
Supplementary Information for:

An intriguing failing of convolutional neural networks

and the CoordConv solution

S1 Architectures used for supervised painting tasks

Figure S1 depicts architectures used in each of the two supervised tasks going from coordinates to
images: Supervised Coordinate Classification (Section 4.1), and Supervised Rendering (Section 4.3).

In the case of convolution, or, in this case, transposed convolution (deconvolution), the same archi-
tecture is used for both tasks, as shown in the top row of Figure S1, but we generally found the
Supervised Rendering tasks requires wider layers (more channels). Top performing deconvolutional
models in Supervised Coordinate Classification have c = 1 or 2, while in Supervised Rendering we
usually need c = 2, 3. In terms of convolutional filter size, filter sizes of 2 and 4 seem to outperform
3 in Coordinate Classification, while in Rendering the difference is less distinctive.

Note that the CoordConv model only replaces the first layer with CoordConv (shown in green in
Figure S1).

Figure S1: Deconvolutional and CoordConv architectures used in each of the two supervised tasks.
“fs" stands for filter size, and “c" for channel size. We use a grid search on different ranges of them
as displayed underneath each model, while allowing deconvolutional models a wider range in both.
Green indicates a CoordConv layer.

13

5×10
3

1×10
4

2×10
4

5×10
4

10
5

2×10
5

5×10
5

10
6

2×10
6

Model size

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

Deconv uniform
Deconv quadrant
CoordConv uniform
CoordConv quadrant

Figure S2: Model size vs. test accuracy for the Supervised Coordinate Classification subtask on
the uniform split and quadrant split. Deconv models (blue) of many sizes achieve 80% or a little
higher — but never perfect — test accuracy on the uniform split. On the quadrant split, while many
models perform slightly better than chance (1/4096 = .000244) no model generalizes significantly.
CoordConv model achieves perfect accuracy on both splits.

Because of the usage of different filter sizes and channel sizes, we end up training models with a
range of sizes. Each is combined with further grid searches on hyperparameters including the learning
rate, weight decay, and minibatch sizes. Therefore at the same size we end up with multiple models
with a spread of performances, as shown in Figure S2 for the Supervised Coordinate Classification
task. We repeat the same exact setting of experiments on both uniform and quadrant splits, which
result in the same number of experiments. It is not obviously shown in Figure S2 because quadrant
trainings are mostly poorly (at the bottom of the figure).

As can be seen, it seems unlikely that even larger models would perform better. They all basically
struggle to get to a good test accuracy. This (1) confirms that performance is not simply being
limited by model size, as well as (2) shows that working CoordConv models are one to two orders of
magnitude smaller (7553 as opposed to 50k-1.6M parameters) than the best convolutional models.
The model size vs. test performance plot on Supervised Rendering is similar (not shown), except
CoordConv model in that case has a slightly larger number of parameters: 9490. CoordConv achieves
perfect test IOU there while deconvolutional models struggle at sizes 183k to 1.6M.

S2 Further Supervised Coordinate Classification details

For deconvolutional models, we use the model structure as depicted in the top row in Figure S1, while
varying the choice of filter size ({2, 3, 4}) and channel size multipliers ({1,2,3}), and each combined
with a hyperparameter sweep of learning rate {0.001, 0.002, 0.005, 0.01, 0.02, 0.05}, and weight
decay {0.001, 0.01}. Models are trained using a softmax output with cross entropy loss with Adam
optimizer. We train 1000 epochs with minibatch size of 16 and 32. The learning rate is dropped to
10% every 200 epochs for four times.

For CoordConv models, because it converges so fast and easy, we did not have to try a lot of settings
— only 3 learning rates {0.01 0.001, 0.005} and they all learned perfectly well. There’s also no need
for learning rate schedules as it quickly converges in 10 seconds.

Figure S3 demonstrates how accurate and smooth the learned probability mass is with CoordConv,
and not so much with Deconv. We first show the overall 64 × 64 map of logits, one for a training
example and one for a test example just right next to the train. Then we zoom in to a smaller
region to examine the intricacies. We can see that convolution, even though designed to act in a
translation-invariant way, shows artifacts of not being able to accomplish so.

