
To Trust Or Not To Trust A Classifier

Heinrich Jiang∗
Google Research

heinrichj@google.com

Been Kim
Google Brain

beenkim@google.com

Melody Y. Guan†
Stanford University

mguan@stanford.edu

Maya Gupta
Google Research

mayagupta@google.com

Abstract

Knowing when a classifier’s prediction can be trusted is useful in many applications
and critical for safely using AI. While the bulk of the effort in machine learning
research has been towards improving classifier performance, understanding when
a classifier’s predictions should and should not be trusted has received far less
attention. The standard approach is to use the classifier’s discriminant or confidence
score; however, we show there exists an alternative that is more effective in many
situations. We propose a new score, called the trust score, which measures the
agreement between the classifier and a modified nearest-neighbor classifier on
the testing example. We show empirically that high (low) trust scores produce
surprisingly high precision at identifying correctly (incorrectly) classified examples,
consistently outperforming the classifier’s confidence score as well as many other
baselines. Further, under some mild distributional assumptions, we show that if the
trust score for an example is high (low), the classifier will likely agree (disagree)
with the Bayes-optimal classifier. Our guarantees consist of non-asymptotic rates
of statistical consistency under various nonparametric settings and build on recent
developments in topological data analysis.

1 Introduction

Machine learning (ML) is a powerful and widely-used tool for making potentially important decisions,
from product recommendations to medical diagnosis. However, despite ML’s impressive performance,
it makes mistakes, with some more costly than others. As such, ML trust and safety is an important
theme [1, 2, 3]. While improving overall accuracy is an important goal that the bulk of the effort in
ML community has been focused on, it may not be enough: we need to also better understand the
strengths and limitations of ML techniques.

This work focuses on one such challenge: knowing whether a classifier’s prediction for a test example
can be trusted or not. Such trust scores have practical applications. They can be directly shown to
users to help them gauge whether they should trust the AI system. This is crucial when a model’s
prediction influences important decisions such as a medical diagnosis, but can also be helpful even
in low-stakes scenarios such as movie recommendations. Trust scores can be used to override the
classifier and send the decision to a human operator, or to prioritize decisions that human operators
should be making. Trust scores are also useful for monitoring classifiers to detect distribution shifts
that may mean the classifier is no longer as useful as it was when deployed.
∗All authors contributed equally.
†Work done while intern at Google Research.
An open-source implementation of Trust Scores can be found here: https://github.com/google/TrustScore

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

A standard approach to deciding whether to trust a classifier’s decision is to use the classifiers’ own
reported confidence or score, e.g. probabilities from the softmax layer of a neural network, distance
to the separating hyperplane in support vector classification, mean class probabilities for the trees in
a random forest. While using a model’s own implied confidences appears reasonable, it has been
shown that the raw confidence values from a classifier are poorly calibrated [4, 5]. Worse yet, even if
the scores are calibrated, the ranking of the scores itself may not be reliable. In other words, a higher
confidence score from the model does not necessarily imply higher probability that the classifier is
correct, as shown in [6, 7, 8]. A classifier may simply not be the best judge of its own trustworthiness.

In this paper, we use a set of labeled examples (e.g. training data or validation data) to help determine
a classifier’s trustworthiness for a particular testing example. First, we propose a simple procedure
that reduces the training data to a high density set for each class. Then we define the trust score—the
ratio between the distance from the testing sample to the nearest class different from the predicted
class and the distance to the predicted class—to determine whether to trust that classifier prediction.

Theoretically, we show that high/low trust scores correspond to high probability of agree-
ment/disagreement with the Bayes-optimal classifier. We show finite-sample estimation rates when
the data is full-dimension and supported on or near a low-dimensional manifold. Interestingly, we
attain bounds that depend only on the lower manifold dimension and independent of the ambient
dimension without any changes to the procedure or knowledge of the manifold. To our knowledge,
these results are new and may be of independent interest.

Experimentally, we found that the trust score better identifies correctly-classified points for low and
medium-dimension feature spaces than the model itself. However, high-dimensional feature spaces
were more challenging, and we demonstrate that the trust score’s utility depends on the vector space
used to compute the trust score differences.

