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Abstract

Leverage score sampling provides an appealing way to perform approximate com-
putations for large matrices. Indeed, it allows to derive faithful approximations
with a complexity adapted to the problem at hand. Yet, performing leverage scores
sampling is a challenge in its own right requiring further approximations. In this
paper, we study the problem of leverage score sampling for positive definite ma-
trices defined by a kernel. Our contribution is twofold. First we provide a novel
algorithm for leverage score sampling and second, we exploit the proposed method
in statistical learning by deriving a novel solver for kernel ridge regression. Our
main technical contribution is showing that the proposed algorithms are currently
the most efficient and accurate for these problems.

1 Introduction

A variety of machine learning problems require manipulating and performing computations with
large matrices that often do not fit memory. In practice, randomized techniques are often employed to
reduce the computational burden. Examples include stochastic approximations [1], columns/rows
subsampling and more general sketching techniques [2, 3]. One of the simplest approach is uniform
column sampling [4, 5], that is replacing the original matrix with a subset of columns chosen
uniformly at random. This approach is fast to compute, but the number of columns needed for a
prescribed approximation accuracy does not take advantage of the possible low rank structure of the
matrix at hand. As discussed in [6], leverage score sampling provides a way to tackle this shortcoming.
Here columns are sampled proportionally to suitable weights, called leverage scores (LS) [7, 6]. With
this sampling strategy, the number of columns needed for a prescribed accuracy is governed by the
so called effective dimension which is a natural extension of the notion of rank. Despite these nice
properties, performing leverage score sampling provides a challenge in its own right, since it has
complexity in the same order of an eigendecomposition of the original matrix. Indeed, much effort
has been recently devoted to derive fast and provably accurate algorithms for approximate leverage
score sampling [2, 8, 6, 9, 10].
In this paper, we consider these questions in the case of positive semi-definite matrices, central for
example in Gaussian processes [11] and kernel methods [12]. Sampling approaches in this context
are related to the so called Nyström approximation [13] and Nyström centers selection problem [11],
and are widely studied both in practice [4] and in theory [5]. Our contribution is twofold. First,
we propose and study BLESS, a novel algorithm for approximate leverage scores sampling. The
first solution to this problem is introduced in [6], but has poor approximation guarantees and high
time complexity. Improved approximations are achieved by algorithms recently proposed in [8] and
[9]. In particular, the approach in [8] can obtain good accuracy and very efficient computations but
only as long as distributed resources are available. Our first technical contribution is showing that
our algorithm can achieve state of the art accuracy and computational complexity without requiring
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distributed resources. The key idea is to follow a coarse to fine strategy, alternating uniform and
leverage scores sampling on sets of increasing size.
Our second, contribution is considering leverage score sampling in statistical learning with least
squares. We extend the approach in [14] for efficient kernel ridge regression based on combining
fast optimization algorithms (preconditioned conjugate gradient) with uniform sampling. Results in
[14] showed that optimal learning bounds can be achieved with a complexity which is Õ(n

√
n) in

time and Õ(n) space. In this paper, we study the impact of replacing uniform with leverage score
sampling. In particular, we prove that the derived method still achieves optimal learning bounds but
the time and memory is now Õ(ndeff), and Õ(deff

2) respectively, where deff is the effective dimension
which and is never larger, and possibly much smaller, than

√
n. To the best of our knowledge this is

the best currently known computational guarantees for a kernel ridge regression solver.

2 Leverage score sampling with BLESS

After introducing leverage score sampling and previous algorithms, we present our approach and first
theoretical results.

2.1 Leverage score sampling

Suppose K̂ ∈ Rn×n is symmetric and positive semidefinite. A basic question is deriving memory
efficient approximation of K̂ [4, 8] or related quantities, e.g. approximate projections on its range
[9], or associated estimators, as in kernel ridge regression [15, 14]. The eigendecomposition of K̂
offers a natural, but computationally demanding solution. Subsampling columns (or rows) is an
appealing alternative. A basic approach is uniform sampling, whereas a more refined approach is
leverage scores sampling. This latter procedure corresponds to sampling columns with probabilities
proportional to the leverage scores