14

Figure S3: Comparison of behaviors between Deconv model and CoordConv model on the Supervised
Coordinate Classification task. We select five horizontally neighboring pixels, containing samples in
both train and test splits, and zoom in on a 5× 9 section of the 64× 64 canvas so the detail of the
logits and predicted probabilities may be seen. The full 64× 64 map of logits of the first two samples
(first in train, second in test) are also shown. The deconvolutional model outputs probabilities in a
decidedly non-translation-invariant manner.

S3 Further Supervised Coordinate Regression details

Exact architectures applied in the Supervised Coordinate Regression task are described in table
S1. For the uniform split, the best-generalizing convolution architecture consisted of a stack of
alternating convolution and max-pooling layers, followed by a fully-connected layer and an output
layer. This architecture was fairly robust to changes in hyperparameters. In contrast, for the quandrant
split, the best-generalizing network consisted of strided convolutions feeding into a global-pooling
output layer, and good performance was delicate. In particular, training and generalization was
sensitive to the number of batch normalization layers (2), weight decay strength (5e-4), and optimizer
(Adam, learning rate 5e-4). A single CoordConv architecture generalized perfectly with the same
hyperparameters over both splits, and consisted of a single CoordConv layer followed by additional
layers of convolution, feeding into a global pooling output layer.

Table S1: Model Architectures for Supervised Coordinate Regression. FC: Fully-connected, MP:
Max Pooling, GP: Global Pooling, BN: Batch normalization, s2: stride 2.

Conv CoordConv

Uniform
Split

3×3, 16 - MP 2×2 - 3×3, 16 - MP 2×2 - 3×3,
16 - MP 2×2 - 3×3, 16 - FC 64 - FC 2 1×1, 8 - 1×1, 8 - 1×1, 8 - 3×3,

8 - 3×3, 2 - GPQuadrant
Split

5×5 (s2), 16 - 1×1, 16 - BN - 3×3, 16 - 3×3
(s2), 16 - 3×3 (s2), 16 - BN - 3×3 (s2), 16 -
1×1, 16 - 3×3 (s2), 16 - 3×3, 2 - GP

S4 Further Supervised Rendering details

Both the architectural and experimental settings are similar to Section S2 except the loss used is
pixelwise sigmoid output with cross entropy loss. We also tried mean squared error loss but the
performance is even weaker. We performed heavy hyperparameter sweeping and deliberate learning
rate annealing for Deconv models (same as said in Section S2), while in CoordConv models it is fairly
easy to find a good setting. All models trained with learning rates {0.001, 0.005}, weight decay {0,
0.001}, filter size {1, 2} turned out to perform well after 1–2 minutes of training. Take the best model

15

obtained, Figure S4 and Figure S5 show the learned logits and pixelwise probability distributions for
three samples each, in the uniform and quadrant cases, respectively. We can see that the CoordConv
model learns a much smoother and precise distribution. All samples are test samples.

Figure S4: Output comparison between Deconv and CoordConv models on three test samples. Models
are trained on a uniform split. Logits are model’s direct output; pixelwise probability (pw-prob)
is logits after Sigmoid. Conv outputs (middle columns) manage to get roughly right. CoordConv
outputs (right columns) are precisely correct and its logit maps are smooth.

Figure S5: Output comparison between Deconv and CoordConv models on three test samples. Models
are trained on a quadrant split. Logits are model’s direct output; pixelwise probability (pw-prob)
is logits after Sigmoid. Conv outputs (middle columns) failed mostly. Even with such a difficult
generalization problem, CoordConv outputs (right columns) are precisely correct and its logit maps
are smooth.

S5 Further ImageNet classification details

We evaluate the potential of CoordConv in image classification with ImageNet experiments. We take
ResNet-50 and run the baseline on distributed framework using 100 GPUs, with the open-source
framework Horovod. For CoordConv variants, we add an extra CoordConv layer only in the beginning,
which takes a 6-channel tensor containing image RBG, i, j coordinates and pixel distance to center r,
and output 8 channels with 1×1 convolution. The increase of parameters is negligible. It then goes in
with the rest of ResNet-50.