2 Related Work

One related line of work is that of confidence calibration, which transforms classifier outputs into
values that can be interpreted as probabilities, e.g. [9, 10, 11, 4]. In recent work, [5] explore the
structured prediction setting, and [12] obtain confidence estimates by using ensembles of networks.
These calibration techniques typically only use the the model’s reported score (and the softmax
layer in the case of a neural network) for calibration, which notably preserves the rankings of the
classifier scores. Similarly, [13] considered using the softmax probabilities for the related problem of
identifying misclassifications and mislabeled points.

Recent work explored estimating uncertainty for Bayesian neural networks and returning a distribution
over the outputs [14, 15]. The proposed trust score does not change the network structure (nor does
it assume any structure) and gives a single score, rather than a distribution over outputs as the
representation of uncertainty.

The problem of classification with a reject option or learning with abstention [16, 17, 18, 19, 20, 21,
22] is a highly related framework where the classifier is allowed to abstain from making a prediction
at a certain cost. Typically such methods jointly learn the classifier and the rejection function. Note
that the interplay between classification rate and reject rate is studied in many various forms e.g.
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Our paper assumes an already trained and possibly black-box
classifier and learns the confidence scores separately, but we do not explicitly learn the appropriate
rejection thresholds.

Whether to trust a classifier also arises in the setting where one has access to a sequence of classifiers,
but there is some cost to evaluating each classifier, and the goal is to decide after evaluating each
classifier in the sequence if one should trust the current classifier decision enough to stop, rather than
evaluating more classifiers in the sequence (e.g. [33, 34, 35]). Those confidence decisions are usually
based on whether the current classifier score will match the classification of the full sequence.

Experimentally we find that the vector space used to compute the distances in the trust score matters,
and that computing trust scores on more-processed layers of a deep model generally works better.
This observation is similar to the work of Papernot and McDaniel [36], who use k-NN regression on
the intermediate representations of the network which they showed enhances robustness to adversarial
attacks and leads to better calibrated uncertainty estimations.

2

Our work builds on recent results in topological data analysis. Our method to filter low-density
points estimates a particular density level-set given a parameter α, which aims at finding the level-
set that contains 1 − α fraction of the probability mass. Level-set estimation has a long history
[37, 38, 39, 40, 41, 42]. However such works assume knowledge of the density level, which is
difficult to determine in practice. We provide rates for Algorithm 1 in estimating the appropriate
level-set corresponding to α without knowledge of the level. The proxy α offers a more intuitive
parameter compared to the density value, is used for level-set estimation. Our analysis is also done
under various settings including when the data lies near a lower dimensional manifold and we provide
rates that depend only on the lower dimension.

3 Algorithm: The Trust Score

Our approach proceeds in two steps outlined in Algorithm 1 and 2. We first pre-process the training
data, as described in Algorithm 1, to find the α-high-density-set of each class, which is defined as
the training samples within that class after filtering out α-fraction of the samples with lowest density
(which may be outliers):
Definition 1 (α-high-density-set). Let 0 ≤ α < 1 and f be a continuous density function with
compact support X ⊆ RD. Then define Hα(f), the α-high-density-set of f , to be the λα-level set of
f , defined as {x ∈ X : f(x) ≥ λα} where λα := inf

{
λ ≥ 0 :

∫
X 1 [f(x) ≤ λ] f(x)dx ≥ α

}
.

In order to approximate the α-high-density-set, Algorithm 1 filters the α-fraction of the sample points
with lowest empirical density, based on k-nearest neighbors. This data filtering step is independent of
the given classifier h.

Then, the second step: given a testing sample, we define its trust score to be the ratio between the
distance from the testing sample to the α-high-density-set of the nearest class different from the
predicted class, and the distance from the test sample to the α-high-density-set of the class predicted
by h, as detailed in Algorithm 2. The intuition is that if the classifier h predicts a label that is
considerably farther than the closest label, then this is a warning that the classifier may be making a
mistake.

Our procedure can thus be viewed as a comparison to a modified nearest-neighbor classifier, where
the modification lies in the initial filtering of points not in the α-high-density-set for each class.
Remark 1. The distances can be computed with respect to any representation of the data. For exam-
ple, the raw inputs, an unsupervised embedding of the space, or the activations of the intermediate
representations of the classifier. Moreover, the nearest-neighbor distance can be replaced by other
distance measures, such as k-nearest neighbors or distance to a centroid.

