
An intriguing failing of convolutional neural networks

and the CoordConv solution

Rosanne Liu1 Joel Lehman1 Piero Molino1 Felipe Petroski Such1 Eric Frank1

Alex Sergeev2 Jason Yosinski1

1Uber AI Labs, San Francisco, CA, USA 2Uber Technologies, Seattle, WA, USA

{rosanne,joel.lehman,piero,felipe.such,mysterefrank,asergeev,yosinski}@uber.com

Abstract

Few ideas have enjoyed as large an impact on deep learning as convolution. For any
problem involving pixels or spatial representations, common intuition holds that
convolutional neural networks may be appropriate. In this paper we show a striking
counterexample to this intuition via the seemingly trivial coordinate transform
problem, which simply requires learning a mapping between coordinates in (x, y)
Cartesian space and coordinates in one-hot pixel space. Although convolutional
networks would seem appropriate for this task, we show that they fail spectacularly.
We demonstrate and carefully analyze the failure first on a toy problem, at which
point a simple fix becomes obvious. We call this solution CoordConv, which
works by giving convolution access to its own input coordinates through the use of
extra coordinate channels. Without sacrificing the computational and parametric
efficiency of ordinary convolution, CoordConv allows networks to learn either
complete translation invariance or varying degrees of translation dependence, as
required by the end task. CoordConv solves the coordinate transform problem with
perfect generalization and 150 times faster with 10–100 times fewer parameters
than convolution. This stark contrast raises the question: to what extent has this
inability of convolution persisted insidiously inside other tasks, subtly hampering
performance from within? A complete answer to this question will require further
investigation, but we show preliminary evidence that swapping convolution for
CoordConv can improve models on a diverse set of tasks. Using CoordConv in
a GAN produced less mode collapse as the transform between high-level spatial
latents and pixels becomes easier to learn. A Faster R-CNN detection model
trained on MNIST detection showed 24% better IOU when using CoordConv, and
in the Reinforcement Learning (RL) domain agents playing Atari games benefit
significantly from the use of CoordConv layers.

1 Introduction

Convolutional neural networks (CNNs) [17] have enjoyed immense success as a key tool for enabling
effective deep learning in a broad array of applications, like modeling natural images [36, 16], images
of human faces [15], audio [33], and enabling agents to play games in domains with synthetic imagery
like Atari [21]. Although straightforward CNNs excel at many tasks, in many other cases progress
has been accelerated through the development of specialized layers that complement the abilities
of CNNs. Detection models like Faster R-CNN [27] make use of layers to compute coordinate
transforms and focus attention, spatial transformer networks [13] make use of differentiable cameras
to transform data from the output of one CNN into a form more amenable to processing with another,

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Figure 1: Toy tasks considered in this paper. The *conv block represents a network comprised of
one or more convolution, deconvolution (convolution transpose), or CoordConv layers. Experiments
compare networks with no CoordConv layers to those with one or more.

and some generative models like DRAW [8] iteratively perceive, focus, and refine a canvas rather
than using a single pass through a CNN to generate an image. These models were all created by
neural network designers that intuited some inability or misguided inductive bias of standard CNNs
and then devised a workaround.

In this work, we expose and analyze a generic inability of CNNs to transform spatial representations
between two different types: from a dense Cartesian representation to a sparse, pixel-based represen-
tation or in the opposite direction. Though such transformations would seem simple for networks
to learn, it turns out to be more difficult than expected, at least when models are comprised of the
commonly used stacks of convolutional layers. While straightforward stacks of convolutional layers
excel at tasks like image classification, they are not quite the right model for coordinate transform.

The main contributions of this paper are as follows:

1. We define a simple toy dataset, Not-so-Clevr, which consists of squares randomly positioned
on a canvas (Section 2).

2. We define the CoordConv operation, which allows convolutional filters to know where they
are in Cartesian space by adding extra, hard-coded input channels that contain coordinates
of the data seen by the convolutional filter. The operation may be implemented via a couple
extra lines of Tensorflow (Section 3).

3. Throughout the rest of the paper, we examine the coordinate transform problem starting
with the simplest scenario and ending with the most complex. Although results on toy
problems should generally be taken with a degree of skepticism, starting small allows us to
pinpoint the issue, exploring and understanding it in detail. Later sections then show that
the phenomenon observed in the toy domain indeed appears in more real-world settings.

