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Abstract

Frequency-specific patterns of neural activity are traditionally interpreted as sus-
tained rhythmic oscillations, and related to cognitive mechanisms such as attention,
high level visual processing or motor control. While alpha waves (8–12 Hz) are
known to closely resemble short sinusoids, and thus are revealed by Fourier analy-
sis or wavelet transforms, there is an evolving debate that electromagnetic neural
signals are composed of more complex waveforms that cannot be analyzed by
linear filters and traditional signal representations. In this paper, we propose to
learn dedicated representations of such recordings using a multivariate convolu-
tional sparse coding (CSC) algorithm. Applied to electroencephalography (EEG)
or magnetoencephalography (MEG) data, this method is able to learn not only
prototypical temporal waveforms, but also associated spatial patterns so their origin
can be localized in the brain. Our algorithm is based on alternated minimization
and a greedy coordinate descent solver that leads to state-of-the-art running time
on long time series. To demonstrate the implications of this method, we apply it to
MEG data and show that it is able to recover biological artifacts. More remarkably,
our approach also reveals the presence of non-sinusoidal mu-shaped patterns, along
with their topographic maps related to the somatosensory cortex.

1 Introduction

Neural activity recorded via measurements of the electrical potential over the scalp by electroen-
cephalography (EEG), or magnetic fields by magnetoencephalography (MEG), can be used to
investigate human cognitive processes and certain pathologies. Such recordings consist of dozens to
hundreds of simultaneously recorded signals, for durations going from minutes to hours. In order
to describe and quantify neural activity in such multi-gigabyte data, it is classical to decompose
the signal in predefined representations such as the Fourier or wavelet bases. It leads to canonical
frequency bands such as theta (4–8 Hz), alpha (8–12 Hz), or beta (15–30 Hz) (Buzsaki, 2006), in
which signal power can be quantified. While such linear analyses have had significant impact in
neuroscience, there is now a debate regarding whether neural activity consists more of transient
bursts of isolated events rather than rhythmically sustained oscillations (van Ede et al., 2018). To
study the transient events and the morphology of the waveforms (Mazaheri and Jensen, 2008; Cole
and Voytek, 2017), which matter in cognition and for our understanding of pathologies (Jones,
2016; Cole et al., 2017), there is a clear need to go beyond traditionally employed signal processing
methodologies (Cole and Voytek, 2018). For instance, a classic Fourier analysis fails to distinguish
alpha-rhythms from mu-rhythms, which have the same peak frequency at around 10 Hz, but whose
waveforms are different (Cole and Voytek, 2017; Hari and Puce, 2017).

The key to many modern statistical analyses of complex data such as natural images, sounds or
neural time series is the estimation of data-driven representations. Dictionary learning is one family
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of techniques, which consists in learning atoms (or patterns) that offer sparse data approximations.
When working with long signals in which events can happen at any instant, one idea is to learn
shift-invariant atoms. They can offer better signal approximations than generic bases such as Fourier
or wavelets, since they are not limited to narrow frequency bands. Multiple approaches have been
proposed to solve this shift-invariant dictionary learning problem, such as MoTIF (Jost et al., 2006),
the sliding window matching (Gips et al., 2017), the adaptive waveform learning (Hitziger et al.,
2017), or the learning of recurrent waveform (Brockmeier and Príncipe, 2016), yet they all have
several limitations, as discussed in Jas et al. (2017). A more popular approach, especially in image
processing, is the convolutional sparse coding (CSC) model (Jas et al., 2017; Pachitariu et al., 2013;
Kavukcuoglu et al., 2010; Zeiler et al., 2010; Heide et al., 2015; Wohlberg, 2016b; Šorel and Šroubek,
2016; Grosse et al., 2007; Mailhé et al., 2008). The idea is to cast the problem as an optimization
problem, representing the signal as a sum of convolutions between atoms and activation signals.

The CSC approach has been quite successful in several fields such as computer vision (Kavukcuoglu
et al., 2010; Zeiler et al., 2010; Heide et al., 2015; Wohlberg, 2016b; Šorel and Šroubek, 2016),
biomedical imaging (Jas et al., 2017; Pachitariu et al., 2013), and audio signal processing (Grosse
et al., 2007; Mailhé et al., 2008), yet it was essentially developed for univariate signals. Interestingly,
images can be multivariate such as color or hyper-spectral images, yet most CSC methods only
consider gray scale images. To the best of our knowledge, the only reference to multivariate CSC
is Wohlberg (2016a), where the author proposes two models well suited for 3-channel images. In
the case of EEG and MEG recordings, neural activity is instantaneously and linearly spread across
channels, due to Maxwell’s equations (Hari and Puce, 2017). The same temporal patterns are
reproduced on all channels with different intensities, which depend on each activity’s location in the
brain. To exploit this property, we propose to use a rank-1 constraint on each multivariate atom. This
idea has been mentioned in (Barthélemy et al., 2012, 2013), but was considered less flexible than the
full-rank model. Moreover, their proposed optimization techniques are not specific to shift-invariant
models, and not scalable to long signals. Multivariate shift-invariant rank-1 decomposition of EEG
has also been considered with matching pursuit (Durka et al., 2005), but without learning the atoms,
which are fixed Gabor filters.

