
Supplementary Material to
"Bilevel Learning of the Group Lasso Structure"

Section A collects the proofs of the main results presented in the paper. Full details on the proposed
algorithms are given in Section B. Finally, Section C contains additional results on synthetic data.

A Proofs

A.1 Analysis of the Bilevel Framework

Proof. of Proposition 2.1. We first note that θ 7→ ŵ(θ) is bounded. Indeed it follows from the
definition of L in (5) that (ε/(2T ))‖ŵ(θ)‖2 ≤ L(w(θ), θ) ≤ L(0, θ) = (1/(2T ))

∑T
t=1‖yt‖2. Now,

we show that θ 7→ ŵ(θ) is continuous. Let θ̄ ∈ Θ and let (θ(n))n∈N be a sequence in Θ such that
θ(n) → θ̄. Since (ŵ(θ(n)))n∈N is bounded, in order to show that ŵ(θ(n))→ ŵ(θ̄), it is sufficient to
prove that ŵ(θ̄) is the unique cluster point of (ŵ(θ(n)))n∈N. So, let ŵ(θ(κn))n∈N be a converging
subsequence, say to w̄. Then, since L is jointly continuous,

∀w ∈ RP×T L(w̄, θ̄) = lim
n→+∞

L(ŵ(θ(κn)), θ(κn)) ≤ lim
n→+∞

L(w, θ(κn)) = L(w, θ̄). (1)

Therefore, w̄ = argminw∈RP×T L(w, θ̄) = ŵ(θ̄). Thus, U : θ ∈ Θ → C(ŵ(θ)) ∈ R is continuous
and hence, since Θ is compact, it has a minimizer.

Proof. of Theorem 2.1. We first prove that U (Q)(θ)→ U(θ) uniformly on Θ as Q→ +∞. Indeed
let ε > 0. Then, since C is uniformy continuous on Θ, there exists δ > 0 such that

∀w,w′ ∈ RP×T , ‖w − w′‖ ≤ δ =⇒ |C(w)− C(w′)| ≤ ε. (2)

Since w(Q)(θ)→ ŵ(θ) uniformly on Θ as Q→ +∞, there exists K ∈ N such that for every integer
Q ≥ K, supθ∈Θ‖w(Q)(θ)− ŵ(θ)‖ ≤ δ and hence supθ∈Θ‖C(w(Q)(θ))− C(ŵ(θ))‖ ≤ ε.
Now, let (θ̂(Q))Q∈N be a sequence in Θ such that, for every Q ∈ N, θ̂(Q) ∈ argminU (Q) We prove
that

(i) (θ̂(Q))Q∈N admits a convergent subsequence.

(ii) for every subsequence (θ̂(KQ))Q∈N such that θ̂(KQ) → θ̄ as Q → +∞, we have θ̄ ∈
argminU and UKQ

(θ̂(KQ))→ inf U as Q→ +∞.

(iii) inf U (Q) → inf U as Q→ +∞.

(iv) dist(θ̂(Q), argminU)→ 0 as Q→ +∞.

The first point follows from the fact that Θ is compact.
Concerning the second point, let (θ̂KQ

)Q∈N be a subsequence such that θ̂KQ
→ θ̄. Since UKQ

converges uniformy to U on Θ as Q→ +∞, we have

|UKQ
(θ̂(KQ))− U(θ̂(KQ))| ≤ sup

θ∈Θ
|UKQ

(θ)− U(θ)| → 0 as Q→ +∞.

Therefore, using also the continuity of U , we have

∀ θ ∈ Θ, U(θ̄) = lim
Q
U(θ̂(KQ)) = lim

Q
UKQ

(θ̂(KQ))

≤ lim
Q
UKQ

(θ) = U(θ).
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So, θ̄ ∈ argminU and U(θ̄) = limQ UKQ
(θ̂(KQ)) ≤ inf U = U(θ̄), that is, limQ UKQ

(θ̂(KQ)) =
inf U .
As regards the third point, we proceed by contradiction. If (U (Q)(θ̂(Q)))Q∈N does not converge to
inf U , then there exists an ε > 0 and a subsequence (UKQ

(θ̂(KQ)))Q∈N such that

|UKQ
(θ̂(KQ))− inf U| ≥ ε, ∀Q ∈ N (3)

Now, let (θ̂(K
(1)
Q ))Q∈N be a convergent subsequence of (θ̂(KQ))Q∈N. Suppose that θ̂(K

(1)
Q ) → θ̄.