Algorithm 1 Estimating α-high-density-set
Parameters: α (density threshold), k.
Inputs: Sample points X := {x1, .., xn} drawn from f .
Define k-NN radius rk(x) := inf{r > 0 : |B(x, r)∩X| ≥ k} and let ε := inf{r > 0 : |{x ∈ X :
rk(x) > r}| ≤ α · n}.
return Ĥα(f) := {x ∈ X : rk(x) ≤ ε}.

Algorithm 2 Trust Score
Parameters: α (density threshold), k.
Input: Classifier h : X → Y . Training data (x1, y1), ..., (xn, yn). Test example x.
For each ` ∈ Y , let Ĥα(f`) be the output of Algorithm 1 with parameters α, k and sample points
{xj : 1 ≤ j ≤ n, yj = `}. Then, return the trust score, defined as:

ξ(h, x) := d
(
x, Ĥα(fh̃(x))

)
/d
(
x, Ĥα(fh(x))

)
,

where h̃(x) = argminl∈Y,l 6=h(x) d
(
x, Ĥα(fl)

)
.

The method has two hyperparameters: k (the number of neighbors, such as in k-NN) and α (fraction
of data to filter) to compute the empirical densities. We show in theory that k can lie in a wide range

3

and still give us the desired consistency guarantees. Throughout our experiments, we fix k = 10, and
use cross-validation to select α as it is data-dependent.

Remark 2. We observed that the procedure was not very sensitive to the choice of k and α. As will
be shown in the experimental section, for efficiency on larger datasets, we skipped the initial filtering
step of Algorithm 1 (leading to a hyperparameter-free procedure) and obtained reasonable results.
This initial filtering step can also be replaced by other strategies. One such example is filtering
examples whose labels have high disagreement amongst its neighbors, which is implemented in the
open-source code release but not experimented with here.

4 Theoretical Analysis

In this section, we provide theoretical guarantees for Algorithms 1 and 2. Due to space constraints,
all the proofs are deferred to the Appendix. To simplify the main text, we state our results treating δ,
the confidence level, as a constant. The dependence on δ in the rates is made explicit in the Appendix.

We show that Algorithm 1 is a statistically consistent estimator of the α-high-density-level set with
finite-sample estimation rates. We analyze Algorithm 1 in three different settings: when the data lies
on (i) a full-dimensional RD; (ii) an unknown lower dimensional submanifold embedded in RD; and
(iii) an unknown lower dimensional submanifold with full-dimensional noise.

For setting (i), where the data lies in RD, the estimation rate has a dependence on the dimension D,
which may be unattractive in high-dimensional situations: this is known as the curse of dimensionality,
suffered by density-based procedures in general. However, when the data has low intrinsic dimension
in (ii), it turns out that, remarkably, without any changes to the procedure, the estimation rate depends
on the lower dimension d and is independent of the ambient dimension D. However, in realistic
situations, the data may not lie exactly on a lower-dimensional manifold, but near one. This reflects
the setting of (iii), where the data essentially lies on a manifold but has general full-dimensional noise
so the data is overall full-dimensional. Interestingly, we show that we still obtain estimation rates
depending only on the manifold dimension and independent of the ambient dimension; moreover, we
do not require knowledge of the manifold nor its dimension to attain these rates.

We then analyze Algorithm 2, and establish the culminating result of Theorem 4: for labeled data
distributions with well-behaved class margins, when the trust score is large, the classifier likely agrees
with the Bayes-optimal classifier, and when the trust score is small, the classifier likely disagrees with
the Bayes-optimal classifier. If it turns out that even the Bayes-optimal classifier has high-error in
a certain region, then any classifier will have difficulties in that region. Thus, Theorem 4 does not
guarantee that the trust score can predict misclassification, but rather that it can predict when the
classifier is making an unreasonable decision.

4.1 Analysis of Algorithm 1

We require the following regularity assumptions on the boundaries of Hα(f), which are standard
in analyses of level-set estimation [40]. Assumption 1.1 ensures that the density around Hα(f) has
both smoothness and curvature. The upper bound gives smoothness, which is important to ensure
that our density estimators are accurate for our analysis (we only require this smoothness near the
boundaries and not globally). The lower bound ensures curvature: this ensures that Hα(f) is salient
enough to be estimated. Assumption 1.2 ensures that Hα(f) does not get arbitrarily thin anywhere.