We begin by showing that coordinate transforms are surprisingly difficult even when the
problem is small and supervised. In the Supervised Coordinate Classification task, given a
pixel’s (x, y) coordinates as input, we train a CNN to highlight it as output. The Supervised
Coordinate Regression task entails the inverse: given an input image containing a single
white pixel, output its coordinates. We show that both problems are harder than expected
using convolutional layers but become trivial by using a CoordConv layer (Section 4).

4. The Supervised Rendering task adds complexity to the above by requiring a network to paint
a full image from the Not-so-Clevr dataset given the (x, y) coordinates of the center of a
square in the image. The task is still fully supervised, but as before, the task is difficult to
learn for convolution and trivial for CoordConv (Section 4.3).

5. We show that replacing convolutional layers with CoordConv improves performance in a
variety of tasks. On two-object Sort-of-Clevr [29] images, Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) using CoordConv exhibit less mode collapse,
perhaps because ease of learning coordinate transforms translates to ease of using latents
to span a 2D Cartesian space. Larger GANs on bedroom scenes with CoordConv offer
geometric translation that was never observed in regular GAN. Adding CoordConv to a
Faster R-CNN produces much better object boxes and scores. Finally, agents learning to

2



Figure 2: The Not-so-Clevr dataset. (a) Example one-hot center images Pi from the dataset. (b) The
pixelwise sum of the entire train and test splits for uniform vs. quadrant splits. (c) and (d) Analagous
depictions of the canvas images Ii from the dataset. Best viewed electronically with zoom.

play Atari games obtain significantly higher scores on some but not all games, and they
never do significantly worse (Section 5).

6. To enable other researchers to reproduce experiments in this paper, and benefit from using
CoordConv as a simple drop-in replacement of the convolution layer in their models, we
release our code at https://github.com/uber-research/coordconv.

With reference to the above numbered contributions, the reader may be interested to know that the
course of this research originally progressed in the 5 → 2 direction as we debugged why progressively
simpler problems continued to elude straightforward modeling. But for ease of presentation, we give
results in the 2 → 5 direction. A progression of the toy problems considered is shown in Figure 1.

2 Not-so-Clevr dataset

We define the Not-so-Clevr dataset and make use of it for the first experiments in this paper. The
dataset is a single-object, grayscale version of Sort-of-CLEVR [29], which itself is a simpler version
of the Clevr dataset of rendered 3D shapes [14]. Note that the series of Clevr datasets have been
typically used for studies regarding relations and visual question answering, but we here use them
for supervised learning and generative models. Not-so-Clevr consists of 9× 9 squares placed on a
64 × 64 canvas. Square positions are restricted such that the entire square lies within the 64 × 64
grid, so that square centers fall within a slightly smaller possible area of 56× 56. Enumerating these
possible center positions results in a dataset with a total of 3,136 examples. For each example square
i, the dataset contains three fields:

• Ci ∈ R
2, its center location in (x, y) Cartesian coordinates,

• Pi ∈ R
64×64, a one-hot representation of its center pixel, and

• Ii ∈ R
64×64, the resulting 64× 64 image of the square painted on the canvas.

We define two train/test splits of these 3,136 examples: uniform, where all possible center locations
are randomly split 80/20 into train vs. test sets, and quadrant, where three of four quadrants are in the
train set and the fourth quadrant in the test set. Examples from the dataset and both splits are depicted
in Figure 2. To emphasize the simplicity of the data, we note that this dataset may be generated in
only a line or two of Python using a single convolutional layer with filter size 9 × 9 to paint the
squares from a one-hot representation.1

3 The CoordConv layer

The proposed CoordConv layer is a simple extension to the standard convolutional layer. We assume
for the rest of the paper the case of two spatial dimensions, though operators in other dimensions
follow trivially. Convolutional layers are used in a myriad of applications because they often work
well, perhaps due to some combination of three factors: they have relatively few learned parameters,
they are fast to compute on modern GPUs, and they learn a function that is translation invariant (a
translated input produces a translated output).