Clearly (θ̂(K
(1)
Q ))Q∈N is also a subsequence of (θ̂(Q))Q∈N. Then, it follows from point (ii) above that

U
K

(1)
Q

(θ̂(K
(1)
Q ))→ inf U . This latter finding together with equation (3) gives a contradiction.

Finally, concerning the last point, we set a = lim supQ→+∞ dist(θ̂(Q), argminU) ∈ R+ ∪ {+∞}.
Then there exists a subsequence (θ̂(KQ))Q∈N such that dist(θ̂(KQ), argminU) → a as Q → +∞.
Now, since (θ̂(KQ))Q∈N is bounded, it has a subsequence (θ̂(K1

Q))Q∈N such that θ̂(K1
Q) → θ̄ for

some θ̄ ∈ Θ. Moreover, it follows from point (ii) above that θ̄ ∈ argminU . Therefore, since
dist(·, argminU) is continuous, we have a = limQ→+∞ dist(θ̂(K1

Q), argminU) = dist(θ̄,U) =
0.

A.2 Convergence of the Forward-Backward Scheme with Bregman Distances

In this section, we provide the proof of Theorem 3.1, which will be based on the results in [1]. To
that purpose we need some preliminary results.
Proposition A.1. The Legendre function Φ defined in Definition 3.2 is λ−1 strongly convex.

Proof. Let u = (u1, . . . , uL) ∈ int dom Φ = int(B2(λ))L. Since Φ is separable, its Hessian
∇2Φ(u) is block-diagonal and for every v = (v1, . . . , vL) ∈ RP×L, we have

v>∇2Φ(u)v =

L∑
l=1

‖vl‖2√
λ2 − ‖ul‖2

+
(v>l ul)

2

(λ2 − ‖ul‖2)3/2
(4)

≥
L∑
l=1

‖vl‖2√
λ2 − ‖ul‖2

(5)

≥
L∑
l=1

1

λ
‖vl‖22 =

1

λ
‖v‖2, (6)

which completes the proof.

Proposition A.2 (Lipschitz-like constant). Let µ = ε−1λ‖Aθ‖2. Then the function µΦ−f∗ ◦(−A>θ )
is convex.

Proof. The function µΦ − f∗ ◦ (−A>θ ) is twice continuously differentiable on int dom Φ (which
equals to int(B2(λ)L). Therefore the statement is equivalent to

∀u ∈ int dom Φ,∀ v ∈ RP×L µv>∇2Φ(u)v − v>∇2[f∗ ◦ (−A>θ )](u)v ≥ 0. (7)

Since the function f∗ ◦ (−A>θ ) has a Lipschitz continuous gradient with constant ε−1‖Aθ‖2, we have
that v>∇2[f∗ ◦ (−A>θ )](u)v ≤ ε−1‖Aθ‖2‖v‖2. Moreover, it follows from Proposition A.1 that Φ is
λ−1-strongly convex, hence µv>∇2Φ(u)v ≥ µ/λ‖v‖2. Therefore

µv>∇2Φ(u)v − v>∇2[f∗ ◦ (−A>θ )](u)v ≥
(
µ

λ
− ‖Aθ‖

2

ε

)
‖v‖2 ≥ 0,

and the statement follows.

Proposition A.3. The symmetry coefficient α(Φ) of the Legendre function of Definition 3.2, defined
as

α(Φ) = inf

{
DΦ(u, v)

DΦ(v, u)

∣∣∣ (u, v) ∈ int dom Φ× int dom Φ, u 6= v

}
, (8)

is equal to zero.
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Proof. This follows from the general Proposition 2 in [1], since dom Φ is not open.

Proof. of Theorem 3.1 LetF denote the objective function in (10). It follows from standard argument
in convex duality theory (see, e.g., [2]) that for every u ∈ RP×L, setting w = ∇f∗(−A>θ u), we have

ε

2
‖w − ŵ(θ)‖2 ≤ F(u)− inf F . (9)

Then the statement follows from Theorem 1 in [1]. Indeed, in the setting of Problem 3.2, with Φ
as in Definition 3.2, we have dom Φ = B2(λ)L (which is a closed set) and moreover the following
conditions are satisfied:

1. (Well-posedness of the method) argminu∈dom Φ F(u) is compact (see Lemma 2 in [1]);

2. (Lipschitz-like) There exist a Lipschitz-like constant µ > 0 (µ = ε−1λ‖Aθ‖2) such that
µΦ− f∗ ◦ (−A>θ ) is convex;

3. (Step-size condition) The step-size is such that 0 < γ < (1 + α(Φ))/µ, where α(Φ) is the
symmetry coefficient defined in (8).