Contribution In this study, we develop a multivariate model for CSC, using a rank-1 constraint
on the atoms to account for the instantaneous spreading of an electromagnetic source over all the
channels. We also propose efficient optimization strategies, namely a locally greedy coordinate
descent (LGCD, Moreau et al. 2018), and precomputation steps for faster gradient computations. We
provide multiple numerical evaluations of our method, which show the highly competitive running
time on both univariate and multivariate models, even when working with hundreds of channels. We
also demonstrate the estimation performance of the multivariate model by recovering patterns on low
signal-to-noise ratio (SNR) data. Finally, we illustrate our method with atoms learned on multivariate
MEG data, that thanks to the rank-1 model can be localized in the brain for clinical or cognitive
neuroscience studies.

Notation A multivariate signal with T time points in RP is noted X ∈ RP×T , while x ∈ RT is
a univariate signal. We index time with brackets X[t] ∈ Rp, while Xi ∈ RT is the channel i in X .
For a vector v ∈ RP we define the `q norm as ‖v‖q = (

∑
i |vi|q)

1/q, and for a multivariate signal
X ∈ RP×T , we define the time-wise `q norm as ‖X‖q = (

∑T
t=1 ‖X[t]‖qq)1/q. The transpose of a

matrix U is denoted by U>. For a multivariate signal X ∈ RP×T , X��� is obtained by reversal of the
temporal dimension, i.e., X���[t] = X[T + 1− t]. The convolution of two signals z ∈ RT−L+1 and
d ∈ RL is denoted by z ∗ d ∈ RT . For D ∈ RP×L, z ∗D is obtained by convolving every row of D
by z. For D′ ∈ RP×L, D ∗̃ D′ ∈ R2L−1 is obtained by summing the convolution between each row
of D and D′: D ∗̃ D′ =

∑P
p=1Dp ∗D′p . We note [a, b] the set of real numbers between a and b,

and Ja, bK the set of integers between a and b. We define T̃ as T − L+ 1.

2 Multivariate Convolutional Sparse Coding

In this section, we introduce the convolutional sparse coding (CSC) models used in this work. We
focus on 1D-convolution, although these models can be naturally extended to higher order signals
such as images by using the proper convolution operators.
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Univariate CSC The CSC formulation adopted in this work follows the shift-invariant sparse
coding (SISC) model from Grosse et al. (2007). It is defined as follows:

min
{dk}k,{znk }k,n

N∑
n=1

1

2

∥∥∥∥∥xn −
K∑
k=1

znk ∗ dk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖znk ‖1 ,

s.t. ‖dk‖22 ≤ 1 and znk ≥ 0 ,

(1)

where {xn}Nn=1 ⊂ RT areN observed signals, λ > 0 is the regularization parameter, {dk}Kk=1 ⊂ RL

are the K temporal atoms we aim to learn, and {znk }Kk=1 ⊂ RT̃ are K signals of activations, a.k.a.
the code associated with xn. This model assumes that the coding signals znk are sparse, in the sense
that only few entries are nonzero in each signal. In this work, we also assume that the entries of znk
are positive, which means that the temporal patterns are present each time with the same polarity.

Multivariate CSC The multivariate formulation uses an additional dimension on the signals and
on the atoms, since the signal is recorded over P channels (mapping to space locations):

min
{Dk}k,{znk }k,n

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖znk ‖1,

s.t. ‖Dk‖22 ≤ 1 and znk ≥ 0 ,

(2)

where {Xn}Nn=1 ⊂ RP×T are N observed multivariate signals, {Dk}Kk=1 ⊂ RP×L are the spatio-
temporal atoms, and {znk }Kk=1 ⊂ RT̃ are the sparse activations associated with Xn.

Multivariate CSC with rank-1 constraint This model is similar to the multivariate case but it
adds a rank-1 constraint on the dictionary, Dk = ukv

>
k ∈ RP×L, with uk ∈ RP being the pattern

over channels and vk ∈ RL the pattern over time. The optimization problem boils down to:

min
{uk}k,{vk}k,{znk }k,n

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗ (ukv
>
k )

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖znk ‖1 ,

s.t. ‖uk‖22 ≤ 1 , ‖vk‖22 ≤ 1 and znk ≥ 0 .

(3)

The rank-1 constraint is consistent with Maxwell’s equations and the physical model of electrophysio-
logical signals like EEG or MEG, where each source is linearly spread instantaneously over channels
with a constant topographic map (Hari and Puce, 2017). Using this assumption, one aims to improve
the estimation of patterns under the presence of independent noise over channels. Moreover, it can
help separating overlapped sources which are inherently rank-1 but whose sum is generally of higher
rank. Finally, as explained below, several computations can be factorized to speed up computations.

Noise model Note that our models use a Gaussian noise, whereas one can also use an alpha-stable
noise distribution to better handle strong artifacts, as proposed by Jas et al. (2017). Importantly, our
contribution is orthogonal to their work, and one can easily extend multivariate models to alpha-stable
noise distributions, by using their EM algorithm and by updating the `2 loss into a weighted `2 loss
in (3). Also, our experiments used artifact-free datasets, so the Gaussian noise model is appropriate.

3 Model estimation

Problems (1), (2) and (3) share the same structure. They are convex in each variable but not jointly
convex. The resolution is done by using a block coordinate descent approach which minimizes
alternately the objective function over one block of the variables. In this section, we describe this
approach on the multivariate CSC with rank-1 constraint case (3), updating iteratively the activations
znk , the spatial patterns uk, and the temporal pattern vk.

