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Abstract

We consider the minimization of submodular functions subject to ordering con-
straints. We show that this potentially non-convex optimization problem can be cast
as a convex optimization problem on a space of uni-dimensional measures, with
ordering constraints corresponding to first-order stochastic dominance. We propose
new discretization schemes that lead to simple and efficient algorithms based on
zero-th, first, or higher order oracles; these algorithms also lead to improvements
without isotonic constraints. Finally, our experiments show that non-convex loss
functions can be much more robust to outliers for isotonic regression, while still
being solvable in polynomial time.

1 Introduction

Shape constraints such as ordering constraints appear everywhere in estimation problems in machine
learning, signal processing and statistics. They typically correspond to prior knowledge, and are
imposed for the interpretability of models, or to allow non-parametric estimation with improved
convergence rates [16, 8]. In this paper, we focus on imposing ordering constraints into an estimation
problem, a setting typically referred to as isotonic regression [4, 26, 22], and we aim to generalize
the set of problems for which efficient (i.e., polynomial-time) algorithms exist.

We thus focus on the following optimization problem:

n[lin] H(z) suchthat V(i,j) € E, z; > z;, (1)
z€[0,1]™
where E C {1,...,n}? represents the set of constraints, which form a directed acyclic graph. For

simplicity, we restrict x to the set [0, 1]™, but our results extend to general products of (potentially
unbounded) intervals.

As convex constraints, isotonic constraints are well-adapted to estimation problems formulated as
convex optimization problems where H is convex, such as for linear supervised learning problems,
with many efficient algorithms for separable convex problems [4, 26, 22, 30], which can thus be used
as inner loops in more general convex problems by using projected gradient methods (see, e.g., [3]).

In this paper, we show that another form of structure can be leveraged. We will assume that H is
submodular, which is equivalent, when twice continuously differentiable, to having nonpositive cross
second-order derivatives. This notably includes all (potentially non convex) separable functions (i.e.,
sums of functions that depend on single variables), but also many other examples (see Section 2).

Minimizing submodular functions on continuous domains has been recently shown to be equivalent
to a convex optimization problem on a space of uni-dimensional measures [2], and given that the
functions z — A(x; — ;)4 are submodular for any A > 0, it is natural that by using X tending to +oo,
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we recover as well a convex optimization problem; the main contribution of this paper is to provide a
simple framework based on stochastic dominance, for which we design efficient algorithms which
are based on simple oracles on the function H (typically access to function values and derivatives).
In order to obtain such algorithms, we go significantly beyond [2] by introducing novel discretization
algorithms that also provide improvements without any isotonic constraints.

More precisely, we make the following contributions:

— We show in Section 3 that minimizing a submodular function with isotonic constraints can be
cast as a convex optimization problem on a space of uni-dimensional measures, with isotonic
constraints corresponding to first-order stochastic dominance.

— On top of the naive discretization schemes presented in Section 4, we propose in Section 5 new
discretization schemes that lead to simple and efficient algorithms based on zero-th, first, or
higher order oracles. They go from requiring O(1/¢?) = O(1/£%*1) function evaluations to
reach a precision ¢, to O(1/£%/2) = O(1/*+/2) and O(1/7/3) = O(1/£2+1/3).

— Our experiments in Section 6 show that non-convex loss functions can be much more robust to
outliers for isotonic regression.

2 Submodular Analysis in Continuous Domains

In this section, we review the framework of [2] that shows how to minimize submodular functions
using convex optimization.

Definition. Throughout this paper, we consider a continuous function H : [0,1]" — R. The
function H is said to be submodular if and only if [21, 29]:

V(z,y) € [0,1]" x [0,1]", H(z) + H(y) > H(min{z,y}) + H(max{z,y}), 2)
where the min and max operations are applied component-wise. If H is continuously twice differen-
tiable, then this is equivalent to %(x) < Oforany i # jand x € [0,1]™ [29].

1O j

The cone of submodular functions on [0, 1]™ is invariant by marginal strictly increasing transfor-
mations, and includes all functions that depend on a single variable (which play the role of linear
functions for convex functions), which we refer to as separable functions.

Examples. The classical examples are: (a) any separable function, (b) convex functions of the
difference of two components, (c) concave functions of a positive linear combination, (d) negative
log densities of multivariate totally positive distributions [17]. See Section 6 for a concrete example.