Assumption 1 (α-high-density-set regularity). Let β > 0. There exists Čβ , Ĉβ , β, rc, r0, ρ > 0 s.t.

1. Čβ · d(x,Hα(f))β ≤ |λα − f(x)| ≤ Ĉβ · d(x,Hα(f))β for all x ∈ ∂Hα(f) +B(0, rc).

2. For all 0 < r < r0 and x ∈ Hα(f), we have Vol(B(x, r)) ≥ ρ · rD.

where ∂A denotes the boundary of a setA, d(x,A) := infx′∈A ||x−x′||,B(x, r) := {x′ : |x−x′| ≤
r} and A+B(0, r) := {x : d(x,A) ≤ r}.

Our statistical guarantees are under the Hausdorff metric, which ensures a uniform guarantee over
our estimator: it is a stronger notion of consistency than other common metrics [41, 43].

Definition 2 (Hausdorff distance). dH(A,B) := max{supx∈A d(x,B), supx∈B d(x,A)}.

4

We now give the following result for Algorithm 1. It says that as long as our density function satisfies
the regularity assumptions stated earlier, and the parameter k lies within a certain range, then we can
bound the Hausdorff distance between what Algorithm 1 recovers andHα(f), the true α-high-density
set, from an i.i.d. sample drawn from f of size n. Then, as n goes to∞, and k grows as a function of
n, the quantity goes to 0.
Theorem 1 (Algorithm 1 guarantees). Let 0 < δ < 1 and suppose that f is continuous and has
compact support X ⊆ RD and satisfies Assumption 1. There exists constants Cl, Cu, C > 0
depending on f and δ such that the following holds with probability at least 1− δ. Suppose that k
satisfies Cl · log n ≤ k ≤ Cu · (log n)D(2β+D) · n2β/(2β+D). Then we have

dH(Hα(f), Ĥα(f)) ≤ C ·
(
n−1/2D + log(n)1/2β · k−1/2β

)
.

Remark 3. The condition on k can be simplified by ignoring log factors: log n . k . n2β/(2β+D),
which is a wide range. Setting k to its allowed upper bound, we obtain our consistency guarantee of

dH(Hα(f), Ĥα(f)) . max{n−1/2D, n−1/(2β+D)}.

The first term is due to the error from estimating the appropriate level given α (i.e. identifying the
level λα) and the second term corresponds to the error for recovering the level set given knowledge
of the level. The latter term matches the lower bound for level-set estimation up to log factors [39].

4.2 Analysis of Algorithm 1 on Manifolds

One of the disadvantages of Theorem 1 is that the estimation errors have a dependence on D, the
dimension of the data, which may be highly undesirable in high-dimensional settings. We next
improve these rates when the data has a lower intrinsic dimension. Interestingly, we are able to show
rates that depend only on the intrinsic dimension of the data, without explicit knowledge of that
dimension nor any changes to the procedure. As common to related work in the manifold setting, we
make the following regularity assumptions which are standard among works in manifold learning
(e.g. [44, 45, 46]).
Assumption 2 (Manifold Regularity). M is a d-dimensional smooth compact Riemannian manifold
without boundary embedded in compact subset X ⊆ RD with bounded volume. M has finite
condition number 1/τ , which controls the curvature and prevents self-intersection.
Theorem 2 (Manifold analogue of Theorem 1). Let 0 < δ < 1. Suppose that density function f
is continuous and supported on M and Assumptions 1 and 2 hold. Suppose also that there exists
λ0 > 0 such that f(x) ≥ λ0 for all x ∈M . Then, there exists constants Cl, Cu, C > 0 depending
on f and δ such that the following holds with probability at least 1 − δ. Suppose that k satisfies
Cl · log n ≤ k ≤ Cu · (log n)d(2β

′+d) · n2β′/(2β′+d). where β′ := max{1, β}. Then we have

dH(Hα(f), Ĥα(f)) ≤ C ·
(
n−1/2d + log(n)1/2β · k−1/2β

)
.

Remark 4. Setting k to its allowed upper bound, we obtain (ignoring log factors),

dH(Hα(f), Ĥα(f)) . max{n−1/2d, n−1/(2max{1,β}+d)}.