Therefore, according to Theorem 1 in [1] the following hold

1. (Monotonicity) {F(u(q)(θ))}q∈N is nonincreasing.

2. (Convergence in objective values) limq→+∞ F(u(q)(θ)) = F(û(θ))

3. (Global estimate in objective values) If γ = (1 + α(Φ))/(2µ), then

(∀u ∈ dom Φ)(∀q ∈ N) F(u(q)(θ))−F(u) ≤ 2µ

(1 + α(Φ))q
DΦ(u, u0(θ)). (10)

The statement follows from (10) (with u = û(θ)) and (9).

B Algorithms

In this section, we detail the procedure for computing the hypergradient as well as the entire bilevel
algorithm.

B.1 Reverse Mode Computation of the Hypergradient

Recalling the definitions given in Problem 2.1 we have that

U (Q)(θ) =
1

T

T∑
t=1

Ct(w
(Q)
t (θ)), (11)

where, each task w(Q)
t (θ) is computed by algorithm (12). Therefore

∇U (Q)(θ) =
1

T

T∑
t=1

∇U (Q)
t (θ), U (Q)

t (θ) =: Ct(w
(Q)
t (θ)) (12)

and the problem is reduced to the computation of the gradient of U (Q)
t (θ). Thus, we can deal with a

single task and assume that
U (Q)(θ) = C(w(Q)(θ)), (13)

where w(Q)(θ) ∈ RP is computed by an algorithm of the following form
u(0)(θ) ≡ 0 ∈ RP×L

for q = 0, 1, . . . , Q− 1⌊
u(q+1)(θ) = A(u(q)(θ), θ)

w(Q)(θ) = B(u(Q)(θ), θ),

(14)
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where A : RP×L ×Θ→ RP×L and B : RP×L ×Θ→ RP . We denote by ∂1A(u, θ) and ∂2A(u, θ)
the partial derivatives of A with respect to the variable u and θ respectively. Note that both the
partial derivatives are linear operators from RP×L to RP×L. The same notation is used for the partial
derivatives of B, which, evaluated at a given point, are linear operators from RP×L to RP . Using
(13) and the last equation in (14) we get

∇U (Q)(θ) = (u(Q))′(θ)>∂1B(u(Q)(θ), θ)>∇C(w(Q)(θ)) + ∂2B(u(Q)(θ), θ)>∇C(w(Q)(θ)).
(15)

Moreover, using the updating rule for u(q)(θ) in (14) we have

(u(q+1))′(θ) = ∂1A(u(q)(θ), θ)(u(q))′(θ) + ∂2A(u(q)(θ), θ). (16)

Setting A(q)
1 (θ) = ∂1A(u(q)(θ), θ) and A(q)

2 (θ) = ∂2A(u(q)(θ), θ), we have

(u(q+1))′(θ)> = (u(q))′(θ)>A
(q)
1 (θ)> +A

(q)
2 (θ)>. (17)

Then, combining the two equations above we have

∇U (Q)(θ) = (u(Q))′(θ)>∂1B(u(Q)(θ), θ)>∇C(w(Q)(θ)) + ∂2B(u(Q)(θ), θ)>∇C(w(Q)(θ))

= (u(Q−1))′(θ)>A
(Q−1)
1 (θ)> ∂1B(u(Q)(θ), θ)>∇C(w(Q)(θ))︸ ︷︷ ︸

aQ

+A
(Q−1)
2 (θ)> ∂1B(u(Q)(θ), θ)>∇C(w(Q)(θ))︸ ︷︷ ︸

aQ

+ ∂2B(u(Q)(θ), θ)>∇C(w(Q)(θ))︸ ︷︷ ︸
bQ

= (u(Q−1))′(θ)>A
(Q−1)
1 (θ)>aQ︸ ︷︷ ︸

aQ−1

+A
(Q−1)
2 (θ)>aQ + bQ︸ ︷︷ ︸

bQ−1

= (u(Q−2))′(θ)>A
(Q−2)
1 (θ)>aQ−1︸ ︷︷ ︸

aQ−2

+A
(Q−2)
2 (θ)>aQ−1 + bQ−1︸ ︷︷ ︸

bQ−2

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= A
(0)
2 (θ)>a1 + b1︸ ︷︷ ︸

b0

,

where in the last line we used that u(0)(θ) is constant. Therefore, ∇U (Q) can be computed by the
procedure detailed in Algorithm 2.

