θ) = κ(TTT), λK(YPYT

P ) ≥ 1/κ(ΘΓ2Θ) =
1/κ(TTT), and κ(YPYT

P ) ≤ (κ(ΘΓ2Θ)) = (κ(TTT))2.

Then the error for each row of T is

‖eTi (T̂−TΠT )‖ = ‖eTi (M̂D̂−1 −MD−1ΠT )‖
≤ ‖eTi (M̂−MΠT )D̂−1‖+ ‖eTi MΠT (D̂−1 −ΠD−1ΠT )‖

≤ ‖eTi (M̂−MΠT )‖max
j

1/D̂(j, j) + ‖eTi M‖max
j

∥∥∥∥∥D(j, j)− D̂(π(j), π(j))
D(j, j)D̂(π(j), π(j))

∥∥∥∥∥
≤ 2εM,i

minj D(j, j) + 2εD
(minj D(j, j))2 ‖e

T
i M‖

≤ 2εM,i

minj ‖vI(j)‖/γI(j)
+ 2εD

minj ‖vI(j)‖/γI(j)

maxj D(j, j)‖eTi T‖
minj D(j, j)

≤ 2
√
λ1(TTT)εM,i + 2

√
λ1(TTT)

√
λ1(TTT)√
λK(TTT)

‖eTi T‖K
1.5 maxj εM,j

minj ‖eTj T‖1

≤ 4
√
λ1(TTT)

√
κ(TTT) ‖eTi T‖

minj ‖eTj T‖1
K1.5 cMκ(YPYT

P ) maxj ‖eTj Z‖Kζ
(λK(YPYT

P ))2.5 ε

≤ c1

√
λ1(TTT)(κ(TTT))5.5K2.5 γmax‖eTi T‖

minj ‖eTj T‖1
ζε

≤
c2
√
λ1(TTT)(κ(TTT))7K3.5

η

maxj ‖eTj T‖1

minj ‖eTj T‖1
‖eTi T‖ε,

(using ζ ≤ 4K
η(λK(YP YT

P
))1.5 )

where we use εD ≤ D(j, j)/2 for relaxation in the 3rd inequality and c1 and c2 are some constants.
Under Assumption 3.1, by Lemma 3.3, we have

ε = max
i
‖yi − ŷi‖ = κ(HHT )(κ(TTT))1.5

minj ‖eTj T‖1
√
λK(TTT)

OP

(√
K log max(V,D)

DN

)
.
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Then,

‖eTi (T̂−TΠT )‖
‖eTi T‖

≤
c2
√
λ1(TTT)(κ(TTT))7K3.5

η

maxj ‖eTj T‖1

minj ‖eTj T‖1
ε

=
√
λ1(TTT)(κ(TTT))7K3.5

η

maxj ‖eTj T‖1

minj ‖eTj T‖1

κ(HHT )(κ(TTT))1.5

minj ‖eTj T‖1
√
λK(TTT)

OP

(√
K log max(V,D)

DN

)

=
maxj ‖eTj T‖1

(minj ‖eTj T‖1)2
κ(HHT )(κ(TTT))9

η
OP

(
K4

√
log max(V,D)

DN

)

=OP

(
K4 maxj ‖eTj T‖1

η(minj ‖eTj T‖1)2

√
log max(V,D)

DN

)
(if κ(TTT) = Θ(1) and κ(HHT ) = Θ(1))

K Converting SBMO to DCMMSB

Since for stochastic blockmodel with overlaps (SBMO) [2], P = ρZBZT , where rows of Z are
binary assignments to different communities, we have P = ρZBZT = ρ′ΓΘBΘTΓ, where
γ′i = ‖eTi Z‖1 ∈ [K], θi = eTi Z/‖eTi Z‖1, γi is normalized from γ′i to sum to n for identifiability
and ρ′ = ρ(

∑
γ′i/n)2. We can see each SBMO model is corresponding to an identifiable DCMMSB

model, thus we can use SVM-cone to recover SBMO model. The way to get binary assignment can
be easily done by setting threshold as 1/K for each element in Θ̂.

L Closed form rate for known special cases

For a Stochastic Blockmodel (SBM) withK = 2 classes of equal size and standard parameters (ρ = p,
B11 = B22 = 1,B12 = B21 = q/p), our result suggests that as long as (p− q)/√p = Ω̃(1/

√
n),

SVM-cone will consistently estimate the label of each node uniformly with probability tending to
one. This is similar to separation conditions in existing literature for consistent estimation in SBMs,
up-to a log factor.
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M Network statistics for DBLP datasets

Table M.1: Network statistics

(a) DBLP coauthorship networks.

Dataset DBLP1 DBLP2 DBLP3 DBLP4 DBLP5
# nodes n 30,566 16,817 13,315 25,481 42,351

# communities K 6 3 3 3 4
Average Degree 8.9 7.6 8.5 5.2 6.8

Overlap % 18.2 14.9 21.1 14.4 18.5

(b) DBLP bipartite author-paper networks.

Dataset DBLP1 DBLP2 DBLP3 DBLP4 DBLP5
# nodes n 103,660 50,699 42,288 53,369 81,245

# communities K 12 6 6 6 8
Average Degree 3.4 3.4 3.6 2.6 3.0

Overlap % 6.3 5.6 5.7 6.9 9.7

N Wall-clock time on the DBLP bipartite author-paper networks
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Figure N.1: The wall-clock time of the competing methods respectively on the biparite author-paper
DBLP network. BSNMF was out of memory for DBLP1 and DBLP5.

19



O Statistics of topic modeling datasets

Table O.1: Statistics of topic modeling datasets

Corpus Vocabulary size V Number of documents D Total number of words
NIPS1 5002 1,491 1,589,280

NYTimes1 5004 296,784 68,876,786
PubMed1 5001 7,829,043 485,719,597
20NG2 5000 9,540 886,043
Enron1 5003 29,823 4,963,162
KOS1 5001 3,412 405,190

P Topics in Real Data

Table P.1: Top-10 word of 5 topics for different topic modeling datasets

Corpus Top-10 words

NIPS

algorithm data problem method parameter point vector distribution error space
neuron output pattern signal circuit visual synaptic unit layer current

data unit training output image information object recognition pattern point
unit hidden output layer weight object pattern visual representation connection
error algorithm training weight data parameter method problem vector classifier

NYT

con son solo era mayor zzz_mexico director sin fax sector
zzz_bush government school campaign show american member country zzz_united_states law

company companies market stock business billion plan money analyst government
team game season play player games run coach win won

file sport zzz_los_angeles notebook internet zzz_calif read output web computer

PubMed

receptor expression gene binding system function region genes dna mechanism
concentration strain gene dna system expression region genes test function
tumor gene expression disease genes lesion mutation region dna clinical

rat concentration plasma day serum animal liver drug response administration
children disease clinical year test therapy women system diagnosis drug

20NG

key government car chip state including information cs number long
god jesus bible question things life christian world christ true

year michael game team cs games win play including car
drive mb scsi windows card hard disk dos computer drives
windows window dos file files program card fax run win

Enron

report status changed payment approved approval amount paid due expense
database error operation perform hourahead data file process start message

power california customer gas order deal list office forward comment
message contract corp receive offer free send list received click

hourahead final file hour data price process error detected variances

KOS

iraq administration military iraqi president american troops bushs officials soldiers
voting vote senate polls governor electoral voter media voters primary

percent senate race elections republican party state voters campaign polls
senate polls governor electoral primary vote ground races voter contact

dean edwards primary clark gephardt lieberman iowa results polls kucinich

1https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
2http://qwone.com/~jason/20Newsgroups/
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