3.1 Z-step: solving for the activations

Given K fixed atoms Dk and a regularization parameter λ > 0, the Z-step aims to retrieve the
NK activation signals znk ∈ RT̃ associated to the signals Xn ∈ RP×T by solving the following
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Algorithm 1: Locally greedy coordinate descent (LGCD)
Input :Signal X , atoms Dk, number of segments M , stopping parameter ε > 0, zk initialization
Initialize βk[t] with (5).
repeat

for m = 1 to M do
Compute z′k[t] = max

(
βk[t]−λ
‖Dk‖22

, 0
)

for (k, t) ∈ Cm
Choose (k0, t0) = arg max

(k,t)∈Cm
|zk[t]− z′k[t]|

Update β with (6)
Update the current point estimate zk0 [t0]← z′k0 [t0]

until ‖z − z′‖∞ < ε

`1-regularized optimization problem:

min
{znk }k,n

znk≥0

1

2

∥∥∥∥∥Xn −
K∑
k=1

znk ∗Dk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖znk ‖1 . (4)

This problem is convex in znk and can be efficiently solved. In Chalasani et al. (2013), the authors
proposed an algorithm based on FISTA (Beck and Teboulle, 2009) to solve it. Bristow et al. (2013)
introduced a method based on ADMM (Boyd et al., 2011) to compute efficiently the activation signals
znk . These two methods are detailed and compared by Wohlberg (2016b), which also made use of the
fast Fourier transform (FFT) to accelerate the computations. Recently, Jas et al. (2017) proposed to
use L-BFGS (Byrd et al., 1995) to improve on first order methods. Finally, Kavukcuoglu et al. (2010)
adapted the greedy coordinate descent (GCD) to solve this convolutional sparse coding problem.

However, for long signals, these techniques can be quite slow due the computation of the gradient
(FISTA, ADMM, L-BFGS) or the choice of the best coordinate to update in GCD, which are
operations that scale linearly in T . A way to alleviate this limitation is to use a locally greedy
coordinate descent (LGCD) strategy, presented recently in Moreau et al. (2018).

Note that problem (4) is independent for each signal Xn. The computation of each zn can thus
be parallelized, independently of the technique selected to solve the optimization (Jas et al., 2017).
Therefore, we omit the superscript n in the following subsection to simplify the notation.

Coordinate descent (CD) The key idea of coordinate descent is to update our estimate of the
solution one coordinate zk[t] at a time. For (4), it is possible to compute the optimal value z′k[t]
of one coordinate zk[t] given that all the others are fixed. Indeed, the problem (4) restricted to one
coordinate has a closed-form solution given by:

z′k[t] = max

(
βk[t]− λ
‖Dk‖22

, 0

)
, with βk[t] =

[
D���
k ∗̃

(
X −

K∑
l=1

zl ∗Dl + zk[t]et ∗Dk

)]
[t] (5)

where et ∈ RT̃ is the canonical basis vector with value 1 at index t and 0 elsewhere. When updating
the coefficient zk0 [t0] to the value z′k0 [t0], β is updated with:

β
(q+1)
k [t] = β

(q)
k [t] + (D���

k0 ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0]), ∀(k, t) 6= (k0, t0) . (6)

The term (D���
k0
∗̃ Dk)[t− t0] is zero for |t− t0| ≥ L. Thus, only K(2L− 1) coefficients of β need

to be changed (Kavukcuoglu et al., 2010). The CD algorithm updates at each iteration a coordinate to
this optimal value. The coordinate to update can be chosen with different strategies, such as the cyclic
strategy which iterates over all coordinates (Friedman et al., 2007), the randomized CD (Nesterov,
2010; Richtárik and Takáč, 2014) which chooses a coordinate at random for each iteration, or the
greedy CD (Osher and Li, 2009) which chooses the coordinate the farthest from its optimal value.

Locally greedy coordinate descent (LGCD) The choice of a coordinate selection strategy results
of a tradeoff between the computational cost of each iteration and the improvement it provides. For
cyclic and randomized strategies, the iteration complexity is O(KL) as the coordinate selection can
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Table 1: Computational complexities of each step
Step Computation Computed Rank-1 Full-rank
Z-step β initialization once NKT (L+ P ) NKT (LP )
Z-step Precomputation once K2L(L+ P ) K2L(LP )
Z-step M coordinate updates multiple times MKL MKL

D-step Φ precomputation once NKTLP NKTLP
D-step Ψ precomputation once NK2TL NKTLP
D-step Gradient evaluation multiple times K2L(L+ P ) K2L(LP )
D-step Function evaluation multiple times K2L(L+ P ) K2L(LP )

be performed in constant time. The greedy selection of a coordinate is more expensive as it is linear
in the signal length O(KT̃ ). However, greedy selection is more efficient iteration-wise (Nutini et al.,
2015). Moreau et al. (2018) proposed to consider a locally greedy selection strategy for CD. The
coordinate to update is chosen greedily in one of M subsegments of the signal, i.e., at iteration q, the
selected coordinate is:

(k0, t0) = arg max
(k,t)∈Cm

|zk[t]− z′k[t]| , m ≡ q (mod M) + 1 , (7)

with Cm = J1,KK× J(m−1)T̃ /M,mT̃/MK. With this strategy, the coordinate selection complexity
is linear in the length of the considered subsegment O(KT̃/M). By choosing M = bT̃ /(2L− 1)c,
the complexity of update is the same as the complexity of random and cyclic coordinate selection,
O(KL). We detail the steps of LGCD in Algorithm 1. This algorithm is particularly efficient when
the zk are sparser. Indeed, in this case, only few coefficients need to be updated in the signal, resulting
in a low number of iterations. Computational complexities are detailed in Table 1.