We now specialize Algorithm 2 to the case of Group Lasso and algorithm (12). In this case, the
update rules are as follows

A(u, θ) = ∇Φ∗(∇Φ(u) + γAθB(u, θ))

B(u, θ) = ∇f∗(−A>θ u)

= (X>X + εIdP )−1(X>y −A>θ u),

where, for every u = (ul)1≤l≤L ∈ RP×L and v = (vl)1≤l≤L ∈ RP×L and every l = 1, . . . , L,

∇lΦ(u) = ∇φ(ul) =
ul√

λ2 − ‖ul‖22
and ∇lΦ∗(v) = ∇φ∗(vl) =

λvl√
1 + ‖vl‖22

. (18)

Moreover, for every a = (al)1≤l≤L ∈ RP×L

∇2Φ(u)[a] =
(
∇2φ(ul)[al]

)
1≤l≤L =

(
〈ul, al〉ul(

λ2 − ‖ul‖22
)3/2 +

al√
λ2 − ‖ul‖22

)
1≤l≤L

∈ RP×L (19)
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Algorithm 2 Hypergradient computation (Reverse mode): Hypergradient(θ,Q)
Require: Group structure θ, number of inner iterations Q.

Initialize u(0)(θ) ≡ 0 ∈ RP×L.
for q = 1 to Q do
u(q)(θ) = A(u(q−1)(θ), θ).

end for
output 1. u(0)(θ), . . . , u(Q)(θ), w(Q)(θ) = B(uQ(θ), θ).

Initialize aQ = ∂1B(u(Q(θ), θ)>∇C(x(Q(θ)), bQ = ∂2B(u(Q)(θ), θ)>∇C(w(Q)(θ)).
for q = Q− 1 to 0 do
a(q) = ∂1A(u(q)(θ), θ)>a(q+1)

b(q) = ∂2A(u(q)(θ), θ)>a(q+1) + b(q+1).
end for

output 2. Hypergradient ∇U (Q)(θ) = b(0).

and

∇2Φ∗(v)[a] =
(
∇2φ∗(vl)[al]

)
1≤l≤L =

(
− λ〈vl, al〉vl(

1 + ‖vl‖22
)3/2 +

λal√
1 + ‖vl‖22

)
1≤l≤L

∈ RP×L.

(20)
Note that both∇2Φ(u) and∇2Φ∗(v) are symmetric linear operators from RP×L to RP×L.

Therefore,

∂1A(u, θ) = ∇2Φ∗(∇Φ(u) + γAθB(u, θ)) ◦ [∇2Φ(u) + γAθ∂1B(u, θ)]

∂2A(u, θ) = ∇2Φ∗(∇Φ(u) + γAθB(u, θ)) ◦ [γAθ∂2B(u, θ) + γA·B(u, θ)]

and

∂1B(u, θ) = −(X>X + εIdP )−1A>θ

∂2B(u, θ) = −(X>X + εIdP )−1(A∗· u).

Moreover, since the linear operator Tx : ϑ 7→ Aϑx (occurring in ∂2A(u, θ)) is symmetric and the
adjoint of the linear operator Su : θ 7→ A>θ u (occurring in ∂2B(u, θ)) is Au, we have

∂1A(u, θ)> = [∇2Φ(u) + γ∂1B(u, θ)>A>θ ] ◦ ∇2Φ∗(∇Φ(u) + γAθB(u, θ))

∂2A(u, θ)> = [γ∂2B(u, θ)>A∗θ + γA·B(u, θ)] ◦ ∇2Φ∗(∇Φ(u) + γAθB(u, θ))

∂1B(u, θ)> = −Aθ(X>X + εIdP )−1

∂2B(u, θ)> = −Au(X>X + εIdP )−1.

(21)

Hence, for every a ∈ RP×L,∂1A(u, θ)>a and ∂2A(u, θ)>a can be computed as follows:

v =
(
∇φ(ul) + γθl � B(u, θ)

)
1≤l≤L,

∂1A(u, θ)>a = ∇2Φ(u)
[
∇2Φ∗(v)[a]

]
+ γ∂1B(u, θ)>A>θ ∇2Φ∗(v)[a]

=

(
∇2φ(ul)

[
∇2φ∗(vl)[al]

]
− γθl � (X>X + εIdP )−1∇2Φ∗(v)[a]

)
1≤l≤L

,

∂2A(u, θ)>a = γ∂2B(u, θ)>A>θ ∇2Φ∗(v)[a] + γA∇2Φ∗(v)[a]B(u, θ)

= −γAu(X>X + εIdP )−1A>θ ∇2Φ∗(v)[a] + γ

(
∇2φ∗(vl)[al]� B(u, θ)

)
1≤l≤L

= γ

(
− ul � (X>X + εIdP )−1A>θ ∇2Φ∗(v)[a] +∇2φ∗(vl)[al]� B(u, θ)

)
1≤l≤L

.