Extension on a space of measures. We consider the convex set P([0, 1]) of Radon probability
measures [24] on [0, 1], which is the closure (for the weak topology) of the convex hull of all Dirac
measures. In order to get an extension, we look for a function defined on the set of products of
probability measures . € P([0,1])™, such that if all 44;, 4 = 1,...,n, are Dirac measures at points
x; € [0, 1], then we have a function value equal to H (1, ..., z,). Note that P([0, 1])™ is different
from P(]0, 1]™), which is the set of probability measures on [0, 1]™.

For a probability distribution u; € P([0, 1]) defined on [0, 1], we can define the (reversed) cumulative
distribution function F),, : [0,1] — [0,1] as F,,,(z;) = p;([xi,1]). This is a non-increasing
left-continuous function from [0, 1] to [0, 1], such that F,,(0) = 1 and F),,(1) = p;({1}). See
illustrations in the left plot of Figure 1.

We can then define the “inverse” cumulative function from [0, 1] to [0, 1] as ' (t;) = sup{xz; €
[0,1], F,(2z;) > t;}. The function F, ! is non-increasing and right-continuous, and such that

F, (1) = minsupp(;) and F,;*(0) = 1. Moreover, we have F},, (z;) > t; < F, ' (t;) > ;.

The extension from [0, 1]™ to the set of product probability measures is obtained by considering a
single threshold ¢ applied to all n cumulative distribution functions, that is:

1
Yu € P([0,1])", h(ul,...,un):/o H[F,'(t),...,F, ' (t)]dt. (3)
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Figure 1: Left: cumulative and inverse cumulative distribution functions with the corresponding
density (with respect to the Lebesgue measure). Right: cumulative functions for two distributions p
and v such that p = v.

We have the following properties when [ is submodular: (a) it is an extension, that is, if for all 7, y;
is a Dirac at x;, then h(u) = H(x); (b) it is convex; (c) minimizing h on P([0, 1])™ and minimizing
H on [0, 1]™ is equivalent; moreover, the minimal values are equal and y is a minimizer if and only if
[FH(t), ..., F 1(t)] is a minimizer of H for almost all ¢ € [0, 1]. Thus, submodular minimization
is equivalent to a convex optimization problem in a space of uni-dimensional measures.

Note that the extension is defined on all tuples of measures p = (1, . . ., f,) but it can equivalently
be defined through non-increasing functions from [0, 1] to [0, 1], e.g., the representation in terms of
cumulative distribution functions F},; defined above (this representation will be used in Section 4
where algorithms based on the discretization of the equivalent obtained convex problem are discussed).

3 Isotonic Constraints and Stochastic Dominance

In this paper, we consider the following problem:

i[nf] H(z) suchthat V(i,j) € E,z; > xj, 4)
ze[0,1]™
where E is the edge set of a directed acyclic graph on {1, ...,n} and H is submodular. We denote

by X C R™ (not necessarily a subset of [0, 1]™) the set of z € R™ satisfying the isotonic constraints.

In order to define an extension in a space of measures, we consider a specific order on measures
on [0, 1], namely first-order stochastic dominance [20], defined as follows.

Given two distributions £ and v on [0, 1], with (inverse) cumulative distribution functions F), and F,,,
we have p = v, if and only if Vz € [0, 1], Fj,(x) > F,(z), or equivalently, V¢t € [0,1], Fu_l(t) >
F;1(t). As shown in the right plot of Figure 1, the densities may still overlap. An equivalent
characterization [19, 9] is the existence of a joint distribution on a vector (X, X’) € R? with
marginals z(x) and v(z') and such that X > X’ almost surely'. We now prove the main proposition

of the paper:

Proposition 1 We consider the convex minimization problem:

inf h hthatV(i,7) € E, u; = g 5
ue?l(?O,l])"L (1) such that (i, j) SR )
Problems in Eq. (4) and Eq. (5) have the same objective values. Moreover, | is a minimizer of Eq. (5)
if and only lfF;l (t) is a minimizer of H of Eq. (4) for almost all t € [0, 1].