The first term can be compared to that of the previous result where D is replaced with d. The second
term is the error for recovering the level set on manifolds, which matches recent rates [42].

4.3 Analysis of Algorithm 1 on Manifolds with Full Dimensional Noise

In realistic settings, the data may not lie exactly on a low-dimensional manifold, but near one. We
next present a result where the data is distributed along a manifold with additional full-dimensional
noise. We make mild assumptions on the noise distribution. Thus, in this situation, the data has
intrinsic dimension equal to the ambient dimension. Interestingly, we are still able to show that the
rates only depend on the dimension of the manifold and not the dimension of the entire data.
Theorem 3. Let 0 < η < α < 1 and 0 < δ < 1. Suppose that distribution F is a weighted
mixture (1− η) · FM + η · FE where FM is a distribution with continous density fM supported on a
d-dimensional manifold M satisfying Assumption 2 and FE is a (noise) distribution with continuous
density fE with compact support over RD with d < D. Suppose also that there exists λ0 > 0 such

5

that fM (x) ≥ λ0 for all x ∈M and Hα̃(fM) (where α̃ := α−η
1−η) satisfies Assumption 1 for density

fM . Let Ĥα be the output of Algorithm 1 on a sample X of size n drawn i.i.d. from F . Then, there
exists constants Cl, Cu, C > 0 depending on fM , fE , η, M and δ such that the following holds with
probability at least 1−δ. Suppose that k satisfies Cl · log n ≤ k ≤ Cu ·(log n)d(2β

′+d) ·n2β′/(2β′+d),
where β′ := max{1, β}. Then we have

dH(Hα̃(fM), Ĥα) ≤ C ·
(
n−1/2d + log(n)1/2β · k−1/2β

)
.

The above result is compelling because it shows why our methods can work, even in high-dimensions,
despite the curse of dimensionality of non-parametric methods. In typical real-world data, even if
the data lies in a high-dimensional space, there may be far fewer degrees of freedom. Thus, our
theoretical results suggest that when this is true, then our methods will enjoy far better convergence
rates – even when the data overall has full intrinsic dimension due to factors such as noise.

4.4 Analysis of Algorithm 2: the Trust Score

We now provide a guarantee about the trust score, making the same assumptions as in Theorem 3 for
each of the label distributions. We additionally assume that the class distributions are well-behaved
in the following sense: that high-density-regions for each of the classes satisfy the property that for
any point x ∈ X , if the ratio of the distance to one class’s high-density-region to that of another is
smaller by some margin γ, then it is more likely that x’s label corresponds to the former class.

Theorem 4. Let 0 < η < α < 1. Let us have labeled data (x1, y1), ..., (xn, yn) drawn from
distribution D, which is a joint distribution over X × Y where Y are the labels, |Y| < ∞, and
X ⊆ RD is compact. Suppose for each ` ∈ Y , the conditional distribution for label ` satisfies the
conditions of Theorem 3 for some manifold and noise level η. Let fM,` be the density of the portion of
the conditional distribution for label ` supported on M . Define M` := Hα̃(f`), where α̃ := α−η

1−η and
let εn be the maximum Hausdorff error from estimating M` over each ` ∈ Y in Theorem 3. Assume
that min`∈Y PD(y = `) > 0 to ensure we have samples from each label.

Suppose also that for each x ∈ X , if d(x,Mi)/d(x,Mj) < 1 − γ then P(y = i|x) > P(y = j|x)
for i, j ∈ Y . That is, if we are closer to Mi than Mj by a ratio of less than 1 − γ, then the
point is more likely to be from class i. Let h∗ be the Bayes-optimal classifier, defined by h∗(x) :=
argmax`∈Y P(y = `|x). Then the trust score ξ of Algorithm 2 satisfies the following with high
probability uniformly over all x ∈ X and all classifiers h : X → Y simultaneously for n sufficiently
large depending on D:

ξ(h, x) < 1− γ − εn
d(x,Mh(x)) + εn

·

(
d(x,Mh̃(x))

d(x,Mh(x))
+ 1

)
⇒ h(x) 6= h∗(x),

1

ξ(h, x)
< 1− γ − εn

d(x,Mh̃(x)) + εn
·

(
d(x,Mh(x))

d(x,Mh̃(x))
+ 1

)
⇒ h(x) = h∗(x).

