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Abstract

In this supplementary material, we present the proofs of the theoretical results in
the main paper. For the ease of exposition, instead of showing the proofs directly,
we give a detailed analysis, with several intermediate results included.

1 Preliminaries

Our proofs heavily rely on the advanced probability tool, generic chaining [3]]. Typically the results
in generic chaining are characterized by the so-called vys-functional or its variants [3} 2], whose
definitions are complicated. Thanks to the majorizing measure theorem (e.g., Theorem 2.4.1 in [4]]),
we can express those results in terms of Gaussian width, which is sufficient for our purpose. In
particular, the following conclusion is adopted from Theorem 2.2.27 in [4]].

Theorem S.1 Let {Zi }vc7 be a stochastic process indexed by T C RP, which satisfies

Ly — Zy
12— Zellsy o,
erer ([t =t
There exist absolute constants Cy and C1 such that the following bound holds with probability at

least 1 — C7 exp (—%),
sup |Zy — Zy | < CoK - w(T), (S.1)
t,t'eT

where diam (T) = supy g e [[t — t'[|2.

In some of the proofs, we also need to bound product processes, which can be handled by the
following theorem. This result is essentially a simplified version of Theorem 1.13 in [2]. The original
theorem contains a few more tunable variables, which are are not central to the core idea and thus
have been hidden.

Theorem S.2 Let (2, 1) be a probability space, and Z1, Zs, . . ., Z,, be an i.i.d. sample distributed
according to . Suppose that F = { fa}aca and H = {hp }bep are two function classes defined on
(2, ), which are indexed by A C RP and B C RY respectively. Assume that

sup || flll,, < Rr < +o0, sup [|hll,, < Ry < +o0,
fer heH
fa— fall, ht — hy
el ool L
aaca [la—a'2 bbes [[b—b|:
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and denote

- — min { K]-']'%;U(A)’ KH}'%Z(B) } .

There exist absolute constants Cy, Cy and Cy such that if n > Cye?, the following inequality holds
with probability at least 1 — 2 exp (70152),

RHK]: . w(.A) + R]:K’H . w(B)
\/ﬁ

< Cy-

L > F(Z)h(Zi) —E[fh]

n-
i=1

sup sup
feEF heH

(S.2)

The theorem above immediately leads to the following corollary.

Corollary S.1 Under the setting of Theorem if F = H and A = B, then there exist absolute

2
constants Cy, C1 and Cy such that if n > Cj (Kféi“;(““)) , the following inequality holds with
2
probability at least 1 — 2 exp (—01 (KFTU;(A)> )
1~ o ) RrKr - w(A)
sup |— fF(Z)-E|ff < Oy ———= (S.3)
fer |1 ; (Z) [ ] ’ vn

The following lemma is also useful in the proof, which essentially states that the concatenation of
independent sub-Gaussian random vectors is also sub-Gaussian.

Lemma S.1 Ifx1,Xo,...,X, are all m-dimensional independent centered sub-Gaussian random
vectors, then x = [x7,...,x2|T € R™" is also a centered sub-Gaussian random vector with

Iy, < € ma [Ixll,, . (5.4
where C'is an absolute constant.
Proof: Definea = [al al ... al]T € S~ where each a; is m-dimensional. We have

n n n
2 2
sl = | D (xiad ||| < 4| C2 D lixiailly, < (|02 laillixilly,
i=1 Vs i=1 i=1
n
2 12 . . — .
<\ il max [lxill,, = € max [xil,, -

i=1

where we use Lemma 5.9 in [5] for the first inequality. Based on the definition of sub-Gaussian
random vector, we complete the proof. ]

Our analysis is organized as follows. In Section[2] we first give the deterministic error bounds for
the distance function d;, d2 and the AltMin procedure, under certain conditions. Then we show in
Section [3] that those conditions will hold with high probability given our stochastic assumptions.
Finally the results in the main paper are directly implied by combining the analysis in Section [2]and
[3l Throughout the analysis, C, C1, ¢o, ¢1 and so on are reserved for absolute constants. Standard
order notations such as o(+), O(-) and €(-) are used to denote the corresponding growth rates.

2 Deterministic Analysis

In this section, we first bound the distance function d; and do defined in Definition[T] We start with a
few definitions.



Definition S.1 (uniformly restricted eigenvalue) For designs X, Xo,...,X,,, the smallest uni-
formly restricted eigenvalue (URE) the for error spherical cap C C SP~! is defined as

1 n
—_ A . . T T T
= f f — X; X, S.5
ot (FE X0 5
Similarly the largest URE is given as

1 n
aj{ £ sup sup u” 7ZX1TVVTXZ' u (S.6)

vesSm—1ueC n P

In comparison with the standard restricted eigenvalue [/1]], the uniformity of the URE is reflected by
the infimum and the supremum operation over v € S~ ! in the above definitions.

Definition S.2 (type-I noise-design interaction strength) For designs X;,Xs,...,X,, and un-
transformed noises 11, 72, . . ., Ny, the type-I noise-design interaction (NDI) strength is defined as

2 n
A ~T
n — 7 i S.7
Yn sup - ;:1 X,;un (S.7)

uel

2

Definition S.3 (type-1I noise-design interaction strength) For designs X, X5, ..., X,, and nois-
es 11, M2, - - -, My, the type-II noise-design interaction (NDI) strength £, for a set of matrices K is
defined as

2 < 21 Xu
Bn(K) = sup sup — Ui .