Each model is run 5 times on the same setting to account for experimental variances. Table. S2 lists
the test result from each run in the end of 90 epochs. CoordConv model obtains better average result
on two of the three measures, however a one-sided t-test tells that the improvement on Top 5 accuracy
is not quite statistically significant with p = .11.

16

Of all vision tasks, we might expect image classification to show the least performance change when
using CoordConv instead of convolution, as classification is more about what is in the image than
where it is. This tiny amount of improvement validates that.

Table S2: ImageNet classification result comparison between a baseline ResNet-50 and CoordConv
ResNet-50. For each model three experiments are run, listed in three separate rows below.

Test loss Top-1 Accuracy Top-5 Accuracy

Baseline
ResNet-50

1.43005 0.75722 0.92622

1.42385 0.75844 0.9272

1.42634 0.75782 0.92754

1.42166 0.75692 0.92756

1.42671 0.75724 0.92708

Average 1.425722 0.757528 0.92712

CoordConv
ResNet-50

1.42335 0.75732 0.92802

1.42492 0.75836 0.92754

1.42478 0.75774 0.92818

1.42882 0.75702 0.92694

1.42438 0.75668 0.92714

Average 1.42525 0.757424 0.927564

S6 Further object detection details

The object detection experiments are on a dataset containing randomly rescaled and placed MNIST
digits on a 64× 64 canvas. To make it more akin to natural images, we generate a much larger canvas
and then center crop it to be 64× 64, so that digits can be partially outside of the canvas. We kept
images that contain 5 digit objects whose centers are within the canvas. In the end we use 9000
images as the training set and 1000 as test.

A schematic of the model architecture is illustrated in Figure S6. We use number of anchors A = 9,
with sizes (15, 15), (20, 20), (25, 25), (15, 20), (20, 25), (20, 15), (25, 20), (15, 25), (25, 15). In
box sampling (training mode), p_size and n_size are 6. In box non-maximum suppression (NMS)
(test mode), the IOU threshold is 0.8 and maximum number of proposal boxes is 10. After the boxes
are proposed and shifted, we do not have a downstream classification task, but just calculate the loss
from the boxes. The training loss include box loss and score loss. As evaluation metric we also
calculate IOUs between proposed boxes and ground truth boxes. Table. S3 lists those metrics obtained
the test dataset, by both Conv and CoordConv models. We found that every metric is improved by
CoordConv, and the average test IOU improved by about 24 percent.

17

Figure S6: Faster R-CNN architecture used for object detection on scattered MNIST digits. Green
indicates where coordinates are added. Note that the input image is used for demonstration purpose.
The real dataset contains 5 digits on a canvas and allows overlapping. (Left) train mode with box
sampler. (Right) test mode with box NMS.

Table S3: MNIST digits detection result comparison between a Faster R-CNN model with regular
convolution vs. with CoordConv. Metrics are all on test set. Train IOU: average IOU between
sampled positive boxes (train mode) and ground truth; Test IOU-average): average IOU between 10
selected boxes (test mode) and ground truth; Test IOU-select: average IOU between the best scored
box and its closest ground truth.

Conv CoordConv % Improvement

Box loss 0.1003 0.0854 17.44

Score loss 0.5270 0.2526 108.63

Total loss (sum of the two above) 0.6271 0.3383 85.37

Train IOU 0.6388 0.6612 3.38

Test IOU-average 0.1508 0.1868 23.87

Test IOU-select 0.4965 0.6359 28.08

S7 Further generative modeling details

S7.1 GANs on colored shapes

Data. The dataset used to train the generative models is 50k red-and-blue-object images of size
64× 64. We follow the same mechanism as Sort-of-Clevr, in that objects appear at random positions
on a white background without overlapping, only limiting the number of objects to be 2 per image.
The objects are always one red and one blue, of a randomly chosen shape out of {circle, square}.
Examples of images from this dataset can be seen in the top row, leftmost column in Figure 7, at the
intersection of “Real images" and “Random samples".