Relation with matching pursuit (MP) Note that the greedy CD is strongly related to the well-
known matching pursuit (MP) algorithm (Locatello et al., 2018). The main difference is that MP solves
a slightly different problem, where the `1 regularization is replaced with an `0 constraint. Therefore,
the size of the support is a fixed parameter in MP, whereas it is controlled by the regularization
parameter λ in our case. In term of algorithm, both methods update one coordinate at a time selected
greedily, but MP does not apply a soft-thresholding in (5).

3.2 D-step: solving for the atoms

Given KN fixed activation signals znk ∈ RT̃ , associated to signals Xn ∈ RP×T , the D-step aims to
update the K spatial patterns uk ∈ RP and K temporal patterns vk ∈ RL, by solving:

min
‖uk‖2≤1
‖vk‖2≤1

E, where E
∆
=

N∑
n=1

1

2
‖Xn −

K∑
k=1

znk ∗ (ukv
>
k )‖22 . (8)

The problem (8) is convex in each block of variables {uk}k and {vk}k, but not jointly convex.
Therefore, we optimize first {uk}k, then {vk}k, using in both cases a projected gradient descent with
an Armijo backtracking line-search (Wright and Nocedal, 1999) to find a good step size. These steps
are detailed in Algorithm A.1.

Gradient relative to uk and vk The gradient of E relatively to {uk}k and {vk}k can be computed
using the chain rule. First, we compute the gradient relatively to a full atom Dk = ukv

>
k ∈ RP×L:

∇Dk
E =

N∑
n=1

(znk )��� ∗

(
Xn −

K∑
l=1

znl ∗Dl

)
= Φk −

K∑
l=1

Ψk,l ∗Dl , (9)

where we reordered this expression to define Φk ∈ RP×L and Ψk,l ∈ R2L−1. These terms are
both constant during a D-step and can thus be precomputed to accelerate the computation of the
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(c) λ = 10 (multivariate).
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Figure 1: Comparison of state-of-the-art univariate (a, b) and multivariate (c, d) methods with our
approach. (a) Convergence plot with the objective function relative to the obtained minimum, as a
function of computational time. (b) Time taken to reach a relative precision of 10−3, for different
regularization parameters λ. (c, d) Same as (a, b) in the multivariate setting P = 5.

gradients and the cost function E. We detail these computations in the supplementary materials
(see Section A.1). Computational complexities are detailed in Table 1. Note that the dependence in
T is present only in the precomputations, which makes the following iterations very fast. Without
precomputations, the complexity of each gradient computation in the D-step would beO(NKTLP ).

3.3 Initialization

The activations sub-problem (Z-step) is regularized with a `1-norm, which induces sparsity: the
higher the regularization parameter λ, the higher the sparsity. Therefore, there exists a value λmax
above which the sub-problem solution is always zeros (Hastie et al., 2015). As λmax depends on the
atoms Dk and on the signals Xn, its value changes after each D-step. In particular, its value might
change a lot between the initialization and the first D-step. This is problematic since we cannot use a
regularization λ above this initial λmax, even though the following λmax might be higher.

The standard strategy to initialize CSC methods is to generate random atoms with Gaussian white
noise. However, as these atoms generally poorly correlate with the signals, the initial value of λmax
is low compared to the following ones. For example, on the MEG dataset described later on, we
found that the initial λmax is about 1/3 of the following ones in the univariate case, with L = 32. On
the multivariate case, it is even more problematic as with P = 204, we could have an initial λmax as
low as 1/20 of the following ones.

To fix this problem, we propose to initialize the dictionary with random chunks of the signal,
projecting each chunk on a rank-1 approximation using singular value decomposition. We noticed on
the MEG dataset that the initial λmax was then about the same value as the following ones, which
enables the use of higher regularization parameters. We used this scheme in all our experiments.

4 Experiments

All numerical experiments were run using Python (Python Software Foundation, 2017) and our code
is publicly available online at https://alphacsc.github.io/.

Speed performance To illustrate the performance of our optimization strategy, we monitored its
convergence speed on a real MEG dataset. The somatosensory dataset from the MNE software (Gram-
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Figure 2: Timings of Z and D updates when varying the number of channels P . The scaling is
sublinear with P , due to the precomputation steps in the optimization.

fort et al., 2013, 2014) contains responses to median nerve stimulation. We consider only gradiometers
channels and we used the following parameters: T = 134 700, N = 2, K = 8, and L = 128.