— (8.8
sekuec N (B 2w,

where the invertibility is assumed for every 3 € K.

In the analysis, we specifically focus on 3,,(M(eg)), as M(eg) defined in (I6) is the set of input 2
under consideration. From its definition, it is not difficult to see that 3,,(M(ep)) is a monotonically
increasing function of eg, as M(eg) C M(ej,) for any e < ef. In the probabilistic analysis, we will
bound 3, (M eg)) at specific values of eg. With the definitions presented above, we are ready to give
the deterministic guarantees for the 3-step and the @-step in and .

Lemma S.2 (deterministic error bound for X-estimation) Given data {(X;,y;)}q, let {3, } be

a sequence such that
1 n
= aml 1| <6 (S.9)
n
i=1

2

dnay ot 1 & . . .. . .
If =5~ > == and 6, < 7, then X(0) given in (13) is invertible for any 6 € R and its error
satisfies
. at
dy (2(0), 2*) <46, +2¢/ 22 . d,(0,0,) . (S.10)
(9™

Proof: We will use the shorthand notation 3 for 33(8).

) \/Tr (2—12*5]—1) Tr (E*_l) Ty (2_12*2_1)
) em)m (5

*
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Ammax (2%2;12%) Tr (2*1> A (2—%2*2—%) Tr (24)
Tr? (2—1)

Wm“ (B1218) A (2125 )

Arma (2:%2215)

Amin (2: )
where the inequality follows from Von Neumann’s trace inequality. Now we try to bound
1 4 _1 1 4 _1
Amax (E* 233, 2) and Apin (E* 233, 2) separately. Note that any 0 given by the solution
. . 0-0., . & -
of the 0—st<z,p in @ satisfies that 5= € C. By the expression for 3 in (I3), we have for
Amax (E2 1 8300),

Nl
Nl

)35

2
I~ p 2 e~ L 7
n < n
i=1 2 i=1 2
1 n 1 1
+Amm(nEDEﬁx«o—mxo—&ﬂxfzﬁ)
=1
2 1 0-06
=140, +0-6.],-|=-) =.°X;,- ——— . 7T
16— 6.1, nZ} ool ™|
Ity (0-09(00-6)" 71
+160-6.]2 sup vI =Y =, %X, XTI 7 | v
? vesmo n; 16— 6.]13
_1 2 &
s1+6n+||6’—¢9*||2-HE*é ssup || = X
2 uecC ni:l

2

veSm—1ueC

+ |6 — 0*||§ . ||2;1||2 - sup supu’l (711 ;XZTVVTXZ'> u

Tn

=1+0,+

orf
16— 6.1, + 2 116 - 6.3

é

1

Similarly we bound Apin (2* 2 22:%) as follows,
)\min (2*_%22;%> =1+ )\min (2;%22:% — I)

1 L~
Z 1 +)\min <nzn7n;r - I)

1 2 1
>1- =S aal -1 — |23 500X, 0 - 0.)a]
ni= 2 i3 2
1 <& _1 _1
Amin | =) 2.2X,(0 —0.)(0 —0.)TXTx, 2
(135 w0 000 - 0705



>1-8,—[60-6.],- Hz;fH . sup
ueC

nZXu

2 — . .
+ HO — 0*”2 . )\min(z* 1) inf infu <n z;XlTVVTX7,> u

veSm—1 uel

:1*671,*

Tn Q, 2
\/7_”070*“24» + ||070*||2
Ox O«

Combining the inequalities above, we obtain

+
- 144, +—=—|6 — 0. +a—z 0—6.|3
() _ 10— 0.l + 2510 — 0.3

§(X.) \ L= 00— =6 — 0|2 + 22

6 — 0.3

1+ 26, + 5 7" ~[6 — 6. 1%+ a9, IE:
< 2 2 (fouow from 2v/ab < a + b for a, b > 0)
1 - 28, — ;2 116 — 6.3 + 216 — 6.3
1+26n+@||070*u% buy _ of
< - use the condition /% > —*
1—26, V2 4o
1+ 26, 2055 (16 — .13
< + ol HQ (follow from vVa+b < +Va+ \/l;fora,bEO)
1-26, (1—26,)0s
26, 20 (|0 — 0..||3 a
<1 follow f; At <1+ —f >0
< +1725n (1-20.)0r (o ow from +a< +20ra_ )
o . 1
<1446, +2y— |0 — 0., use the condition 4,, < 1)
O

~ 1 1
The invertibility of 3 is guaranteed by Apin (2« 2X3. 2) > % following from the derivation above.
]

Lemma S.3 (deterministic error bound for 6-estimation) Given data {(Xl,yz)} ', and a set
K C R™*™ such that every 3. € K is invertible, if the tuning parameter X is set to f(0..), then the

following error bound holds for é(E) given in (T4) with any input X € K,

o (002, 0.) <erm) B Bu(K)

=(1+d (E5,X%) &2 ——=, (S.11)

Qn

where £(X) is defined in Deﬁnition In particular, the error for 0(X) with any input ¥ € M(eg)

satisfies
Bn(M(eo)) .