Proof We denote by M the set of 1 € P([0, 1])™ satisfying the stochastic ordering constraints. For
any x € [0,1]™ that satisfies the constraints in Eq. (4), i.e., z € X N [0, 1]™, the associated Dirac
measures satisfy the constraint in Eq. (5). Therefore, the objective value M of Eq. (4) is greater or
equal to the one M’ of Eq. (5). Given a minimizer y for the convex problem in Eq. (5), we have:
M > M = h(p) = fol H[F Mt),...,F H(t)]dt > fol Mdt = M. This shows the proposition by
studying the equality cases above. |

'Such a joint distribution may be built as the distribution of (F}, ' (T'), F,, ' (T)), where T'is uniformly
distributed in [0, 1].



Alternatively, we could add the penalty term A3~ ; /) cp I _Jr;o (Fu,(2) = F,,(2))+dz, which corre-

sponds to the unconstrained minimization of H(x) + A Z(i, 7)E]E(a:j — 2;)4. For A > 0 big enough?,
this is equivalent to the problem above, but with a submodular function which has a large Lipschitz
constant (and is thus harder to optimize with the iterative methods presented below).

4 Discretization algorithms

Prop. 1 shows that the isotonic regression problem with a submodular cost can be cast as a convex
optimization problem; however, this is achieved in a space of measures, which cannot be handled
directly computationally in polynomial time. Following [2], we consider a polynomial time and
space discretization scheme of each interval [0, 1] (and not of [0, 1]™), but we propose in Section 5
a significant improvement that allows to reduce the number of discrete points significantly. All
pseudo-codes for the algorithms are available in Appendix B.

4.1 Review of submodular optimization in discrete domains

All our algorithms will end up minimizing approximately a submodular function F on {0, ..., k—1}",
that is, which satisfies Eq. (2). Isotonic constraints will be added in Section 4.2.

Following [2], this can be formulated as minimizing a convex function f; on the set of p €
[0,1]7*(k=1) 5o that for each i € {1,...,n}, (pij)je{1,....k—1} is a non-increasing sequence (we
denote by 8 this set of constraints) corresponding to the cumulative distribution function. For any
feasible p, a subgradient of f| may be computed by sorting all n(k — 1) elements of the matrix p and
computing at most n(k — 1) values of F'. An approximate minimizer of F' (which exactly inherits
approximation properties from the approximate optimality of p) is then obtained by selecting the
minimum value of F' in the computation of the subgradient. Projected subgradient methods can
then be used, and if AF' is the largest absolute difference in values of F' when a single variable is
changed by +1, we obtain an e-minimizer (for function values) after ¢ iterations, with ¢ < nkAF /\/t.
The projection step is composed of n simple separable quadratic isotonic regressions with chain
constraints in dimension k, which can be solved easily in O(nk) using the pool-adjacent-violator
algorithm [4]. Computing a subgradient requires a sorting operation, which is thus O(nk log(nk)).
See more details in [2].

Alternatively, we can minimize the strongly-convex f(p) + 3||p||% on the set of p € R"*(*~1) 50
that for each 4, (p;;); is a non-increasing sequence, that is, p € 8 (the constraints that p;; € [0, 1]
are dropped). We then get a minimizer z of F' by looking for all i € {1,...,n} at the largest
j€{l,...,k— 1} such that p;; > 0. We take then z; = j (and if no such j exists, z; = 0). A gap
of ¢ in the problem above, leads to a gap of v enk for the original problem (see more details in [2]).
The subgradient method in the primal, or Frank-Wolfe algorithm in the dual may be used for this
problem. We obtain an e-minimizer (for function values) after ¢ iterations, with e < AF'/t, which
leads for the original submodular minimization problem to the same optimality guarantees as above,
but with a faster algorithm in practice. See the detailed computations and comparisons in [2].

4.2 Naive discretization scheme

Following [2], we simply discretize [0, 1] by selecting the k values - or 25t fori € {0,...,k —
1}. If the function H : [0,1]™ is L;-Lipschitz-continuous with respect to the ¢;-norm, that is
|H(x) — H(z")| < Li||x — 2'||1, the function F is (L /k)-Lipschitz-continuous with respect to the
¢1-norm (and thus we have AF < L; /k above). Moreover, if F' is minimized up to e, H is optimized
upto e+ nly/k.

In order to take into account the isotonic constraints, we simply minimize with respect to p €
[0,1]7*(k=1) N 8, with the additional constraint that for all j € {1,...,k — 1}, V(a,b) € E,
Pa,j = Pov,j- This corresponds to additional contraints T C R>(k=1),

2A short calculation shows that when H is differentiable, the first order-optimality condition (which is only
necessary here) implies that if )\ is strictly larger than n times the largest possible partial first-order derivative
of H, the isotonic constraints have to be satisfied.