5 Experiments

In this section, we empirically test whether trust scores can both detect examples that are incorrectly
classified with high precision and be used as a signal to determine which examples are likely correctly
classified. We perform this evaluation across (i) different datasets (Sections 5.1 and 5.3), (ii) different
families of classifiers (neural network, random forest and logistic regression) (Section 5.1), (iii)
classifiers with varying accuracy on the same task (Section 5.2) and (iv) different representations of
the data e.g. input data or activations of various intermediate layers in neural network (Section 5.3).

First, we test if testing examples with high trust score corresponds to examples in which the model is
correct ("identifying trustworthy examples"). Each method produces a numeric score for each testing
example. For each method, we bin the data points by percentile value of the score (i.e. 100 bins).
Given a recall percentile level (i.e. the x-axis on our plots), we take the performance of the classifier
on the bins above the percentile level as the precision (i.e. the y-axis). Then, we take the negative of
each signal and test if low trust score corresponds to the model being wrong ("identifying suspicious

6

Figure 1: Two example datasets and models. For predicting correctness (top row) the vertical dotted
black line indicates error level of the trained classifier. For predicting incorrectness (bottom) the
vertical black dotted line is the accuracy rate of the classifier. For detecting trustworthy, for each
percentile level, we take the test examples whose trust score was above that percentile level and plot
the percentage of those test points that were correctly classified by the classifier, and do the same
model confidence and 1-nn ratio. For detecting suspicious, we take the negative of each signal and
plot the precision of identifying incorrectly classified examples. Shown are average of 20 runs with
shaded standard error band. The trust score consistently attains a higher precision for each given
percentile of classifier decision-rejection. Furthermore, the trust score generally shows increasing
precision as the percentile level increases, but surprisingly, many of the comparison baselines do not.
See the Appendix for the full results.

examples"). Here the y-axis is the misclassification rate and the x-axis corresponds to decreasing
trust score or model confidence.

In both cases, the higher the precision vs percentile curve, the better the method. The vertical black
dotted lines in the plots represent the omniscient ideal. For identifying trustworthy examples it is the
error rate of the classifier and for identifying suspicious examples" it is the accuracy rate.

The baseline we use in Section is the model’s own confidence score, which is similar to the approach
of [13]. While calibrating the classifiers’ confidence scores (i.e. transforming them into probability
estimates of correctness) is an important related work [4, 9], such techniques typically do not change
the rankings of the score, at least in the binary case. Since we evaluate the trust score on its precision
at a given recall percentile level, we are interested in the relative ranking of the scores rather than
their absolute values. Thus, we do not compare against calibration techniques. There are surprisingly
few methods aimed at identifying correctly or incorrectly classified examples with precision at a
recall percentile level as noted in [13].

Choosing Hyperparameters: The two hyperparameters for the trust score are α and k. Throughout
the experiments, we fix k = 10 and choose α using cross-validation over (negative) powers of 2 on
the training set. The metric for cross-validation was optimal performance on detecting suspicious
examples at the percentile corresponding to the classifier’s accuracy. The bulk of the computational
cost for the trust-score is in k-nearest neighbor computations for training and 1-nearest neighbor
searches for evaluation. To speed things up for the larger datasets MNIST, SVHN, CIFAR-10
and CIFAR-100, we skipped the initial filtering step of Algorithm 1 altogether and reduced the
intermediate layers down to 20 dimensions using PCA before being processed by the trust score
which showed similar performance. We note that any approximation method (such as approximate
instead of exact nearest neighbors) could have been used instead.

5.1 Performance on Benchmark UCI Datasets

In this section, we show performance on five benchmark UCI datasets [47], each for three kinds
of classifiers (neural network, random forest and logistic regression). Due to space, we only show

7

Figure 2: We show the performance of trust score on the Digits dataset for a neural network as we
increase the accuracy. As we go from left to right, we train the network with more iterations (each
with batch size 50) thus increasing the accuracy indicated by the dotted vertical lines. While the trust
score still performs better than model confidence, the amount of improvement diminishes.

two data sets and two models in Figure 1. The rest can be found in the Appendix. For each method
and dataset, we evaluated with multiple runs. For each run we took a random stratified split of the
dataset into two halves. One portion was used for training the trust score and the other was used for
evaluation and the standard error is shown in addition to the average precision across the runs at each
percentile level. The results show that our method consistently has a higher precision vs percentile
curve than the rest of the methods across the datasets and models. This suggests the trust score
considerably improves upon known methods as a signal for identifying trustworthy and suspicious
testing examples for low-dimensional data.