First we compared our strategy against three state-of-the-art univariate CSC solvers available online.
The first was developed by Garcia-Cardona and Wohlberg (2017) and is based on ADMM. The
second and third were developed by Jas et al. (2017), and are respectively based on FISTA and
L-BFGS. All solvers shared the same objective function, but as the problem is non-convex, the solvers
are not guaranteed to reach the same local minima, even though we started from the same initial
settings. Hence, for a fair comparison, we computed the convergence curves relative to each local
minimum, and averaged them over 10 different initializations. The results, presented in Figure 1(a,
b), demonstrate the competitiveness of our method, for reasonable choices of λ. Indeed, a higher
regularization parameter leads to sparser activations znk , on which LGCD is particularly efficient.

Then, we also compared our method against a multivariate ADMM solver developed by Wohlberg
(2016a). As this solver was quite slow on these long signals, we limited our experiments to P = 5
channels. The results, presented in Figure 1(c, d), show that our method is faster than the competing
method for large λ. More benchmarks are available in the supplementary materials.

Scaling with the number of channels The multivariate model involves an extra dimension P but
its impact on the computational complexity of our solver is limited. Figure 2 shows the average
running times of the Z-step and the D-step. Timings are normalized w.r.t. the timings for a single
channel. The running times are computed using the same signals from the somatosensory dataset,
with the following parameters: T = 26 940, N = 10, K = 2, L = 128. We can see that the scaling
of these three operations is sub-linear in P . For the Z-step, only the initial computations for the
first βk and the constants D���

k ∗̃ Dl depend linearly on P so that the complexity increase is limited
compared to the complexity of solving the optimization problem (4). For the D-step, the scaling
to compute the gradients is linear with P . However, the most expensive operations here are the
computation of the constant Ψk, which does not on P .

Finding patterns in low SNR signals Since the multivariate model has access to more data, we
would expect it to perform better compared to the univariate model especially for low SNR signals.
To demonstrate this, we compare the two models when varying the number of channels P and the
SNR of the data. The original dictionary contains two temporal patterns, a square and a triangle,
presented in Figure 3(a). The spatial maps are designed with a sine and a cosine, and the first
channel’s amplitude is forced to 1 to make sure both atoms are present even with only one channel.
The signals are obtained by convolving the atoms with activation signals znk , where the activation
locations are sampled uniformly in J1, T̃ K× J1,KK with 5% non-zero activations, and the amplitudes
are uniformly sampled in [0, 1]. Then, a Gaussian white noise with variance σ is added to the signal.
We fixed N = 100, L = 64 and T̃ = 640 for our simulated signals. We can see in Figure 3(a) the
temporal patterns recovered for σ = 10−3 using only one channel and using 5 channels. While the
patterns recovered with one channel are very noisy, the multivariate model with rank-1 constraint
recovers the original atoms accurately. This can be expected as the univariate model is ill-defined
in this situation, where some atoms are superimposed. For the rank-1 model, as the atoms have
different spatial maps, the problem is easier. Then, we evaluate the learned temporal atoms. Due to
permutation and sign ambiguity, we compute the `2-norm of the difference between the temporal
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Figure 3: (a) Patterns recovered with P = 1 and P = 5. The signals were generated with the
two simulated temporal patterns and with σ = 10−3. (b) Evolution of the recovery loss with σ for
different values of P . Using more channels improves the recovery of the original patterns.
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Figure 4: Atom revealed using the MNE somatosensory data. Note the non-sinusoidal comb shape of
the mu rhythm. This atom has been manually selected, and other atoms are presented in Figure B.4.

pattern v̂k and the ground truths, vk or −vk, for all permutations S(K) i.e.,

loss(v̂) = min
s∈S(K)

K∑
k=1

min
(
‖v̂s(k) − vk‖22, ‖v̂s(k) + vk‖22

)
. (10)

Multiple values of λ were tested and the best loss is reported in Figure 3(b) for varying noise levels
σ. We observe that independently of the noise level, the multivariate rank-1 model outperforms
the univariate one. This is true even for good SNR, as using multiple channels disambiguates the
separation of overlapped patterns.

Examples of atoms in real MEG signals: We show the results of our algorithm on experimental
data, using the MNE somatosensory dataset (Gramfort et al., 2013, 2014). This dataset contains MEG
recordings of one patient receiving median nerve stimulations. Here we first extract N = 103 trials
from the data. Each trial lasts 6 s with a sampling frequency of 150 Hz (T = 900). We selected only
gradiometer channels, leading to P = 204 channels. The signals were notch-filtered to remove the
power-line noise, and high-pass filtered at 2 Hz to remove the low-frequency trend, i.e. to remove low
frequency drift artifacts which contribute a lot to the variance of the raw signals. We learned K = 40
atoms with L = 150 using a rank-1 multivariate CSC model, with a regularization λ = 0.2λmax.

Figure 4(a) shows a recovered non-sinusoidal brain rhythm which resembles the well-known mu-
rhythm. The mu-rhythm has been implicated in motor-related activity (Hari, 2006) and is centered
around 9–11 Hz. Indeed, while the power is concentrated in the same frequency band as the alpha,
it has a very different spatial topography (Figure 4(b)). In Figure 4(c), the power spectral density
(PSD) shows two components of the mu-rhythm – one at around 9 Hz, and a harmonic at 18 Hz as
previously reported in (Hari, 2006). Based on our analysis, it is clear that the 18 Hz component is
simply a harmonic of the mu-rhythm even though a Fourier-based analysis could lead us to falsely
conclude that the data contained beta-rhythms. Finally, due to the rank-1 nature of our atoms, it
is straightforward to fit an equivalent current dipole (Tuomisto et al., 1983) to interpret the origin
of the signal. Figure 4(d) shows that the atom does indeed localize in the primary somatosensory
cortex, or the so-called S1 region with a 59.3% goodness of fit. For results on more MEG datasets,
see Section B.2. It notably includes mu-shaped atoms from S2.