Qp

ds (é(z), 0*) <E(x)- (S.12)

Remark: Apart from C = M(eq), other specific instantiations of this lemma also yield interesting
error bounds. For example, setting K = {I} gives us the error for the ordinary least squares 6,4, in

= Ba({1}) Ba({1})
R I 1 I
Ouin — 0.|| <g =22 - U2 . S.13
’ d 2 = ¢ an vm foy Cod ( )
If we choose K = {3}, the error bound corresponds to the oracle estimator éom,
2] ({25 1 ({24
|6 0., < my. P2UZH BBD s s
2 (077} Tr(z;l) (679




Proof: We use the shorthand notation @ for §(X). Since the tuning parameter  is set to ||6, ||, the
optimality of @ implies that

1 < 2 1 & ; 2
— -3 <
nZHE 6))2_2nZHE ( XG)‘Q
=1 =1
— 12%”2—* X,0.) + X, (0 0)H2< 1§:HE—%( xa)]2
n < e 27 204 Vi Tl
n o 1 B
— nZHz IXi(0- 0.+ - D (vi - Xi6)TZ X (6, - 0) <0
1=1 =1
n

2 —6.
R R T A
— 2
2 1 n _1 )
15T »-3X,. 0-0.
S | P o0z |15

Now we try to bound the numerator and the denominator on the right-hand side. Note that f (é) <

0-0,

A = f(0,), we thus have i g _9‘9 *H € C according to the definition of the error spherical cap.

Assuming the eigenvalue decomposition 3 = Z 10 vJv we further get

1 . 60,
fz 22X ——— 71nffZHE*5Xu’
[ 160 — 0.]| uecn
1= 2
— T~T T ‘
_uirelfcﬁzu X; Za \2AL X;u
m 1 n
-1...T T, T
:11,22 o; -u (nZXZ ViV Xi>u
Jj=1 =1
m 1 n
> - oif ifu® [ Y XTwWTX;
> ($oot) - int it (nz WX, ) u
i=1 i=1
= —-Tr(z—l)
2 O 60,
= /2 X s ——— <5 anz 'X;u
n i—1 ||0 — H*HQ u€C n
2« 021X
:HE}k/Qg—lH - sup = "7127“
Fouee i ||E*/ 2-p
2~ 0/ T7'X;
< HE}/QE_IH - sup sup — %
FozeMuec M |28 p
=B -/ Tr(Z- 12,371
Combining the results above, we can get (S.12). [

Equipped with the deterministic bounds for both 8- and X-step, we have the following theorem for
the whole AltMin procedure.

Theorem S.3 (deterministic error bound for AltMin) Define ¢, p,, and e, as

n(M(e a?{ 1+ 46,
En = 6(2*) . L_(O)) 3 Pn = 2671 €min = €n * 1
(677 Ox — Pn




in which 6y, is defined in Lemma Assume that enin < eg and the initialization satisfies both
f(0(0)) < f(0+) and ||0(g) — O+||2 < eo. Under the conditions ofLemmaand if pn <1,
then é(T) returned by Algorithmsatisﬁes

Ocr) — 0.

9 S €min + /)Z : (60 - emin) 3 (SlS)

Remark: Note that e, is given in a multiplicative form in terms of ¢,, which is similar to the
bound for the error e, incurred by the oracle estimator. The theorem also reveals the role of e,
which is calibrating the quality of initialization. The better the initialization is, the smaller the error
€min is.

Proof:  Since the initialization 6 ¢, satisfies f(6(¢)) < f(8.) and Hé(o — 0.]|2 < eg, we have
iS

ﬁ)(l) € M(eg) by Lemma and(S.3| we have for the first iteration of Algorithm|l],

A ok )
d (S0, 3) <46, +2 /22 -z (60, 6.)

Ox

do (é(l), 0*) < 5(2(1)) . M =¢€pn- (1 + dy (2(1), E*))

Qn

Combining the two inequalities, we obtain the recurrence relation for the error of é(l) and é(o)

do (é(l), 9*) <en-|1+46, -|-2\/7 do (é(o), 9*>

As p, < 1and ey, < eg, we have dg(é(l), 0.) < eg, thus 2(2) € M(ep). By induction, we can
recursively apply the resulttot = 2,3,...,T,

R +
do (O(T), 0*) <qr, whereq = ey (1440,) 4 2604/ % ~qi—1 and go < e

Solving the recurrence of r,, we get

n (1 + 406, iy n (14 46,
qT_wi+“ 0 [ en (1+43,)

n - : qO - 7+
1—2¢e,4/%= O« 1725”,/?—2
= €min + ,0” : (QO - 6rnin)
S €min + ,OZ . (60 - emin) )

which completes the proof. ]

3 Probabilistic Analysis

In order for the deterministic results to hold nontrivially, we need the conditions stated in Theorem
to be satisfied, and the error e, to decay with growing sample size. The proposition below
translates those requirements into the desired individual growth rates of o, aj, Bn» Yn and dy,,
which need to hold (with high probability) when the randomness of X and 77 is considered.