Following Section 4.1, we can either choose to solve the convex problem min ¢ 1)»xrnsn7 f 1(p),
or the strongly-convex problem min,csng f1(p) + 1|/p[|%. In the two situations, after ¢ iterations,
that is tnk accesses to values of H, we get a constrained minimizer of H with approximation
guarantee nL; /k +nLi/+/t. Thus in order to get a precision ¢, it suffices to select k > 2nL; /e and
t > 4n?L3/£?, leading to an overall 8n* L3 /=® accesses to function values of H, which is the same
as obtained in [2] (except for an extra factor of n due to a different definition of L).

4.3 Improved behavior for smooth functions

We consider the discretization points ﬁ fori € {0,...,k — 1}, and we assume that all first-order

(resp. second-order) partial derivatives are bounded by L; (resp. L3). In the reasoning above, we may
upper-bound the infimum of the discrete function in a finer way, going from inf,cx H(z) + nLy /k
to infyex H(x) + $n?L3/k? (by doing a Taylor expansion around the global optimum, where the
first-order terms are always zero, either because the partial derivative is zero or the deviation is zero).
We now select k > nLo/+/c, leading to a number of accesses to H that scales as 4n*L3 Ly /c%/2. We
thus gain a factor /¢ with the exact same algorithm, but different assumptions.

4.4 Algorithms for isotonic problem

Compared to plain submodular minimization where we need to project onto S, we need to take into
account the extra isotonic constraints, i.e., p € 7, and thus use more complex orthogonal projections.

Orthogonal projections. We now require the orthogonal projections on § 1T or [0, 1]"** N 8§ N T,
which are themselves isotonic regression problems with nk variables. If there are m original isotonic
constraints in Eq. (4), the number of isotonic constraints for the projection step is O(nk +mk), which
is typically O(mk) if m > n, which we now assume. Thus, we can use existing parametric max-flow
algorithms which can solve these in O(nmk? log(nk)) [13] or in O(nmk? log(n®k/m)) [11]. See
in Appendix A a description of the reformulation of isotonic regression as a parametric max-flow
problem, and the link with minimum cut. Following [7, Prop. 5.3], we incorporate the [0, 1] box
constraints, by first ignoring them and thus by projecting onto the regular isotonic constraints, and
then thresholding the result through  — max{min{x, 1},0}.

Alternatively, we can explicitly consider a sequence of max-flow problems (with at most log(1/¢) of
these, where ¢ is the required precision) [28, 15]. Finally, we may consider (approximate) alternate
projection algorithms such as Dykstra’s algorithm and its accelerated variants [6], since the set S is
easy to project to, while, in some cases, such as chain isotonic constraints for the original problem, T
is easy to project to.

Finally, we could also use algorithms dedicated to special structures for isotonic regression (see [27]),
in particular when our original set of isotonic constraints in Eq. (4) is a chain, and the orthogonal
projection corresponds to a two-dimensional grid [26]. In our experiments, we use a standard
max-flow code [5] and the usual divide-and-conquer algorithms [28, 15] for parametric max-flow.

Separable problems. The function f| from Section 4.2 is then a linear function of the form
fi(p) = trw’ p, and then, a single max-flow algorithm can be used.

For these separable problerms, the alternative strongly-convex problem of minimizing f|(p) + 3 |p||%
becomes the one of minimizing min,ecsn7 4 || + wl|%, which is simply the problem of projecting
on the intersection of two convex sets, for which an accelerated Dykstra algorithm may be used [6],
with convergence rate in O(1/t?) after ¢ iterations. Each step is O(kn) for projecting onto 8, while
this is k parametric network flows with n variables and m constraints for projecting onto 7, in
O(knmlogn) for the general case and O(kn) for chains and rooted trees [4, 30].

In our experiments in Section 6, we show that Dykstra’s algorithm converges quickly for separable
problems. Note that when the underlying losses are convex®, then Dykstra converges in a single
iteration. Indeed, in this situation, the sequences (—wij) ;j are non-increasing and isotonic regression

3This is a situation where direct algorithms such as the ones by [22] are much more efficient than our
discretization schemes.



along a direction preserves decreasingness in the other direction, which implies that after two alternate
projections, the algorithm has converged to the optimal solution.