Architecture and training details. The z dimension to both regular GAN and CoordConv GAN
is 256. In GAN, the generator uses 4 layers of deconvolution with strides of 2 to project z to a
64 × 64 image shape. The parameter size of the generator is 6,413,315. In CoordConv GAN, we
add coordinate channels only at the beginning, making the first layer CoordConv, and then continue
with normal Conv.. The generator in this case uses mostly (1,1) convolutions and has only 444,931
parameters. The same discriminator is used for both models. In the case where we also turn the

18

discriminator to be CoordConv like, its first Conv layer is replaced by CoordConv, and the parameter
size increases from 4,316,545 to 4,319,745. The details of both architectures can be seen in Table. S4.
We trained two CoordConv GAN versions where CoordConv applies: 1) only in generator, and 2)
in both generator and discriminator. They end up performing similarly well. The demonstrated
examples in all figures are from one in the latter case.

The change needed to make a generator whose first layer is fully-connected CoordConv is trivial.
Instead of taking image tensors which already have Cartesian dimensions, the CoordConv generator
first tiles z vector into a full 64× 64 space, and then concatenate it with coordinates in that space.

To train each model we use a fixed learning rate 0.0001 for the discriminator and 0.0005 for the
generator. In each iteration discriminator is trained once followed by generator trained twice. The
random noise vector z is drawn from a uniform distribution between [−1, 1]. We train each model
for 50 epochs and save the model in the end of every epoch. We repeat the training with the same
hyperparameters 5 to 10 times for each, and pick the best model for each to show a fair comparison
in all figures.

Table S4: Model Architectures for GAN and CoordConv GAN used in the colored shape generation.
In the case of CoordConv GAN, only the first layer is changed from regular Conv to CoordConv. FC:
fully connected layer; s2: stride 2.

Generator Discriminator

GAN FC 8192 (reshape 4×4×512) - 5×5, 256 (s2)
- 5×5, 128 (s2) - 5×5, 64 (s2) - 5×5, 3 (s2) -
Tanh

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - 1CoordConv

GAN
1×1, 512 - 1×1, 256 - 1×1, 256 - 1×1, 128 -
1×1, 64 - 3×3, 64 - 3×3, 64 - 1×1, 3

Latent interpolation. Latent interpolation is conducted by randomly choosing two noise vectors,
each from a uniform distribution, and linearly interpolate in between with an α factor that indicates
how close it is to the first vector. Figure S7 and Figure S8 each show, on regular GAN and CoordConv
GAN, respectively, five random samples of pairs to conduct interpolation with. In addition to
Figure S8, Figure S9 shows deliberately picked examples that exhibit a special moving effect that has
only been seen in CoordConv GAN.

Figure S7: Regular GAN samples with a series of interpolation between 5 random pairs of z. Also
observed position and shape transitioning but are different.

Measure of entropy. In Figure 7, we reduce generated red and blue objects to their centers and plot
the coverage of space in column (b) and relative locations in (c). To make the comparison quantitative,

19

Figure S8: CoordConv GAN samples with a series of interpolation between 5 random pairs of z. Top
row: at the position in the manifold, the model has learned a smooth circular motion. The rest of
the rows: the circular relation between two objets is still observed, while some object shapes also
undergo a smooth transition.

Figure S9: A special effect only observed in CoordConv GAN latent space interpolation: two objects
stay constant in relative positions to each other but move together in space. They even move out of
the scene which is never present in the real data — learned to extrapolate. These 3 examples are
picked from many random drawings of z pairs, as opposed to Figure S8 and Figure S7, where first 5
random drawings are shown.

we can further calculate the entropy in each case, reducing each figure in (b) and (c) to an entropy
value shown as a bar in Figure S10. Confidence intervals of each bar is also shown by repeating the
experiment 10 times. We can see that CoordConv (red) is closer to data (green) in objects’ coverage
of space, but has more of a mode collapse in objects’ relative position.