1For example, ignoring import lines and train/test splits:
onehots = np.pad(np.eye(3136).reshape((3136, 56, 56, 1)), ((0,0), (4,4), (4,4), (0,0)), "constant");

images = tf.nn.conv2d(onehots, np.ones((9, 9, 1, 1)), [1]*4, "SAME")

3



Figure 3: Comparison of 2D convolutional and CoordConv layers. (left) A standard convolutional
layer maps from a representation block with shape h × w × c to a new representation of shape
h′ × w′ × c′. (right) A CoordConv layer has the same functional signature, but accomplishes the
mapping by first concatenating extra channels to the incoming representation. These channels contain
hard-coded coordinates, the most basic version of which is one channel for the i coordinate and one
for the j coordinate, as shown above. Other derived coordinates may be input as well, like the radius
coordinate used in ImageNet experiments (Section 5).

The CoordConv layer keeps the first two of these properties—few parameters and efficient
computation—but allows the network to learn to keep or to discard the third—translation invariance—
as is needed for the task being learned. It may appear that doing away with translation invariance
will hamper networks’ abilities to learn generalizable functions. However, as we will see in later
sections, allocating a small amount of network capacity to model non-translation invariant aspects of
a problem can enable far more trainable models that also generalize far better.

The CoordConv layer can be implemented as a simple extension of standard convolution in which
extra channels are instantiated and filled with (constant, untrained) coordinate information, after
which they are concatenated channel-wise to the input representation and a standard convolutional
layer is applied. Figure 3 depicts the operation where two coordinates, i and j, are added. Concretely,
the i coordinate channel is an h×w rank-1 matrix with its first row filled with 0’s, its second row with
1’s, its third with 2’s, etc. The j coordinate channel is similar, but with columns filled in with constant
values instead of rows. In all experiments, we apply a final linear scaling of both i and j coordinate
values to make them fall in the range [−1, 1]. For convolution over two dimensions, two (i, j)
coordinates are sufficient to completely specify an input pixel, but if desired, further channels can be
added as well to bias models toward learning particular solutions. In some of the experiments that

follow, we have also used a third channel for an r coordinate, where r =
√

(i− h/2)2 + (j − w/2)2.
The full implementation of the CoordConv layer is provided in Section S9. Let’s consider next a few
properties of this operation.

Number of parameters. Ignoring bias parameters (which are not changed), a standard convolu-
tional layer with square kernel size k and with c input channels and c′ output channels will contain
cc′k2 weights, whereas the corresponding CoordConv layer will contain (c+ d)c′k2 weights, where
d is the number of coordinate dimensions used (e.g. 2 or 3). The relative increase in parameters is
small to moderate, depending on the original number of input channels. 2

Translation invariance. CoordConv with weights connected to input coordinates set by initializa-
tion or learning to zero will be translation invariant and thus mathematically equivalent to ordinary
convolution. If weights are nonzero, the function will contain some degree of translation dependence,
the precise form of which will ideally depend on the task being solved. Similar to locally connected
layers with unshared weights, CoordConv allows learned translation dependence, but by contrast

2A CoordConv layer implemented via the channel concatenation discussed entails an increase of dc′k2

weights. However, if k > 1, not all k2 connections from coordinates to each output unit are necessary, as
spatially neighboring coordinates do not provide new information. Thus, if one cares acutely about minimizing
the number of parameters and operations, a k × k conv may be applied to the input data and a 1× 1 conv to the
coordinates, then the results added. In this paper we have used the simpler, if marginally inefficient, channel
concatenation version that applies a single convolution to both input data and coordinates. However, almost all
experiments use 1× 1 filters with CoordConv.

4



it requires far fewer parameters: (c + d)c′k2 vs. hwcc′k2 for spatial input size h × w. Note that
all CoordConv weights, even those to coordinates, are shared across all positions, so translation
dependence comes only from the specification of coordinates; one consequence is that, as with
ordinary convolution but unlike locally connected layers, the operation can be expanded outside the
original spatial domain if the appropriate coordinates are extrapolated.