Alternatively, for the non-strongly convex formulation, this is a single network flow problem with
n(k — 1) nodes, and mk constraints, in thus O(nmk? log(nk)) [25]. When E corresponds to a chain,
then this is a 2-dimensional-grid with an algorithm in O(n?k?) [26]. For a precision ¢, and thus k
proportional to n/e with the assumptions of Section 4.2, this makes a number of function calls for H,
equal to O(kn) = O(n?/e) and a running-time complexity of O(n3m/e? - log(n?/e))—for smooth
functions, as shown in Section 4.3, we get k proportional to n/+/¢ and thus an improved behavior.

5 Improved discretization algorithms

We now consider a different discretization scheme that can take advantage of access to higher-order
derivatives. We divide [0, 1] into k disjoint pieces Ay = [0, 1), A1 = [1,2), ..., Ap—1 = [E2,1].
This defines a new function H : {0, ...,k —1}" — R defined only for elements z € {0,... k—1}"
that satisfy the isotonic constraint, i.e., z € {0,...,k—1}"NX:

H(z) = _eﬁginA H(x) such that ¥(i, j) € E,x; > z;. ©)
i i=1*"%4

The function H (z) is equal to 400 if z does not satisfy the isotonic constraints.

Proposition 2 The function H is submodular, and minimizing H(z) for z € {0,. .., k — 1}" such
that (i, j) € E, z; > z; is equivalent to minimizing Eq. (4).

Proof We consider z and 2’ that satisfy the isotonic constraints, with minimizers z and z’ in the defi-
nition in Eq. (6). We have H(z) + H(z') = H(x) + H(z') > H(min{z,2'}) + H(max{x,2'}) >
H(min{z, 2'}) + H(max{z, z’}). Thus it is submodular on the sub-lattice {0, ...,k —1}"NX. W

Note that in order to minimize H, we need to make sure that we only access H for elements z that
satisfy the isotonic constraints, that is p € § N T (which our algorithms impose).

5.1 Approximation from high-order smoothness

The main idea behind our discretization scheme is to use high-order smoothness to approximate for
any required z, the function value H (z). If we assume that H is g-times differentiable, with uniform
bounds L on all 7-th order derivatives, then, the (¢—1)-th order Taylor expansion of H around y is

equal to Hy(z|y) = H(y) + 201 > ajer a1 (@ = y)*H ) (y), where o € N™ and |« is the sum
of elements, (x — y)® is the vector with components (z; — y;)“, ! the products of all factorials of
elements of a, and H(®)(y) is the partial derivative of H with order «; for each i.

We thus approximate H (2), for any z that satisfies the isotonic constraint (i.e., z € X), by H () =

mile(r_, A.)nx Hq(x\%) We have for any z, |H(z) — H(z)| < (nL,/2k)?/q!. Moreover,

when moving a single element of z by one, the maximal deviation is L1 /k + 2(nL,/2k)?/q!.

If H is submodular, then the same reasoning as in Section 4.2 leads to an approximate er-
ror of (nk/vt)(L1/k + 2(nLy/2k)?/q!) after t iterations, on top of (nLy/2k)?/q!, thus, with
t >16n2L2/e? and k > (¢'e/2)~'/9nL,/2 (assuming ¢ small enough such that ¢ > 16n2k?), this
leads to a number of accesses to the (g—1)-th order oracle equal to O(n*L2L,/e?+1/). We thus get
an improvement in the power of &, which tend to =2 for infinitely smooth problems. Note that when
q = 1 we recover the same rate as in Section 4.3 (with the same assumptions but a slightly different
algorithm).

However, unless ¢ = 1, the function H (z) is not submodular, and we cannot apply directly the
bounds for convex optimization of the extension. We show in Appendix D that the bound still holds
for ¢ > 1 by using the special structure of the convex problem.

What remains unknown is the computation of H which requires to minimize polynomials on a small
cube. We can always use the generic algorithms from Section 4.2 for this, which do not access extra



function values but can be slow. For quadratic functions, we can use a convex relaxation which is
not tight but already allows strong improvements with much faster local steps, and which we now
present. See the pseudo-code in Appendix B. In any case, using expansions of higher order is only
practically useful in situations where function evaluations are expensive.