8



5 Conclusion

Many neuroscientific debates today are centered around the morphology of the signals under consid-
eration. For instance, are alpha-rhythms asymmetric (Mazaheri and Jensen, 2008) ? Are frequency
specific patterns the result of sustained oscillations or transient bursts (van Ede et al., 2018) ? In
this paper, we presented a multivariate extension to the CSC problem applied to MEG data to help
answer such questions. In the original CSC formulation, the signal is expressed as a convolution of
atoms and their activations. Our method extends this to the case of multiple channels and imposes
a rank-1 constraint on the atoms to account for the instantaneous propagation of electromagnetic
fields. We demonstrate the usefulness of our method on publicly available multivariate MEG data.
Not only are we able to recover neurologically plausible atoms, but also we are able to find temporal
waveforms which are non-sinusoidal. Empirical evaluations show that our solvers are significantly
faster compared to existing CSC methods even for the univariate case (single channel). The algorithm
scales sublinearly with the number of channels which means it can be employed even for dense sensor
arrays with 200-300 sensors, leading to better estimation of the patterns and their origin in the brain.
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P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

M. Šorel and F. Šroubek. Fast convolutional sparse coding using matrix inversion lemma. Digital
Signal Processing, 2016.

T. Tuomisto, R. Hari, T. Katila, T. Poutanen, and T. Varpula. Studies of auditory evoked magnetic and
electric responses: Modality specificity and modelling. Il Nuovo Cimento D, 2(2):471–483, 1983.

F. van Ede, A. J. Quinn, M. W. Woolrich, and A. C. Nobre. Neural oscillations: Sustained rhythms or
transient burst-events? Trends in Neurosciences, 2018.

B. Wohlberg. Convolutional sparse representation of color images. In IEEE Southwest Symposium
on Image Analysis and Interpretation (SSIAI), pages 57–60, 2016a.

B. Wohlberg. Efficient algorithms for convolutional sparse representations. Image Processing, IEEE
Transactions on, 25(1):301–315, 2016b.

S. Wright and J. Nocedal. Numerical optimization, volume 35. Springer Science, 1999.

M. D. Zeiler, D. Krishnan, G.W. Taylor, and R. Fergus. Deconvolutional networks. In Computer
Vision and Pattern Recognition (CVPR), pages 2528–2535. IEEE, 2010.

11



A Optimization details

In this section, we give more details about the optimization procedures used to speed-up both D-step
and Z-step.

A.1 Details on the D-step optimization

First, let’s recall the objective function, as introduced in Section 3.2:

E
∆
=

N∑
n=1

1

2
‖Xn −

K∑
k=1

znk ∗ (ukv
>
k )‖22, (A.1)

which we optimize under the constraints ‖uk‖22 ≤ 1 and ‖vk‖22 ≤ 1.

To compute the gradient of E relatively to a full atom Dk = ukv
>
k ∈ RP×L, we introduce some

constants Φk and Ψk,l, which are constant during the entire D-step:

∇Dk
E =

N∑
n=1

(znk )��� ∗

(
Xn −

K∑
l=1

znl ∗Dl

)
= Φk −

K∑
l=1

Ψk,l ∗Dl (A.2)

Indeed, we have:

∇Dk
E[t] =

N∑
n=1

(
(znk )��� ∗

(
Xn −

K∑
l=1

znl ∗Dl

))
[t] (A.3)

=

N∑
n=1

T̃∑
τ=1

znk [τ ]

(
Xn −

K∑
l=1

znl ∗Dl

)
[t+ τ − 1] (A.4)

=

N∑
n=1

T̃∑
τ=1

znk [τ ]

(
Xn[t+ τ − 1]−

K∑
l=1

L∑
τ ′=1

znl [τ ′]Dl[t+ τ − τ ′]

)
(A.5)

= Φk[t]−
K∑
l=1

L∑
τ ′=1

 N∑
n=1

T̃∑
τ=1

znk [τ ]znl [t+ τ − τ ′]

Dl[τ
′] (A.6)

= Φk[t]−
K∑
l=1

L∑
τ ′=1

Ψk,l[t+ 1− τ ′]Dl[τ
′] (A.7)

= Φk[t]−
K∑
l=1

(Ψk,l ∗Dl)[t] (A.8)

where Φk ∈ RP×L are computed with:

Φk[t] =

N∑
n=1

T̃∑
τ=1

znk [τ ]Xn[t+ τ − 1], ∀t ∈ J1, LK, (A.9)

and where Ψk,l ∈ R2L−1 are computed with:

Ψk,l[t] =

N∑
n=1

T̃∑
τ=1

znk [τ ]znl [t+ τ − 1], ∀t ∈ J1, 2L− 1K. (A.10)

Note that in the last equation (A.10), the sum only concerns the defined terms, i.e., (t+τ−1) ∈ J1, T̃ K.
The computational complexities of Φk and Ψk,l are respectively O (NLTKP ) and O

(
NLTK2

)
.