Relations to other work. CoordConv layers are related to many other bodies of work. Composi-
tional Pattern Producing Networks (CPPNs) [31] implement functions from coordinates in arbitrarily
many dimensions to one or more output values. For example, with two input dimensions and N
output values, this can be thought of as painting N separate grayscale pictures. CoordConv can then
be thought of as a conditional CPPN where output values depend not only on coordinates but also
on incoming data. In one CPPN-derived work [11], researchers did train networks that take as input
both coordinates and incoming data for their use case of synthesizing a drum track that could derive
both from a time coordinate and from other instruments (input data) and trained using interactive
evolution. With respect to that work, we may see CoordConv as a simpler, single-layer mechanism
that fits well within the paradigm of training large networks with gradient descent on GPUs. In a
similar vein, research on convolutional sequence to sequence learning [7] has used fixed and learned
position embeddings at the input layer; in that work, positions were represented via an overcomplete
basis that is added to the incoming data rather than being compactly represented and input as separate
channels. In some cases using overcomplete sine and cosine bases or learned encodings for locations
has seemed to work well [34, 24]. Connections can also be made to mechanisms of spatial attention
[13] and to generative models that separately learn what and where to draw [8, 26]. While such works
might appear to provide alternative solutions to the problem explored in this paper, in reality, similar
coordinate transforms are often embedded within such models (e.g. a spatial transformer network
contains a localization network that regresses from an image to a coordinate-based representation
[13]) and might also benefit from CoordConv layers.

Moreover, several previous works have found it necessary or useful to inject geometric information
to networks, for example, in prior networks to enhance spatial smoothness [32], in segmentation
networks [2, 20], and in robotics control through a spatial softmax layer and an expected coordinate
layer that map scenes to object locations [18, 5]. However, in those works it is often seen as a
minor detail in a larger architecture which is tuned to a specific task and experimental project, and
discussions of this necessity are scarce. In contrast, our research (a) examines this necessity in depth
as its central thrust, (b) reduces the difficulty to its minimal form (coordinate transform), leading
to a simple single explanation that unifies previously disconnected observations, and (c) presents
one solution used in various forms by others as a unified layer, easily included anywhere in any
convolutional net. Indeed, the wide range of prior works provide strong evidence of the generality of
the core coordinate transform problem across domains, suggesting the significant value of a work
that systematically explores its impact and collects together these disparate previous references.

Finally, we note that challenges in learning coordinate transformations are not unknown in machine
learning, as learning a Cartesian-to-polar coordinate transform forms the basis of the classic two-
spirals classification problem [4].

4 Supervised Coordinate tasks

4.1 Supervised Coordinate Classification

The first and simplest task we consider is Supervised Coordinate Classification. Illustrated at the top
of Figure 1, given an (x, y) coordinate as input, a network must learn to paint the correct output pixel.
This is simply a multi-class classification problem where each pixel is a class. Why should we study
such a toy problem? If we expect to train generative models that can transform high level latents like
horizontal and vertical position into pixel data, solving this toy task would seem a simple prerequisite.
We later verify that performance on this task does in fact predict performance on larger problems.

In Figure 4 we depict training vs. test accuracy on the task for both uniform and quadrant train/test
splits. For convolutional models3(6 layers of deconvolution with stride 2, see Section S1 in the
Supplementary Information for architecture details) on uniform splits, we find models that generalize
somewhat, but 100% test accuracy is never achieved, with the best model achieving only 86% test

3For classification, convolutions and CoordConvs are actually deconvolutional on certain layers when
resolutions must be expanded, but we refer to the models as conv or CoordConv for simplicity.

5



Convolution

CoordConv

Perfect test accuracy 

takes 10–20 seconds

Convergence to 80% test 

accuracy takes 4000 seconds

Figure 4: Performance of convolution and CoordConv on Supervised Coordinate Classification.
(left column) Final test vs. train accuracy. On the easier uniform split, convolution never attains
perfect test accuracy, though the largest models memorize the training set. On the quadrant split,
generalization is almost zero. CoordConv attains perfect train and test accuracy on both splits. One
of the main results of this paper is that the translation invariance in ordinary convolution does not
lead to coordinate transform generalization even to neighboring pixels! (right column) Test accuracy
vs. training time of the best uniform-split models from the left plot (any reaching final test accuracy
≥ 0.8). The convolution models never achieve more than about 86% accuracy, and training is slow:
the fastest learning models still take over an hour to converge. CoordConv models learn several
hundred times faster, attaining perfect accuracy in seconds.

accuracy. This is surprising: because of the way the uniform train/test splits were created, all test
pixels are close to multiple train pixels. Thus, we reach a first striking conclusion: learning a smooth
function from (x, y) to one-hot pixel is difficult for convolutional networks, even when trained with
supervision, and even when supervision is provided on all sides. Further, training a convolutional
model to 86% accuracy takes over an hour and requires about 200k parameters (see Section S2 in the
Supplementary Information for details on training). On the quadrant split, convolutional models are
unable to generalize at all. Figure 5 shows sums over training set and test set predictions, showing
visually both the memorization of the convolutional model and its lack of generalization.