5.2 Quadratic problems

In this section, we consider the minimization of a quadratic submodular function H(x) = %xTAm +

"z (thus with all off-diagonal elements of A non-negative) on [0, 1]™, subject to isotonic constraints
x; > x; forall (¢, j) € E. This is the sub-problem required in Section 5.1 when using second-order
Taylor expansions.

It could be solved iteratively (and approximately) with the algorithm from Section 4.2; in this
section, we consider a semidefinite relaxation which is tight for certain problems (A positive semi-
definite, ¢ non-positive, or A with non-positive diagonal elements), but not in general (we have found
counter-examples but it is most often tight).

The relaxation is based on considering the set of (Y,y) € R™*™ x R™ such that there exists
x € [0,1]" N X with Y = z2" and y = x. Our problem is thus equivalent to minimizing
% tr AY + ¢y such that (Y, ) is in the convex-hull Y of this set, which is NP-hard to characterize
in polynomial time [10]. However, following ideas from [18], we can find a simple relaxation by
Yii Yii v
considering the following constraints: (a) for all ¢ # 7, (Y; YZ ;Z;) is positive semi-definite, (b)
Yi Yy
forall i # j,Y;; < inf{y;,y;}, which corresponds to z;z; gjinf{xi, x;} for any z € [0,1]", (c)
for all 4, Y;; < y;, which corresponds to x? < x4, and (d) for all (4,j) € E, y; > Yi» Yii = Yjj,
Yi; > max{Yj;,y; — y; + Yi;} and V;; < max{Y};,y; — y; + Yj;}, which corresponds to z; > z;,
x? > a:?, Tixj = x?, zi(1 —z;) < 2i(1 — x;), zyw; < 22, and z;(1 — x;) > x;(1 — x;). This
leads to a semi-definite program which provides a lower-bound on the optimal value of the problem.
See Appendix E for a proof of tightness for special cases and a counter-example for the tightness in
general.

6 Experiments

We consider experiments aiming at (a) showing that the new possibility of minimizing submodular
functions with isotonic constraints brings new possibilities and (b) that the new discretization
algorithms are faster than the naive one.

Robust isotonic regression. Given some z € R", we consider a separable function H(x) =
LS G(x; — z;) with various possibilities for G: (a) the square loss G(t) = 12, (b) the absolute
loss G(t) = |t| and (c) a logarithmic loss G(t) = %2 log (1 + t*/k?), which is the negative log-
density of a Student distribution and non-convex. The non-convexity of the cost function and the fact
that is has vanishing derivatives for large values make it a good candidate for robust estimation [12].
The first two losses may be dealt with methods for separable convex isotonic regression [22, 30], but
the non-convex loss can only dealt with exactly by the new optimization routine that we present—
majorization-minimization algorithms [14] based on the concavity of G as a function of 2 can be
used with such non-convex losses, but as shown below, they converge to bad local optima.

For simplicity, we consider chain constraints 1 > x1 > xo > --- > x, > 0. We consider two
set-ups: (a) a separable set-up where maximum flow algorithms can be used directly (with n = 200),
and (b) a general submodular set-up (with n = 25 and n = 200), where we add a smoothness penalty
which is the sum of terms of the form % Z;:ll (2; — x;,1)?, which is submodular (but not separable).

Data generation. We generate the data z € R", with n = 200, as follows: we first generate a
simple decreasing function of ¢ € {1,...,n} (here an affine function); we then perturb this ground
truth by (a) adding some independent noise and (b) corrupting the data by changing a random subset
of the n values by the application of another function which is increasing (see Figure 2, left). This
is an adversarial perturbation, while the independent noise is not adversarial; the presence of the
adversarial noise makes the problem harder as the proportion of corrupted data increases.
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Figure 2: Left: robust isotonic regression with decreasing constraints, with 50% of corrupted data
(observation in pink crosses, and results of isotonic regression with various losses in red, blue and
black); the dashed black line corresponds to majorization-minimization algorithm started from the
observations. Right: robustness of various losses to the proportion of corrupted data. The two
logarithm-based losses are used with two values of « (0.01 and 0.001); the dashed line corresponds to
the majorization-minimization algorithm (with no convergence guarantees and worse performance).