Proposition S.1 For any fixed ey and an initialization with f(é(o)) < f(6.) and ||é(0) — 0.2 < eq,
the error bound (S.13)) holds with large enough n, and we have lim,,_, oo emin = 0, if @, @, Op,
Y and B, (M (eg)) satisfy the following conditions,

(i) The smallest and the largest URE: «,, = O(1) and o} = ©(1)

(ii) The rate of convergence for ||% Sl — IH2: 0n = o(1)



(iii) The type-I noise-design interaction strength: v, = 0(6,{/ 2)

(iv) The type-II noise-design interaction strength: (3,(M(eg)) = o(1)

Proof: Since a;, = O(1) and 5, (M(eg)) = o(1), we have lim,_, o0 €p = limy, o0 () -
BaMle0)) — . As (ii) holds, it follows from that 6, < 1 when n is large. Due to (i), the

Qn 4
condition =5 > == is true for sufficiently large n. Given that e, = o(1) and a7 = ©(1), we
have p,, = o(1). With p,, = o(1) and §,, = o(1), it is easy to see that e;,;, < eq for large enough n
and lim,, , y o 2= = 1, thereby lim,, , y oo €min = 0. ]

For the rest of the section, our goal is to show the high-probability non-asymptotic bounds for .,

A, 8, o and S3,,. As a reminder, the stochastic assumptions given in the main paper are listed

below.

(A1) The designs X, ..., X, are i.i.d. copies of a sub-Gaussian X with parameter , u~ and p .

(A2) The isotropic noises 71, . . . , 1, are i.i.d. copies of a sub-Gaussian 77 with parameter 7.

3.1 Bounding o, and «;"

The lemma below justifies the claim of the condition (3).

2
Lemma S.4 Under the assumption (Al), if the sample size n > Cy Inax{m‘l (Z—f) 1

max {w?(C), m}, with probability at least 1 — 2 exp (—Cy max {w?(C),m}), the smallest and
the largest URE satisfy
1 3 4

SHT Sy S ap < ot (S.16)

where w(C) is the Gaussian width of the error spherical cap.

Proof:  First we have

1 n
o, = inf inf u? ( ZXZVVTXZ'> u
veSm—1uel n P
1 n
> inf infu” (E [XTVVTX]) u+ inf infu” < XT'vwTX,;, - E [XTVVTX}>
vesm—1uel veSm—1uel n

> inf inf u” (E [XTVVTX]) u— sup sup

veSm—1ueC vesm—1ueC =
1 n
>u~ — sup sup|— Z:(uTXiTV)2 —E(u’XTv)?
vesm—1uec |1
1 n
af = sup supu’ (n ZXZTVVTXZ‘> u

veSm—1ueC

< sup supu?l (E [XTVVTX]) u+ sup supu’ (711 Z XT'yvwwIX; - E [XTVVTX}> u
n

veSm—tuel veSm—tuel i—1
1
< sup supu’ (E[X"vw'X])u+ sup sup|=)» (u'X]v)?-Eu’X"v)?
vesm—1uel vesm—tueC |1 i—1

n

1
- Z(uTXZ-TV)2 —E(u’X"v)?
i=1

<ut 4+ sup sup
veSm—1uel




Now the goal is to bound sup,cgm-1 Supyee |2 Y0 (W' XTv)? — E(u”X”v)?|. In order to
apply Corollary we let A = S™~! x C € R™P, a = (v,u), and the function class F =
{ fa= uTXTv}ae 4+ We then verify the conditions required by Corollary for F and A.

_ T~T
sup [Illy, = _sup sup [ XV,

sup sup ‘HuTF‘l,/QF;l/QXTVH
veSm—1luel

P2

< K- sup sup HF%,/QuH
veSm—1ueC

FWHQSR pt = Rp=rypt

2

IN

K- sup
vesm—1

Vaa €A, ||fa— fa/\||w2 = |HuTXTv — u'TXTv’|||w2
= [[(u— )Xy 4+ uTXT (v - v’)|”w2

o N\T
(u ll) XTV

1IT~T (V_V/)
s v X

+ ||V—V/||2 v —+v|>

< flu -’

P2
< /i (a =y + v = '],
< Vot la—wl} + v = VI
- \/i,q\/;FHa— a'll, - Kr =2kt

It follows from Corollary that if n > cow?(.A), the following result holds with probability at least
1 —2exp (—c1w?(A)),

RS T~T.,\2 T~T.,\2 wAut - w(A)
sup sup|— u X;v)"—E(u X'v < cgr————= (S.17)
D LRIV S EIR < e TE
2
If n further satisfies n > 4c2k? (ﬁ—t) w?(A), then
sup sup 1 i(uTXiTV)2 —E(u'X"v)?| < l,u_
vesm—1ueC [T i—1 2
_ _ 1 1 1 _ 3
=y 2T g =gp, ag SptHopm <ot
Finally we note that
w(A)=E [sup (a, gmﬂ,)} =K [ sup (u,gm) + sup (v, gﬁ}
acA uesm—1 vel
= E[llgmll2] +w(C) = © (Vm) + w(C)
By renaming the constants, we finish the proof. ]

3.2 Bounding ¢,

The condition (i) is simply implied by the following bound for the convergence of sample covariance
matrix, which is a direct result of Lemma 5.36 and Theorem 5.39 in [3]].