In striking contrast, CoordConv models attain perfect performance on both data splits and do so with
only 7.5k parameters and in only 10–20 seconds. The parsimony of parameters further confirms they
are simply more appropriate models for the task of coordinate transform [28, 10, 19].

4.2 Supervised Coordinate Regression

Because of the surprising difficulty of learning to transform coordinates from Cartesian to a pixel-
based, we examine whether the inverse transformation from pixel-based to Cartesian is equally
difficult. This is the type of transform that could be employed by a VAE encoder or GAN discriminator
to transform pixel information into higher level latents encoding locations of objects in a scene.

We experimented with various convolutional network structures, and found a 4-layer convolutional
network with fully connected layers (85k parameters, see Section S3 for details) can fit the uniform
training split and generalize well (less than half a pixel error on average), but that same architecture
completely fails on the quadrant split. A smaller fully-convolutional architecture (12k parameters, see
Section S3) can be tuned to achieve limited generalization on the quadrant split (around five pixels
error on average) as shown in Figure 5 (right column), but it performs poorly on the uniform split.

A number of factors may have led to the observed variation of performance, including the use of
max-pooling, batch normalization, and fully-connected layers. We have not fully and separately
measured how much each factor contributes to poor performance on these tasks; rather we report
only that our efforts to find a workable architecture across both splits did not yield any winners. In
contrast, a 900 parameter CoordConv model, where a single CoordConv layer is followed by several
layers of standard convolution, trains quickly and generalizes in both the uniform and quadrant splits.
See Section S3 in Supplementary Information for more details. These results suggest that the inverse
transformation requires similar considerations to solve as the Cartesian-to-pixel transformation.

6



Convolution 

prediction

CoordConv 

prediction

Ground 

truth

Supervised Coordinate Classification Supervised Coordinate Regression
Train Test Train Test

Figure 5: Comparison of convolutional and CoordConv models on the Supervised Coordinate
Classification and Regression tasks, on a quadrant split. (left column) Results on the seemingly
simple classification task where the network must highlight one pixel given its (x, y) coordinates as
input. Images depict ground truth or predicted probabilities summed across the entire train or test set
and then normalized to make use of the entire black to white image range. Thus, e.g., the top-left
image shows the sum of all train set examples. The conv predictions on the train set cover it well,
although the amount of noise in predictions hints at the difficulty with which this model eventually
attained 99.6% train accuracy by memorization. The conv predictions on the test set are almost
entirely incorrect, with two pixel locations capturing the bulk of the probability for all locations in
the test set. By contrast, the CoordConv model attains 100% accuracy on both the train and test
sets. Models used: conv–6 layers of deconv with strides 2; CoordConv–5 layers of 1×1 conv, first
layer is CoordConv. Details in Section S2. (right column) The regression task poses the inverse
problem: predict real-valued (x, y) coordinates from a one-hot pixel input. As before, the conv
model memorizes poorly and largely fails to generalize, while the CoordConv model fits train and
test set perfectly. Thus we observe the coordinate transform problem to be difficult in both directions.
Models used: conv–9-layer fully-convolution with global pooling; CoordConv–5 layers of conv with
global pooling, first layer is CoordConv. Details in Section S3.

4.3 Supervised Rendering

Moving beyond the domain of single pixel coordinate transforms, we compare performance of
convolutional vs. CoordConv networks on the Supervised Rendering task, which requires a network
to produce a 64× 64 image with a square painted centered at the given (x, y) location. As shown in
Figure 6, we observe the same stark contrast between convolution and CoordConv. Architectures
used for both models can be seen in Section S1 in the Supplementary Information, along with further
plots, details of training, and hyperparameter sweeps given in Section S4.

5 Applicability to Image Classification, Object Detection, Generative

Modeling, and Reinforcement Learning

Given the starkly contrasting results above, it is natural to ask how much the demonstrated inability
of convolution at coordinate transforms infects other tasks. Does the coordinate transform hurdle
persist insidiously inside other tasks, subtly hampering performance from within? Or do networks
skirt the issue by learning around it, perhaps by representing space differently, e.g. via non-Cartesian
representations like grid cells [1, 6, 3]? A complete answer to this question is beyond the scope of this
paper, but encouraging preliminary evidence shows that swapping Conv for CoordConv can improve
a diverse set of models — including ResNet-50, Faster R-CNN, GANs, VAEs, and RL models.