In addition to the model’s own confidence score, we try one additional baseline, which we call the
nearest neighbor ratio (1-nn ratio). It is the ratio between the 1-nearest neighbor distance to the
closest and second closest class, which can be viewed as an analogue to the trust score without
knowledge of the classifier’s hard prediction.

5.2 Performance as Model Accuracy Varies

In Figure 2, we show how the performance of trust score changes as the accuracy of the classifier
changes (averaged over 20 runs for each condition). We observe that as the accuracy of the model
increases, while the trust score still performs better than model confidence, the amount of improvement
diminishes. This suggests that as the model improves, the information trust score can provide in
addition to the model confidence decreases. However, as we show in Section 5.3, the trust score
can still have added value even when the classifier is known to be of high performance on some
benchmark larger-scale datasets.

5.3 Performance on MNIST, SVHN, CIFAR-10 and CIFAR-100 Datasets

The MNIST handwritten digit dataset [48] consists of 60,000 28×28-pixel training images and
10,000 testing images in 10 classes. The SVHN dataset [49] consists of 73,257 32×32-pixel colour
training images and 26,032 testing images and also has 10 classes. The CIFAR-10 and CIFAR-100
datasets [50] both consist of 60,000 32×32-pixel colour images, with 50,000 training images and
10,000 test images. The CIFAR-10 and CIFAR-100 datasets are split evenly between 10 classes and
100 classes respectively.

8

(a) MNIST (b) SVHN (c) CIFAR-10

(d) MNIST (e) SVHN (f) CIFAR-10

Figure 3: Trust score results using convolutional neural networks on MNIST, SVHN, and CIFAR-10
datasets. Top row is detecting trustworthy; bottom row is detecting suspicious. Full chart with
CIFAR-100 (which was essentially a negative result) is shown in the Appendix.

We used a pretrained VGG-16 [51] architecture with adaptation to the CIFAR datasets based on [52].
The CIFAR-10 VGG-16 network achieves a test accuracy of 93.56% while the CIFAR-100 network
achieves a test accuracy of 70.48%. We used pretrained, smaller CNNs for MNIST and SVHN. The
MNIST network achieves a test accuracy of 99.07% and the SVHN network achieves a test accuracy
of 95.45%. All architectures were implemented in Keras [53].

One simple generalization of our method is to use intermediate layers of a neural network as an
input instead of the raw x. Many prior work suggests that a neural network may learn different
representations of x at each layer. As input to the trust score, we tried using 1) the logit layer, 2) the
preceding fully connected layer with ReLU activation, 3) this fully connected layer, which has 128
dimensions in the MNIST network and 512 dimensions in the other networks, reduced down to 20
dimensions from applying PCA.

The trust score results on various layers are shown in Figure 3. They suggest that for high dimensional
datasets, the trust score may only provide little or no improvement over the model confidence at
detecting trustworthy and suspicious examples. All plots were made using α = 0; using cross-
validation to select a different α did not improve trust score performance. We also did not see much
difference from using different layers.

Conclusion:

In this paper, we provide the trust score: a new, simple, and effective way to judge if one should trust
the prediction from a classifier. The trust score provides information about the relative positions of
the datapoints, which may be lost in common approaches such as the model confidence when the
model is trained using SGD. We show high-probability non-asymptotic statistical guarantees that
high (low) trust scores correspond to agreement (disagreement) with the Bayes-optimal classifier
under various nonparametric settings, which build on recent results in topological data analysis. Our
empirical results across many datasets, classifiers, and representations of the data show that our
method consistently outperforms the classifier’s own reported confidence in identifying trustworthy
and suspicious examples in low to mid dimensional datasets. The theoretical and empirical results
suggest that this approach may have important practical implications in low to mid dimension
settings.

https://github.com/geifmany/cifar-vgg
https://github.com/EN10/KerasMNIST
https://github.com/tohinz/SVHN-Classifier

9