Proposition S.2 Under the assumption (A2), there exist absolute constants Cy, C1 and Cs such that
if n > Co*m, the following inequality holds with probability at least 1 — 2 exp (—Cym),

1 n
S Al 1| < oy [ 2, (S.18)
n i—1 n

2

P



3.3 Bounding v,

Next we show that the rate of ~,, also has a \}H—dependence as d,,, thus implying that y,, = 0(5,11/ 2)

in the condition (7i7).
Lemma S.5 Under the assumptions (Al) and (A2), if n > Cym, the following inequality holds with
probability at least 1 — 2 exp (—Cym) for the type-1 NDI strength v,
R/ (/i + w(C))
vn '

Yo < Co - (8.19)

Proof:  First we have

n

i; Xunl|| =2sup sup sup 1 Z (vI'X;u) (7] b)

Yn = SUp
ueC ) ueCvesm—1besm-1 N 1=
1 n
=2sup sup sup |— Z (VTXZ'U.) (ﬁin) —E [VTXuf]Tb}
ueCvesm—1besm-1 | 1

Next we use Theorem to bound the stochastic process above. Let A = S~ x C ¢ R™P,
a = (v,u)and B = S™" 1. Construct F = {fa = v/ Xu}acq and H = {hp, = 77 b}pes. We
start by verifying the assumptions. Note that

sup I/l =sup_sup [futXv],,
< TxT
<sp s X",
=sup sup ‘uTI“l,/QI‘;l/QXTVH
ueC vesm-1 P2
< sup sup mHI“l,/QuH
ueCvesSm-1 2
<k pt = Ry =kt
wplibll, = s [l776]l,, <7 = A=

Similar to the proof for Lemma[S.4] we have
Vaa €A, ||fa— fally, = H‘VTXTEQINu —VIXTy 2y

P2
< || v=v)'XTu+vTX(u— u')mwz
_ o\T oy
<=l [l v 28
EErrae u— s

< syt (v = vl + [la =)

< V2R v = v+ v
=V2r/ptla-alll, = = Kr=vV2s/pt
Vb,b" € B, |lhy —hw|l,, = |[|7" (b— b’)m% <7|b-b, — Ky=r

By invoking Theorem|[S.2]and noting that w(S™~1!) = ©(y/m), w(A) = w(S™ ') + w(C) > w(B),
if n > com, we get

n

> (vXu) (7]b) — E [vXun"b]

1
n-
i=1

<C2‘K/T‘/M+'M
- vn

with probability at least 1 — 2 exp (—cy;m). The proof is completed by renaming the constants. B

Yo < 28up sup  sup
ucCvesSm—1 pesm—1

10
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3.4 Bounding 3, (M (eg))

Lastly we verify the condition (iv). Given the statement of Theorem S.3] we first bound 3,, (M (eg))
for eg = 400, which allows arbitrary initializations of AltMin.

Lemma S.6 Suppose that the conditions of Lemma are satisfied with probability 1 — € when

n > ng. Under the assumptions (Al) and (A2), if sample size n > max {no, C07'4m}, the type-I1

NDI strength for M(eq) with eg = 400 satisfies,

pt (m+w(C))
vn ’

Ba(M(eg)) < Cs - =

with probability at least 1 — € — Cy exp (—Cyim).

(5.20)

Proof:  When the conditions of Lemma |[S.2]is satisfied, the invertibility holds for all ¥ € M. using

1/2

the relation n = 3,/ “1), we have

2 v n/E"1X;u
Brn = sup sup — 1/27
SeMueC = |12

2 <N AT S R X
= sup sup — 1/2—
SeMuec ”i:1 ||§J X1 F

Z e

< sup sup — Z ; TAX;u
AcSmxm—1yeC N

Un
Therefore we just need to bound v,,. Since the design and noise are independent, we will consider
their randomness in a sequential fashion. The proof proceeds in two steps. First we show that the
noises 71, 72, . - . , N, Will behave “well” with high probability. By the word “well”, we mean that
the following event is true,

{{"h} ‘ Z 1A 3|, < 2} (S.21)

Denoting the columns of A by A1, Ag, ..., Ay, We have

n

5 l T 2 .
AES%}LlEmfl n ’Lz:; HA nl||2 - AES%}}}?’" 1 ZTI' nlnz )

— s SN <i§jﬁm?>x
=1

AeSmxm—1 =
1
~ =T
‘TL Z nin;
i=

= sup ZIIA I3

eSme—

1.
5;?777

2

2
By Proposition if n > cor*m, we have

%Zﬁlﬁf
i=1 2

with probability at least 1 — 2 exp (—c1m).

<1+ <2

Z Ay —

2

Next we consider the randomness of X, given that 7);’s are fixed and & is true. Construct the
stochastic process {Zt f Zl . 7 AX; u} - where 7 = Smxm=1 y ¢  Rm>Xm+p gpd
te

t = (vec(A),u). Note that

Vet €T, ||t—t'||2:\/\\A—Af\@ﬂ\u_uf”;gz\@ —  diam (7) < 2V2

11



In order to apply Theorem to {Zt }, we first verify the required condition.

Vit €T, 12— Zell,, = nTAXu — Z 7l A X
P2
T(A = A)X;u ZnTAX u—1u)
\/>
Y2
(a) , .
< ¢y ZHA ATl - e |||v Xull,.
b S IATRIE Ja-wlye sup [[vx 2EY
, | = A2 =], - _u-uw
n 2 2 egmo1 lu— '

< V2ery/ it (A = A+ [lu—u'],)
/
< 2cory/ it {vec ] — {VCC&A )} = K =2ck\/put,
2
where step (a) follows from Lemrna By Theorem we have for fixed {#; } under event &,

1 + .
Vnzi'supztzi' sup |Zt—Zt/|<63‘M

2
VN oteT N otteT - Vn

with probability at least 1 — ¢4 exp (_di:;i(j()?_)) >1—cyqexp (_@) Now we combine the
randomness of X; and 7};, and get