7



0.0 0.2 0.4 0.6 0.8 1.0
Train IOU

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 IO
U

Deconv uniform
Deconv quadrant
CoordConv uniform
CoordConv quadrant

Figure 6: Results on the Supervised Rendering task. As with the Supervised Coordinate Classification
and Regression tasks, we see the same vast separation in training time and generalization between
convolution models and CoordConv models. (left) Test intersection over union (IOU) vs Train
IOU. We show all attempted models on the uniform and quadrant splits, including some CoordConv
models whose hyperparameter selections led to worse than perfect performance. (right) Test IOU
vs. training time of the best uniform-split models from the left plot (any reaching final test IOU
≥ 0.8). Convolution models never achieve more than about IOU 0.83, and training is slow: the fastest
learning models still take over two hours to converge vs. about a minute for CoordConv models.

ImageNet Classification As might be expected for tasks requiring straightforward translation
invariance, CoordConv does not help significantly when tested with image classification. Adding a
single extra 1×1 CoordConv layer with 8 output channels improves ResNet-50 [9] Top-5 accuracy by
a meager 0.04% averaged over five runs for each treatment; however, this difference is not statistically
significant. It is at least reassuring that CoordConv doesn’t hurt the performance since it can always
learn to ignore coordinates. This result was obtained using distributed training on 100 GPUs with
Horovod [30]; see Section S5 in Supplementary Information for more details.

Object Detection In object detection, models look at pixel space and output bounding boxes in
Cartesian space. This creates a natural coordinate transform problem which makes CoordConv
seemingly a natural fit. On a simple problem of detecting MNIST digits scattered on a canvas, we
found the test intersection-over-union (IOU) of a Faster R-CNN network improved by 24% when
using CoordConv. See Section S6 in Supplementary Information for details.

Generative Modeling Well-trained generative models can generate visually compelling images
[23, 15, 36], but careful inspection can reveal mode collapse: images are of an attractive quality, but
sample diversity is far less than diversity present in the dataset. Mode collapse can occur in many
dimensions, including those having to do with content, style, or position of components of a scene.
We hypothesize that mode collapse of position may be due to the difficulty of learning straightforward
transforms from a high-level latent space containing coordinate information to pixel space and that
using CoordConv could help. First we investigate a simple task of generating colored shapes with,
in particular, all possible geometric locations, using both GANs and VAEs. Then we scale up the
problem to Large-scale Scene Understanding (LSUN) [35] bedroom scenes with DCGAN [25],
through distributed training using Horovod [30].

Using GANs to generate simple colored objects, Figure 7a-d show sampled images and model
collapse analyses. We observe that a convolutional GAN exhibits collapse of a two-dimensional
distribution to a one-dimensional manifold. The corresponding CoordConv GAN model generates
objects that better cover the 2D Cartesian space while using 7% of the parameters of the conv GAN.
Details of the dataset and training can be seen in Section S7.1 in the Supplementary Information. A
similar story with VAEs is discussed in Section S7.2.

With LSUN, samples are shown in Figure 7e, and more in Section S7.3 in the Supplementary
Information. We observe (1) qualitatively comparable samples when drawing randomly from each
model, and (2) geometric translating behavior during latent space interpolation.

Latent space interpolation4 demonstrates that in generating colored objects, motions through latent
space generate coordinated object motion. In LSUN, while with convolution we see frozen objects
fading in and out, with CoordConv, we instead see smooth geometric transformations including
translation and deformation.

4https://www.youtube.com/watch?v=YefMbLqS7Jg

8



Figure 7: Real images and generated images by GAN and CoordConv GAN. Both models learn the
basic concepts similarly well: two objects per image, one red and one blue, their size is fixed, and
their positions can be random (a). However, plotting the spread of object centers over 1000 samples,
we see that CoordConv GAN samples cover the space significantly better (average entropy: Data red
4.0, blue 4.0, diff 3.5; GAN red 3.13, blue 2.69, diff 2.81; CoordConv GAN red 3.30, blue 2.93, diff
2.62), while GAN samples exhibit mode collapse on where objects can be (b). In terms of relative
locations between the two objects, both model exhibit a certain level of model collapse, CoordConv
is worse (c). The averaged image of CoordConv GAN is smoother and closer to that of data (d). With
LSUN, sampled images are shown (e). All models used in generation are the best out of many runs.