Then, the gradients relative to uk and vk are obtained using the chain rule,

∇uk
E = (∇Dk

E)vk ∈ RP , (A.11)

∇vkE = u>k (∇Dk
E) ∈ RL , (A.12)
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Algorithm A.1: Projected gradient descent for updating {uk} and {vk}.
Input :Signals {Xn}n, activations {znk }k,n, stopping parameter ε > 0,

initial estimate {uk}k and {vk}k
Initialize Φk with (A.9) and Ψk,l with (A.10), for k, l ⊂ J1,KK.
repeat

Compute with (A.11) for k ∈ J1,KK, Gk = ∇uk
E,

Update the estimate with {u(q+1)
k }k ← to Armijo({u(q)

k }k, Gk, E)
until

∑K
k=1

∥∥∥u(q+1)
k − u(q)

k

∥∥∥
1
< ε

Set {uk}k ← {u(q)
k }k

repeat
Compute with (A.12) for k ∈ J1,KK, Gk = ∇vkE,
Update the estimate with {v(q+1)

k }k ← to Armijo({v(q)
k }k, Gk, E)

until
∑K
k=1

∥∥∥v(q+1)
k − v(q)

k

∥∥∥
1
< ε

Set {vk}k ← {v(q)
k }k

return {uk}k and {vk}k

and E can be computed, up to a constant term C , with the following

E =

K∑
k=1

u>k (∇Dk
E)vk + C . (A.13)

Algorithm A.1 details the different step used in our algorithm to update {uk}k and {vk}k.

A.2 Details on the Z-step optimization

A.2.1 The coordinate update

Proposition 1. The optimal update z′k0 [t0] of the coefficient (k0, t0) is given by

z′k0 [t0] =
1

‖Dk0‖22
max (βk0 [t0]− λ, 0) ,

with βk0 [t0] = D���
k0
∗̃
(
X −

∑K
k=1 zk ∗Dk + zk0 [t0]et0 ∗Dk0

)
[t0] and where et0 is the canonical

vector in RT̃ with value 1 in t0 and value 0 elsewhere.

Proof. For y ∈ R+, we will denote ek0,t0(y) the cost difference between our current solution estimate
zk and the signal z(1)

k where the coefficient zk0 [t0] has been replaced by y, i.e.,

z
(1)
k [t] =

{
y, if (k, t) = (k0, t0)

zk[t], elsewhere
.

Let αk0 [t] = (X −
∑K
k=1 zk ∗ Dk)[t] + Dk0 [t − t0]zk0 [t0] for all t ∈ J0, T − 1K. This quantity

denotes the residual when zk0 [t0] is set to 0. It is important to note that it can be re-written as,

αk[t] =

(
X −

K∑
k=1

zk ∗Dk + zk0 [t0]et0 ∗Dk0

)
[t]
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and thus, βk0 [t0] =
(
D���
k0
∗̃ αk0

)
[t0]. The cost difference ek0,t0(y) is,

ek0,t0(y) =
1

2

T−1∑
t=0

(
X −

K∑
k=1

zk ∗Dk

)2

[t] + λ

K∑
k=1

‖zk‖1 −
1

2

T−1∑
t=0

(
X −

K∑
k=1

z
(1)
k ∗Dk

)2

[t] + λ

K∑
k=1

‖z(1)
k ‖1

=
1

2

T−1∑
t=0

(αk0 [t]−Dk0 [t− t0]zk0 [t0])
2 − 1

2

T−1∑
t=0

(αk0 [t]−Dk0 [t− t0]y)
2

+ λ(|zk0 [t0]| − |y|)

=
1

2

T−1∑
t=0

Dk0 [t− t0]2(zk0 [t0]2 − y2)−
T−1∑
t=0

αk0 [t]Dk0 [t− t0](zk0 [t0]− y) + λ(|zk0 [t0]| − |y|)

=
‖Dk0‖22

2
(zk0 [t0]2 − y2)− (D���

k0 ∗̃ αk0)[t0]︸ ︷︷ ︸
βk0

[t0]

(zk0 [t0]− y) + λ(|zk0 [t0]| − |y|)

Using this result, we can derive the optimal value z′k0 [t0] to update the coefficient (k0, t0) as the
solution of the following optimization problem:

z′k0 [t0] = arg max
y∈R+

ek0,t0(y) ∼ arg min
u∈R+

‖Dk0‖22
2

(
y − βk0 [t0]

‖Dk0‖22

)2

+ λy . (A.14)

Simple computations show the desired result, i.e.,

z′k0 [t0] =
1

‖Dk0‖22
max(βk0 [t0]− λ, 0)

.

A.2.2 The β update

Proposition 2. When updating the coefficient zk0 [t0] to the value z′k0 [t0], β is updated with:

β
(q+1)
k [t] = β

(q)
k [t] + (D���

k0 ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0]), ∀(k, t) 6= (k0, t0) . (A.15)

Proof. The value of βk0 [t0] is independent of the value of zk0 [t0]. Indeed, the term zk0 [t0]et0 ∗Dk0
cancel the contribution of zk0 [t0] in the convolution zk0 ∗Dk0 . Thus, when updating the value of the
coefficient zk0 [t0], βk0 [t0] is not updated.