+ .
Px (Vn . 'fuﬁw(T>>

H\/ ~ ~ ~

:/PX<Vn§CS ‘{m) (M1, M) A . Ay,

l‘i\/ ~ ~ ~

/]PX( <csg- ‘{n:) (M1 M) ANy - . dT
£

N (w?;ﬂ)) o
> (1 — cyexp (— “’1{”)) (1 - 2exp (—cym))

2
>1—2exp(—c1m) — cqexp (_wéT))

Y

>1—csexp(—cem) ,

where the last step follows from w(7) = w(S™*™~! x C) = w(S™*™ 1) +w(C) = O(m) +w(C).
Since the invertibility for M is implied by the conditions of Lemma we have that if n >
max{ng, Cotm},

B, <cr- m//F(T\/nﬁ—&- w(C))

with probability at least 1 — € — ¢5 exp(—cgm). Finally we complete the proof by renaming the
constants. |

The proof of Lemma [S.6]suggests that 3,, for any singleton K satisfies

ky/ pt - w(C)

ﬁn(’c) S C:/), : \/ﬁ )

(8.22)
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with probability 1 — C4 exp (—C)m) if n > C}7*m. Combined with Lemma|S.3|and [S.4] this
immediately implies the error of both ordinary and oracle constrained least squares

_ CRvit w(€)
€odn = ,U/_\/TTl \/ﬁ (823)
Crypr | w(©) (S.24)

€orc = .
py/ (s v

For the well-initialized AltMin, most of the analysis stays the same, with the exception being
Brn(M(eg)). With a small value of eq, the index set M(eg) in the definition of 3, (M (eg)) will
shrink, so that we are able to sharpen the upper bound of 5,,(M (eg)). The following lemma bounds

the 5, (M(ep)) at eg = \/Zji

Lemma S.7 Suppose that the conditions of Lemma are satisfied with probability 1 — € when
n > ng. Under the assumptions (Al) and (A2), if n > max {no, Co - max{r* k* 1} -
max{w?(C), MT—(?’C), mz}}, the type-II NDI strength for M(eq) with eg = 1/ Z—; satisfies

K/ put - w(S)
vn
with probability at least 1 — € — Cy exp (—C1 - min {w2 (S), m})

Bn (M(eo)) < Cs - (S.25)

Proof: Throughout the proof, eg is set as \/ZT , and we will use the shorthand notation 3,, and M
for 3,,(M(ep)) and M (ep). First we introduce the following notations

S =¢y-S={eu|ucsS}

I'y =E [Xww’X"]

Yo=3,+Tg_0g,

== Z X; an - — Z mWTXi + % i XiwaXiT
i=1 i=1

A 1
o= Z’?m,-T +Tlo-0. = > (vi—Xib) (yi — X;0)"

i=1 i=1

M

Note that 1~ < Apin(Tw) < Amax(Tw) < put forany w € SP~1, Ty, = E[f‘w] Y9 = E[Xp] and
MC{Zg|0 €S +8.,}. Then we decompose f3,, as

n Ty —1 n i 1/25v-1
n: X7 X,u F 3/ 7Y 7 X
Bn= sup sup— }» —o——— = su E: o1/ :
TeMuec N = ||§] XY g zeM uEC n 272
1/2 -1 1/2 -1
DI /78
< sup sup-— g g X;u
6ES' 6. ucC 1 § ( RSP PRTSEE P

2 AT EYE X u

+ sup Ssup-—
bes/+0. uec = |25 g
/25t »l/251
< sup sup — an AX;u- sup g1 7 _01
AeSmxm—-1uec N oes+o. || | X "X, ||F HE* bpad Il ps
Vn Cn

UTED YA Spub )
+ sup sup —_—
0es'+6. ueC”; (P23 >pui P

#n

13



where v, is analyzed in the proof of Lemma[S.6] Therefore we focus on bounding ¢, and ¢,,. We
first try to bound (,,,

»1/25-1 1/25—1
Cn = sup /2% 91 %?2 2,01
0es'+6. ||| X Ilr 13285 s P
1/2 -1 1/2¢v—1 1/2 1 1/2¢—1
= peal 1/24 = ~1 E1*/2 E01 1/2g, = 1 E1?2 Z91
oesto. || [S785 1 328, 1k F beso. 1272 lr 1272 llF |l
1/2¢ 1/2— 21/22 1 1/2271‘
N 0 Pl H |,
ocsh 1/253-1 ) 1/251—1
€5'+6. 124725 ||r ees +9.. 1373, | F
2551 - 21/2251“ Hzm (-, )21/2’ : HE:”QH
<2 sup 7 E <2 sup F
05 +6. (D3 >t P 6cs ve. mm( »l/2% 121/2) Hz;l/zH
F
s 1/2(20 59> 1/2H H21/2 121/2“ H21/2 121/2 }
<2 sup 2
0€S'+0. Amin (21/2 Glz}k/2>
=380 - B)= V2| A (B2 m0m )
=2 sup 2

0cS’+0, )\min (2*—1/2292*—1/2> . )\min (2*—1/2292*—1/2>

2 SUpges: 1o, Hz;lﬂ(ig - 29)2;1/2”2 - SUPwes Amax (2;1/2(2* + rw)z;1/2)

infocs 0. Amin (2;1/2292;1/2) Cinfwes Amin (2 V2(2, + W)y 1/2)