Figure 8: Results using A2C to train on Atari games. Out of 9 games, (a) in 6 CoordConv improves
over convolution, (b) in 2 performs similarly, and (c) on 1 it is slightly worse.

Reinforcement Learning Adding a CoordConv layer to an actor network within A2C [22] pro-
duces significant improvements on some games, but not all, as shown in Figure 8. We also tried
adding CoordConv to our own implementation of Distributed Prioritized Experience Replay (Ape-X)
[12], but we did not notice any immediate difference. Details of training are included in Section S8.

6 Conclusions and Future Work

We have shown the curious inability of CNNs to model the coordinate transform task, shown a simple
fix in the form of the CoordConv layer, and given results that suggest including these layers can
boost performance in a wide range of applications. Future work will further evaluate the benefits of
CoordConv in large-scale datasets, exploring its ability against perturbations of translation, its impact
in relational reasoning [29], language tasks, video prediction, with spatial transformer networks [13],
and with cutting-edge generative models [8].

9



Acknowledgements

The authors gratefully acknowledge Zoubin Ghahramani, Peter Dayan, and Ken Stanley for insightful
discussions. We are also grateful to the entire Opus team and Machine Learning Platform team inside
Uber for providing our computing platform and for technical support.

References

[1] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al.
Vector-based navigation using grid-like representations in artificial agents. Nature, page 1,
2018.

[2] Clemens-Alexander Brust, Sven Sickert, Marcel Simon, Erik Rodner, and Joachim Denzler.
Convolutional patch networks with spatial prior for road detection and urban scene under-
standing. In International Conference on Computer Vision Theory and Applications (VISAPP),
2015.

[3] C. J. Cueva and X.-X. Wei. Emergence of grid-like representations by training recurrent neural
networks to perform spatial localization. ArXiv e-prints, March 2018.

[4] Scott E Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In
Advances in neural information processing systems, pages 524–532, 1990.

[5] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

[6] Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott. Slowness and sparseness lead to
place, head-direction, and spatial-view cells. PLoS computational biology, 3(8):e166, 2007.

[7] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolu-
tional sequence to sequence learning. CoRR, abs/1705.03122, 2017.

[8] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[10] Geoffrey E Hinton and Drew Van Camp. Keeping neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13. ACM, 1993.

[11] Amy K Hoover and Kenneth O Stanley. Exploiting functional relationships in musical composi-
tion. Connection Science, 21(2-3):227–251, 2009.

[12] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

[13] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In
Advances in neural information processing systems, pages 2017–2025, 2015.

[14] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on, pages 1988–1997. IEEE, 2017.

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In ICLR, volume abs/1710.10196, 2018.

10



[16] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems 25, pages
1106–1114, 2012.

[17] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[18] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[19] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic
Dimension of Objective Landscapes. In International Conference on Learning Representations,
April 2018.

[20] Yecheng Lyu and Xinming Huang. Road segmentation using cnn with gru. arXiv preprint
arXiv:1804.05164, 2018.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning. ArXiv e-prints, December 2013.

[22] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine Learning, pages 1928–1937,
2016.

[23] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & Play Generative Net-
works: Conditional Iterative Generation of Images in Latent Space. ArXiv e-prints, November
2016.

[24] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, and Alexander
Ku. Image transformer. arXiv preprint arXiv:1802.05751, 2018.

[25] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[26] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak Lee.
Learning what and where to draw. In Advances in Neural Information Processing Systems,
pages 217–225, 2016.

[27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

[28] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[29] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Tim Lillicrap. A simple neural network module for relational reasoning. In
Advances in neural information processing systems, pages 4974–4983, 2017.

[30] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed deep learning in TensorFlow.
ArXiv e-prints, February 2018.

[31] Kenneth O Stanley. Compositional pattern producing networks: A novel abstraction of develop-
ment. Genetic programming and evolvable machines, 8(2):131–162, 2007.

[32] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. arXiv preprint
arXiv:1711.10925, 2017.

[33] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 6000–6010, 2017.

11



[35] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

[36] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, and
Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks. In IEEE Int. Conf. Comput. Vision (ICCV), pages 5907–5915, 2017.

12