The final procedure to compute the hypergradient, in the case that w(Q)(θ) is obtained through
algorithm (12), is detailed in Algorithm 3.
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Algorithm 3 Group Lasso Hypergradient (Reverse mode): GLHypergradient(X, y, θ, λ, C,Q)
Require: Design matrix X , vector of outputs y, group structure θ, number of inner iterations Q.

Initialize u(0)(θ) ≡ 0 ∈ RP×L.
for q = 1 to Q do
w(q−1)(θ) = (X>X + εIdp)

−1
(
X>y −

∑L
l=1 θl � u

(q−1)
l (θ)

)
.

v(q−1)(θ) =
(
∇φ(u

(q−1)
l (θ)) + γθl � w(q−1)(θ)

)
1≤l≤L,

u(q)(θ) =
(
∇φ∗(v(q−1)

l (θ))
)

1≤l≤L.
end for
w(Q)(θ) = (X>X + εIdp)

−1
(
X>y −

∑L
l=1 θl � u

(Q)
l (θ)

)
.

output 1. u(0)(θ), . . . , u(Q)(θ), v(0)(θ), . . . , v(Q)(θ), w(0)(θ), . . . , w(Q)(θ).
Initialize z(Q)(θ) = (X>X + εIdp)

−1∇C(w(Q)(θ)),
aQ = −

(
θl � z(Q)(θ)

)
1≤l≤L,

bQ = −
(
u

(Q)
l (θ)� z(Q)(θ)

)
1≤l≤L.

for q = Q− 1 to 0 do
w(q) =

(
∇2φ∗(v

(q)
l (θ))[a

(q+1)
l ]

)
1≤l≤L,

z(q)(θ) = (X>X + εIdp)
−1
∑L
l=1 θl � w

(q)
l ,

a(q) =
(
∇2φ(u

(q)
l (θ))[w

(q)
l ]− γθl � z(q)(θ)

)
1≤l≤L,

b(q) = γ
(
− u(q)

l (θ)� z(q)(θ) + w
(q)
l � w(Q)(θ)

)
1≤l≤L + b(q+1).

end for
output 2. Hypergradient ∇U (Q)(θ) = b(0).

Algorithm 4 Bilevel learning of the Group Lasso structure through proxSAGA
Require: Vectors of outputs {yt}Tt=1, design matrices {Xt}Tt=1, regularization parameter λ > 0,

number of groups L, C =
∑T
t=1 Ct/T defined in Problem (2.1) and Θ introduced in Problem 2.2.

Set the step-size γ > 0.
Initialize θ(0).
Initialize G̃t = GLHypergradient(Xt, yt, λ, θ

(0), Ct, Q) for every t ∈ {1, . . . , T}.
Initialize d(0) = (1/T )

∑T
t=1 G̃t.

for k = 0 to K − 1 do
Uniformly pick tk ∈ {1, . . . , T}
Gtk = GLHypergradient(Xtk , ytk , λ, θ

(k), Ctk , Q)

α(k) = Gtk − G̃tk + d(k)

d(k+1) = (1/T )(Gtk − G̃tk) + d(k)

θ(k+1) = PΘ

(
θ(k) − γα(k)

)
G̃tk = Gtk

end for
output Group-structure θBiGL : = θ(K).

B.2 Overall Bilevel Scheme

The proposed bilevel scheme for learning the group structure is reported in Algorithm 4.
Remark B.1. The proposed scheme, which relies on the proxSAGA algorithm, requires the com-
putation of the full gradient only once at the initialization step of d(0). In order to avoid its costly
computation, we can initialize θ(0) close to a saddle-point, such that θ(0) = PΘ ((1/L)1P×L + n)
where n is a small Gaussian perturbation. Hence, we can resort to the following approximate
initialization: d(0) = 0P×L and G̃t = 0P×L for every t ∈ {1, . . . , T}.
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C Additional Results on Synthetic Data
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Figure 5: The present results aim at complementing the ones displayed in Figure 1. The true features
w∗, consisting of 500 tasks, are displayed in the left plot and shown to exhibit 10 groups. The
comparison of the validation and test error are reported in the middle and right figure respectively.
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