—1/2 /& —1/2 +
(80 - )= | - (14 £ supees wl3)

(1—26,) - (1 + L infuess HWH%)

2supgesito,

<8 sup HE;W(E _ 3z
0eS’'+0. 2

where the last two steps use the conditions in Lemma|[S.2]and borrow some derivations from its proof.
The last term can be further bounded as follows,

N ( anz+I‘ -3, 1“)2

2,2 (S0 — Z)%,

sup = Sup
0cS'+6., 2 weS’ — 9
Sy 1 -3 T 1 - T~ Tsi—3
me + sup | [|= Z DNED € = me X%, ?
wes’ n-< n -
2 i=1 i=1 2
1 & _
+ sup ||Xs RN Z XiWWTXiT —I'y | 2. 1/2
weS’ n =1 9
<, + - sup X, wn - sup X, ww’! —Tw
V Oy WweEC n Z Ox weC||T Z
2 2
2 n
n 1
<O+ LD qup sup |- Z(WTXZ-TV)2 —E(wTXTv)?
\ Ox Ox veSm—1lwecC | =1
e [, TV (@) | e’V + w(C)
which holds with probability at least 1 —cy exp(—csm) whenn > cg max {74, 1} max {w?(C), m}.

The last step follows from Proposition[S.2] Lemma(S.5]and intermediate results in the proof of Lemma

14



Hence ¢, can be bounded by

vm +w(C)
NG

Now we turn to bounding ¢,,. Following the idea for proving Lemma we also consider the
randomness of {7;} and {X;} sequentially. For {;}, we first have that the event

={{fm o ZHATmH2<2}

AeSmxm—1 n i—1
holds with probability at least 1 — 2exp(—c;m) if n > cj7*m, which is shown in the proof of
LemmalS.6] Now we consider the randomness of {X;} under any fixed {n;} € £. We have

C’n < Cr - max {7-27’62} '

¢, = Ssup sup—
! 068'+9*uecni:1 (D3 >pud P

1 " ATSYA(S, +Tw) X u
— - sup sup — 7
€0 weS'ues' i—1 HE* (2* + I‘W)_lHF

2 Z TR ORES pub

IN

2
= ’SupZta

eoV/n  teT

7"21/2(ZJ +Fw)
I22/% (S +Tw)~ 1|\F

where Z; = f S 2.t =(w,u)and T = &' x &'. Note that

Vit eT, ||t—t’u2:\/||w—w/||§+||u—u/u§gzx/ieo —  diam (T) < 2v/2¢

Then we try to bound the stochastic process { Z }tec7 using Theorem We start with verifying the
required condition.

vt,t' eT,
12 — Zel,
n TEI/Q(E +Tw)" X.u zn:~T21/22 1T, )1X1-u’
1-:1 IS (E 4T e VRS IS ) e |,
( SVA®, 4T SYAEL 4Dy )X,u
=@ +Tw) e 1= @+ T e ) L,
H z": 7 227 (2 4 ) ' Xi(u — )
- \IE”Q(E + D) "
n i 3 T 2
XA ( S T~y ) i - s [TXal,
= | \IZ2 (4 Tw) Yl 1B (S, + L)1 p
n 1 TP
+ ¢ %Z ( E;f(E*—i—I‘w,):l ) nil| - lu—u'[l,- sup VTX“:;__IT//”
=\ IZ2 (B + Tw) Y p , 2llv,

%2(8, 4+ Ty) ! %2(S, 4 Ty) !
1 - 1
122 (2s +Tw) Hlr  [Z2(2 +Tw) Ml

(b)
< V2t <eo

+ Iu—u’|2>
F

(c)
< V2t (8[lw — W[l + [lu —u[l,)
/
< 16chry/ pt {vlﬂ - [VJ,} = K =16ck\/put,

2
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where step (a) follows from Lemma|[S.T]and step (b) follows from the event £. Step (c) follows from

the calculation below (similar to bounding (),

SY2(5, 4+ Ty)-! 5/2(8, 4+ Tw) ™!
’ 1= E 4 Tw) e IS+ D) el
I R R N e R L
BE AT B (S T

1= +Tw) r 1328+ Tw) L lr
2=z, 4 ) - B3z, 4 rw,)—1HF

F

IN

o

2= (B 4+ Tw) = (B 4+ Tw) ) 27|
2

IN

Amin (ZH2(2. 4+ Ty) 1 81?)

IN

2= (0w —Tw) S0V2| - |IBV3 (2, +Tw) 12| - 233 + Tw) B2
2 2 2

Awin (222 (B, +T) 122

2212 (0w~ D) 22| A (B2 + T =)

Aoin (2528 + D)%) A (2:”2<z £Tz )
+
2Ty~ Tw - (14 4 wl3)
Tx (H%IIW’II%) : (1+guw|\g) T ox

sup |VT (IE [XWWTXT] —-E [XW’W’TXT]) V|

0% vesm-1

IN

HE [(Xww’X"] - E [Xw'w"X"]||,

IN

4
< — ( sup ’vT]E [Xw(w w )TXT] v‘ + sup ’vTE [X(w — w’)w’TXT] v’)
Ox \veSm—1 vesm—1
8
< —-|lw—w|,- sup sup supv'E[Xrz'X"]v
O veSm—1 zeSr—1reS’
E viXr 2 E TX 2
860 / € + (V Z)
<—-|lw—w|y- sup sup sup
O vesm—1 zeSp—1res’ 2
860 8
< —-w—wl, -t =—-[lw—w],
o 0