S7.2 VAEs on colored shapes

We train both convolutional and CoordConv VAEs on the same dataset of 50k 64 x 64 images of
blue and red non-overlapping squares and circles, as described in Section S7.1. Convolutional VAEs
exhibit many of the same problems that we observed in GANs, and adding CoordConv confers many
of the same benefits.

A VAE is composed of an encoder that maps data to a latent and a decoder that maps the latent back to
data. With minor exceptions our VAE’s encoder architecture is the same as our GAN’s discriminator
and it’s decoder is the same as our GAN’s generator. The important difference is of course that the
output shape of the encoder is the size of the latent (in this case 8), not two as in a discriminator.

20

Red center Bue center Red-Blue difference
0

1

2

3

4

En
tro

py
conv
coordconv
data

Figure S10: Entropy values and confidence intervals of the sampled results in Figure 7, column (b)
and (c).

Architectures are shown in Table. S5. The decoder architectures of the convolutional control and
CoordConv experiments are similar aside from kernel size - the CoordConv decoder uses 1x1 kernels
while the convolutional decoder uses 5x5 kernels.

Due to the pixel sparsity of images in the dataset we found it important to weight reconstruction
loss more heavily than latent loss by a factor of 50. Doing so didn’t interfere with the quality of the
encoding. We used Adam with a learning rate of 0.005 and no weight decay.

Table S5: Model Architectures: Convolutional VAE and CoordConv VAE

Decoder Encoder

VAE FC 8192 (reshape 4×4×512) - 5×5, 256 (s2)
- 5×5, 128 (s2) - 5×5, 64 (s2) - 5×5, 3 (s2) -
Sigmoid

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - Flatten - FC, 10CoordConv

VAE
1×1, 512 - 1×1, 256 - 1×1, 256 - 1×1, 128 -
1×1, 64 - 1×1, 3 - Sigmoid

21

Figure S11: Latent space interpolations from a VAE without CoordConv. The red and blue shapes
are mostly stationary. When they do move they do so by disappearing and appearing elsewhere in
pixel space. Smooth changes in the latent don’t translate to smooth geometric changes in pixel space.
The latents we interpolated between were sampled randomly from a uniform distribution.

Figure S12: Latent space interpolations from a VAE with CoordConv in the encoder and decoder.
The red and blue shapes span pixel space more fully and smooth changes in latent space map to
smooth changes in pixel space. Like the CoordConv GAN, the CoordConv VAE is able to extrapolate
beyond the borders of the frame it was trained on. The latents we interpolated between were sampled
randomly from a uniform distribution.

S7.3 GANs on LSUN

The dataset used to train the generative models is LSUN bedroom, composed of 3,033,042 images of
size 64× 64.

22

The architectures adopted (see Table. S6) are similar to the ones adopted for generating the colored
shape results in Section S7.1, with a few noticeable differences:

• We use CoordConv layers instead of regular Conv layers not only in the first layer of the
discriminator, but in each layer. z is of dimension 100.

• The GAN generator includes a layer mapping from z to a 4x4x1024 tensor and the other
layers have double the number of channels.

• CoordConv GAN generator has more channels for each layer.

Table S6: Model Architectures for GAN and CoordConv GAN for LSUN. FC: fully connected layer;
s2: stride 2.

Generator Discriminator

GAN FC 16384 (reshape 4×4×1024) - 5×5, 512 (s2)
- 5×5, 256 (s2) - 5×5, 128 (s2) - 5×5, 3 (s2) -
Tanh

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - 1CoordConv

GAN
1×1, 1024 - 1×1, 512 - 1×1, 256 - 1×1, 256 -
1×1, 128 - 3×3, 128 - 3×3, 64 - 1×1, 3

Figure S13: Samples from the regular GAN (left) and the CoordConv GAN (right).

Samples from both models are provided in Figure S13. One peculiar property of the CoordConv
GAN model with respect to the regular GAN one is the geometric interpolation. As shown in
Figure Figure S14 in regular GAN interpolations objects appear and disappear, while in CoordConv
GAN interpolations in Figure S15 objects move around, translating, enlarging, squashing and doing
geometric transformations over them.