Optimization of separable problems with maximum flow algorithms. We solve the discretized
version by a single maximum-flow problem of size nk. We compare the various losses for k¥ = 1000
on data which is along a decreasing line (plus noise), but corrupted (i.e., replaced for a certain
proportion) by data along an increasing line. See an example in the left plot of Figure 2 for 50% of
corrupted data. We see that the square loss is highly non robust, while the (still convex) absolute loss
is slightly more robust, and the robust non-convex loss still approximates the decreasing function
correctly with 50% of corrupted data when optimized globally, while the method with no guarantee
(based on majorization-minimization, dashed line) does not converge to an acceptable solution. In
Appendix C, we show additional examples where it is robust up to 75% of corruption.

In the right plot of Figure 2, we also show the robustness to an increasing proportion of outliers
(for the same type of data as for the left plot), by plotting the mean-squared error in log-scale and
averaged over 20 replications. Overall, this shows the benefits of non-convex isotonic regression with
guaranteed global optimization, even for large proportions of corrupted data.

Optimization of separable problems with pool-adjacent violator (PAV) algorithm. As shown
in Section 4.2, discretized separable submodular optimization corresponds to the orthogonal projection
of a matrix into the intersection of chain isotonic constraints in each row, and isotonic constraints
in each column equal to the original set of isotonic constraints (in these simulations, these are also
chain constraints). This can be done by Dykstra’s alternating projection algorithm or its accelerated
version [6], for which each projection step can be performed with the PAV algorithm because each of
them corresponds to chain constraints.

In the left plot of Figure 3, we show the difference in function values (in log-scale) for various
discretization levels (defined by the integer k spaced by 1/4 in base-10 logarithm), as as function of
the number of iterations (averaged over 20 replications). For large £ (small difference of function
values), we see a spacing between the ends of the plots of approximatively 1/2, highlighting the
dependence in 1/k? of the final error with discretization &, which our analysis in Section 4.3 suggests.

Effect of the discretization for separable problems. In order to highlight the effect of discretiza-
tion and its interplay with differentiability properties of the function to minimize, we consider in
the middle plot of Figure 3, the distance in function values after full optimization of the discrete
submodular function for various values of k. We see that for the simple smooth function (quadratic
loss), we have a decay in 1/ k2, while for the simple non smooth function (absolute loss), we have a
final decay in 1/k), a predicted by our analysis. For the logarithm-based loss, whose smoothness
constant depends on x, when & is large, it behaves like a smooth function immediately, while for x
smaller, k£ needs to be large enough to reach that behavior.

Non-separable problems. We consider adding a smoothness penalty to add the prior knowledge
that values should be decreasing and close. In Appendix C, we show the effect of adding a smoothness
prior (for n = 200): it leads to better estimation. In the right plot of Figure 3, we show the effect
of various discretization schemes (for n = 25), from order 0 (naive discretization), to order 1 and 2
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Figure 3: Dykstra’s projection algorithms for separable problems, with several values of k, spaced
with 1/4 in base-10 logarithm, from 10! to 10~3-5. Dykstra in dashed and accelerated Dykstra in
plain. Middle: effect of discretization value k for various loss functions for separable problems (the
logarithm-based loss is considered with two values of s, k = 0.1 and £ = 0.001). Right: effect of
discretization £ on non-separable problems.

(our new schemes based on Taylor expansions from Section 5.1), and we plot the difference in
function values after 50 steps of subgradient descent: in each plot, the quantity AH is equal to
H(z}) — H*, where z}, is an approximate minimizer of the discretized problem with & values and
H* the minimum of H (taking into account the isotonic constraints). As outlined in our analysis, the
first-order scheme does not help because our function has bounded Hessians, while the second-order
does so significantly.

7 Conclusion

In this paper, we have shown how submodularity could be leveraged to obtain polynomial-time
algorithms for isotonic regressions with a submodular cost, based on convex optimization in a space
of measures—although based on convexity arguments, our algorithms apply to all separable non-
convex functions. The final algorithms are based on discretization, with a new scheme that also
provides improvements based on smoothness (also without isotonic constraints). Our framework is
worth extending in the following directions: (a) we currently consider a fixed discretization, it would
be advantageous to consider adaptive schemes, potentially improving the dependence on the number
of variables n and the precision ¢; (b) other shape constraints can be consider in a similar submodular
framework, such as x;x; > 0 for certain pairs (,7); (c) a direct convex formulation without
discretization could probably be found for quadratic programming with submodular costs (which are
potentially non-convex but solvable in polynomial time); (d) a statistical study of isotonic regression
with adversarial corruption could now rely on formulations with polynomial-time algorithms.
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