By invoking Theorem[S.1] we have for ¢,, with any fixed {7);} € &,

On = -sup Zy < sup |Zy — Zy| <

2
eof teT eVl treT €0 Vn

:403'

NG

2¢5 Ky pt - w(T) , Ry ptow

(S)

with probability at least 1 — ¢/, exp (—Lﬂ)) >1—cjexp (—@) Now we combine the

diam 2 (T
randomness of X; and 7j;, and get

Px.s (% <1 W)

K,\/ ~ ~ ~
/PX <¢>n§403 ‘{m ) PNy, M) dNy .. diyy,
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R/ W ~ ~ ~
/PX<¢n<4/' ‘{m) (M1 M) dN .. dTy,

- (1o (_w;@)) ve)
> (1= (-42) ) (1 - 2exp (~clom)

)

>1—2exp (—cim) — ¢} exp (

We obtain the final bound by assembling everything above. If n > max{ng, C}, - max{r* 1} -
max{w?(C), m}}, with probability at least 1 — ¢ — C{ exp (—C% min{w?(S), m}), we have

< C% - max{7? K%} -

/it (m+ wC)(Vm+w(©) oy m 1T - w(S)
n 4 Jn )

. . . . 3
In particular, if the sample size also satisfies n > Cf - max {7*, x*} - max { 2y M w2(C)} >

2
Cf - max {r* k*} - ((m+w(c)11)}((:s/)m+w(c))) , we further have

Ky pt - w(S)
\/ﬁ )

which completes the proof. [ ]

Bn S C’/r )

4 Proofs of Lemma [T}, 2] and Theorem [1} 2]

Based on the analysis presented in Section [2]and [3] now we give the proof sketches of the main
results shown in the paper.

Statement of Lemma Under the assumptions (Al) and (A2), if the sample size n >
2
Cp max {1 4 Kkt (%) } - max {m, “);(LC) } with probability at least 1 — Cy exp (—Cym),

o b

3:(0) given in (13) is invertible for any @ € R and its error satisfies

d1< 6), = <CgT \/>+C4\/7 d»(6.,0,) . (S.26)

Proof: The above error bound for d; directly follows from the deterministic bound in Lemma
and the probabilistic bounds for o, af{ (Lemma , On, (Proposition and 7,, (Lemma . [ ]

Statement of Lemma 2  Under the assumptions (Al) and (A2), if the sample size n >
2
Cp max {17 Kkt (@) } -max { , 'wi,gc) }, then with probability at least 1—C5 exp (—Cym),

oo p
the following bound holds for 6(X) given in (&) with any input £ € M (+o0),
~ +
d (0(%), 0.) < (1+di (2. %)) - Cunyur  miw(e) (8.27)
i)V

where £(X) is given in Definition][l]
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Proof:  The above error bound for ds directly follows from the deterministic bound in Lemma|S.3|
and the probabilistic bounds for «,,, o (Lemma , 0, (Proposition , Yn (Lemma and
Brn(M(eg)) with eg = +00 (Lemma. |

Statement of Theorem [It  Under the assumptions (Al) and (A2), if the sample size n > Cj -
4 4 (ptof 2 2 +\2 (oF w*(C) A . e e
max< 1, 7% Kk (7> K (“—_) ( * ) -max { s m}, and 6 ) is a feasible initialization

Ho o ©w O
(i.e., f(é(o)) < £(6..)), then with probability at least 1 — Cy exp(—Cym), the following error bound

holds for é(T) returned by Alg()rithm

o

9 § €min +p£ : (Hé(O) - 0*

- emin) 3 (528)
2

in which p,, and ey, satisfy the inequalities below with 6,, = Cs72/ =< %,

pn < Csrut .m+w(C)<} o < Cyrkr/pt .m—l—w(C)-l—&—(Sn
_uﬂ/a;Tr(E*_l) Voo T2 _;r Tr(=:h) v L=pn

(5.29)

Proof: The above error bound for AltMin directly follows from the deterministic bound in Theorem

and the probabilistic bounds for o, af{ (Lemma , 0y, (Proposition , Yn (Lemma and
Bn(M(eg)) with eg = +00 (Lemma. ]

Statement of Theorem [2} Under the assumptions (Al) and (A2), if the sample size
2 2
n > Cy - max{1,74,n4 (M> , K2 (Z—ir) (Uj)} . max{%,wgn—(gc),m%, and a fea-

noos o
sible initialization 9(0) satisfies ||é(0) — 0.2 < 4/ Z—’:: then with probability at least 1 —
Cs exp (76’1 - min {w2 (C),m}) the error bound (30) holds for é(T) returned by Algorithm
with p,, and e, satisfying
Carp™ w(8S)

. < < Curn/pt w(S) 1+4,
wo G*_Tr(z*_l) Vi

>~ 5> €min > :
2 e TI‘(E*_l) \/ﬁ 1—pn

P < . (S.30)

where 6., is the same as the one given in Theorem|l}

Proof: The improved error bound directly follows from the deterministic bound in Theorem
and the probabilistic bounds for v, , o;f (Lemma|S.4), §,, (Proposition|S.2)), 7,, (Lemma|S.5)) and

Brn(M(eg)) with eg = \/Zf (Lemma. [
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