23

Figure S14: Samples of regular GAN trained on LSUN with a series of interpolation between 5
random pairs of z.

Figure S15: Samples of CoordConv GAN trained on LSUN with a series of interpolation between 5
random pairs of z.

The regular GAN has been trained for 11000 steps of batch size 128, while the CoordConv GAN has
been trained 22000 steps of batch size 64 (because the available memory on the GPUs did not allow
for 128). Both models have been trained using Horovod to distribute the training on 16 GPUs.

24

S8 Further reinforcement learning details

We used OpenAI baselines 5 implementation and default parameters on all experiments. Table. S7
shows the average scores obtained at the end of game over 10 runs of each.

Table S7: All games with final scores and p-values.

Game Conv CoordConv p-value

Alien 1462.5 2005.0 0.0821

Bank Heist 932.5 1330.0 0.1736

Ms. Pacman 2557.5 3945.0 0.0065

Robotank 2.75 3.5 0.2899

Centipede 3359.5 3424.5 0.8703

Asterix 16250.0 35300.0 0.0003

Asteroids 2082.5 1912.5 0.1124

Amidar 1092.75 1137.5 0.2265

Seaquest 1780.0 1780.0 0.4057

S9 The CoordConv layer implementation

from tensorflow.python.layers import base
import tensorflow as tf

class AddCoords(base.Layer):
"""Add coords to a tensor"""
def __init__(self, x_dim=64, y_dim=64, with_r=False):

super(AddCoords, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.with_r = with_r

def call(self, input_tensor):
"""
input_tensor: (batch, x_dim, y_dim, c)
"""
batch_size_tensor = tf.shape(input_tensor)[0]
xx_ones = tf.ones([batch_size_tensor, self.x_dim],

dtype=tf.int32)
xx_ones = tf.expand_dims(xx_ones, -1)
xx_range = tf.tile(tf.expand_dims(tf.range(self.y_dim), 0),

[batch_size_tensor, 1])
xx_range = tf.expand_dims(xx_range, 1)

xx_channel = tf.matmul(xx_ones, xx_range)
xx_channel = tf.expand_dims(xx_channel, -1)

yy_ones = tf.ones([batch_size_tensor, self.y_dim],
dtype=tf.int32)

yy_ones = tf.expand_dims(yy_ones, 1)
yy_range = tf.tile(tf.expand_dims(tf.range(self.x_dim), 0),

[batch_size_tensor, 1])

5https://github.com/openai/baselines/

25

yy_range = tf.expand_dims(yy_range, -1)

yy_channel = tf.matmul(yy_range, yy_ones)
yy_channel = tf.expand_dims(yy_channel, -1)

xx_channel = tf.cast(xx_channel, ’float32’) / (self.x_dim - 1)
yy_channel = tf.cast(yy_channel, ’float32’) / (self.y_dim - 1)
xx_channel = xx_channel*2 - 1
yy_channel = yy_channel*2 - 1

ret = tf.concat([input_tensor,
xx_channel,
yy_channel], axis=-1)

if self.with_r:
rr = tf.sqrt(tf.square(xx_channel)

+ tf.square(yy_channel)
)

ret = tf.concat([ret, rr], axis=-1)

return ret

class CoordConv(base.Layer):
"""CoordConv layer as in the paper."""
def __init__(self, x_dim, y_dim, with_r, *args, **kwargs):

super(CoordConv, self).__init__()
self.addcoords = AddCoords(x_dim=x_dim,

y_dim=y_dim,
with_r=with_r)

self.conv = tf.layers.Conv2D(*args, **kwargs)

def call(self, input_tensor):
ret = self.addcoords(input_tensor)
ret = self.conv(ret)
return ret

26

	Further generative modeling details
	GANs on colored shapes
	VAEs on colored shapes
	GANs on LSUN

	Further reinforcement learning details
	The CoordConv layer implementation