We denote z(q+1)
k the activation signal where the coefficient zk0 [t0] as been updated to z′k0 [t0], i.e., ,

z
(q+1)
k [t] =

{
z′k0 [t0], if (k, t) = (k0, t0)

zk[t], elsewhere
.

For (k, t) 6= (k0, t0),

β
(q+1)
k [t] =

[
D���
k ∗̃

(
X −

K∑
l=1

z
(1)
l ∗Dl + zk[t]et ∗Dk

)]
[t]

=

[
D���
k ∗̃

(
X −

K∑
l=1

zl ∗Dl + zk[t]et ∗Dk + (zk0 [t0]− z′k0 [t0])et0 ∗Dk

)]
[t]

=

[
D���
k ∗̃

(
X −

K∑
l=1

zl ∗Dl + zk[t]et ∗Dk

)]
[t] +

[
D���
k ∗̃

(
(zk0 [t0]− z′k0 [t0])et0 ∗Dk

)]
[t]

= β
(q)
k [t] + (zk0 [t0]− z′k0 [t0])

[
D���
k ∗̃ (et0 ∗Dk)

]
[t]

= β
(q)
k [t] + (D���

k ∗̃ Dk)[t− t0](zk0 [t0]− z′k0 [t0])

With this relation, it is possible to keep βk up to date with few operation after each coordinate
update.
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Figure B.1: Comparison of state-of-the-art methods with our approach. Here we used shorter (L = 16
instead of L = 128) atoms.

A.2.3 Precomputation for D���
k ∗̃ Dl

Similarly to the D-step precomputations, we can precompute D���
k ∗̃ Dl ∈ R2L−1 to speed up the

LGCD iterations during the Z-step. We have:

(D���
k ∗̃ Dl)[t] =

P∑
p=1

L∑
τ=1

Dk,p[τ ]Dl,p[t+ τ − 1], ∀t ∈ J1, 2L− 1K. (A.16)

In the case of the rank-1 constraint model, we can factorize the computation with:

(D���
k ∗̃ Dl)[t] =

(
P∑
p=1

uk,pul,p

)
L∑
τ=1

vk[τ ]vl[t+ τ − 1], ∀t ∈ J1, 2L− 1K. (A.17)

The computational complexities are respectively O
(
K2L2P

)
and O

(
K2L(L+ P )

)
.

B Additional Experiments

B.1 Speed performance

We present here more benchmarks as described in section 4, yet with different settings.

First we used shorter atoms of length L = 16 instead of L = 128, and results are presented
in Figure B.1. They confirm the competitiveness of our method, especially when using large
regularization parameters. On these problems, the maximum possible regularization λmax was
around 90.

Then, we used shorter signals of length T = 13 470 instead of T = 134 700 and results are presented
in Figure B.2. They also confirm the competitiveness of our method, except with small regularization
parameters. However, as the maximum possible regularization λmax was around 90, we question the
practical use of these low values, which would poorly enforce the sparsity constraint.

B.2 Somatosensory dataset

In Figure 4(d), we showed mu-shaped atoms in the primary somatosensory region for the MNE
somatosensory dataset. Intriguingly, we also find such atoms in the secondary somatosensory region,
also known as S2. One such atom is shown in Figure B.3.
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Figure B.2: Comparison of state-of-the-art methods with our approach. Here we used shorter signals
(T = 13 470 instead of T = 134 700).
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Figure B.3: Atom in the S2 region revealed in the MNE somatosensory data. A. The temporal
waveform, and its corresponding B. Spatial pattern, C. The Power Spectral Density (PSD), and D. the
dipole fit in the S2 region.

B.3 Sample dataset

In addition to the MNE somatosensory dataset, we also analyzed the MNE sample dataset Gramfort
et al. (2013, 2014). In this case, we used N = 1, and the number of time points T = 41584
corresponds to 278 s of recording sampled at 150.15 Hz. The magnetometer channels are selected so
that the number of channels P = 102. We learn K = 25 atoms. The sample data is lowpass filtered
at 40 Hz, and highpass filtered at 1 Hz.

In Figure B.6, we show the atoms learned on the MNE sample data. Figure B.6.A shows the temporal
waveforms of these atoms and Figure B.6.C shows the corresponding spatial pattern for a selection
of the total atoms. As expected, we are able to recover latent components corresponding to ocular
(3rd row) and cardiac artifacts (4th row). Indeed, the ocular artifacts displays the prototypical dipolar
pattern in the frontal channels. In Figure B.6.B, we also show the sparse activations associated with
the atoms.

More interestingly, we also recover an oscillatory waveform (first row) which appears to originate due
to a dipole below the parietal channels at around a frequency of 30 Hz. We confirm this in Figure B.7
using a dipole fit. Indeed, the atom does originate in the parietal lobe which suggests that what we
observe is probably a motor rhythm. The dataset under consideration did in fact contain a button
press task which could explain the presence of such an atom.
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Figure B.4: First 20 atoms learned on the MNE-somatosnesory dataset.
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Figure B.5: Last 20 atoms learned on the MNE-somatosnesory dataset.
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Figure B.6: A selection of A. temporal waveforms of the atoms learned on the MNE sample dataset,
and their corresponding B. activations, and C. spatial patterns

Figure B.7: Dipole fit and power spectral density computed on MNE somato sample dataset for the
atom in first row in Figure Figure B.6.
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