`(i, λ) =
(
K̂(K̂ + λnI)−1

)
ii
, i ∈ [n], (1)

where [n] = {1, . . . , n}. The advantage of leverage score sampling, is that potentially very few
columns can suffice for the desired approximation. Indeed, letting

d∞(λ) = n max
i=1,...,n

`(i, λ), deff(λ) =

n∑
i=1

`(i, λ),

for λ > 0, it is easy to see that deff(λ) ≤ d∞(λ) ≤ 1/λ for all λ, and previous results show that
the number of columns required for accurate approximation are d∞ for uniform sampling and deff
for leverage score sampling [5, 6]. However, it is clear from definition (1) that an exact leverage
scores computation would require the same order of computations as an eigendecomposition, hence
approximations are needed.The accuracy of approximate leverage scores is typically measured by
t > 0 in multiplicative bounds of the form

1

1 + t
`(i, λ) ≤ ˜̀(i, λ) ≤ (1 + t)`(i, λ), ∀i ∈ [n]. (2)

Before proposing a new improved solution, we briefly discuss relevant previous works. To provide a
unified view, some preliminary discussion is useful.

2.2 Approximate leverage scores

First, we recall how a subset of columns can be used to compute approximate leverage scores. For
M ≤ n, let J = {ji}Mi=1 with ji ∈ [n], and K̂J,J ∈ RM×M with entries (KJ,J)lm = Kjl,jm . For
i ∈ [n], let K̂J,i = (K̂j1,i, . . . , K̂jM ,i) and consider for λ > 1/n,˜̀

J(i, λ) = (λn)−1(K̂ii − K̂>J,i(K̂J,J + λnA)−1K̂J,i), (3)

where A ∈ RM×M is a matrix to be specified ∗ (see later for details). The above definition is
motivated by the observation that if J = [n], and A = I , then ˜̀J(i, λ) = `(i, λ), by the following

∗Clearly, ˜̀J depends on the choice of the matrix A, but we omit this dependence to simplify the notation.
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identity
K̂(K̂ + λnI)−1 = (λn)−1(K̂ − K̂(K̂ + λnI)−1K̂).

In the following, it is also useful to consider a subset of leverage scores computed as in (3). For
M ≤ R ≤ n, let U = {ui}Ri=1 with ui ∈ [n], and

LJ(U, λ) = {˜̀J(u1, λ), . . . , ˜̀J(uR, λ)}. (4)

Also in the following we will use the notation

LJ(U, λ) 7→ J ′ (5)

to indicate the leverage score sampling of J ′ ⊂ U columns based on the leverage scores LJ(U, λ),
that is the procedure of sampling columns from U according to their leverage scores 1, computed
using J , to obtain a new subset of columns J ′.
We end noting that leverage score sampling (5) requires O(M2) memory to store KJ , and O(M3 +
RM2) time to invert KJ , and compute R leverage scores via (3).

2.3 Previous algorithms for leverage scores computations

We discuss relevant previous approaches using the above quantities.

TWO-PASS sampling [6]. This is the first approximate leverage score sampling proposed,
and is based on using directly (5) as LJ1(U2, λ) 7→ J2, with U2 = [n] and J1 a subset taken
uniformly at random. Here we call this method TWO-PASS sampling since it requires two rounds of
sampling on the whole set [n], one uniform to select J1 and one using leverage scores to select J2.

RECURSIVE-RLS [9]. This is a development of TWO-PASS sampling based on the idea of
recursing the above construction. In our notation, let U1 ⊂ U2 ⊂ U3 = [n], where U1, U2 are
uniformly sampled and have cardinalities n/4 and n/2, respectively. The idea is to start from
J1 = U1, and consider first

LJ1(U2, λ) 7→ J2,

but then continue with
LJ2(U3, λ) 7→ J3.

Indeed, the above construction can be made recursive for a family of nested subsets (Uh)H of
cardinalities n/2h, considering J1 = U1 and

LJh(Uh+1, λ) 7→ Jh+1. (6)

SQUEAK[8]. This approach follows a different iterative strategy. Consider a partition U1, U2, U3

of [n], so that Uj = n/3, for j = 1, . . . 3. Then, consider J1 = U1, and

LJ1∪U2(J1 ∪ U2, λ) 7→ J2,

and then continue with
LJ2∪U3(J2 ∪ U3, λ) 7→ J3.

Similarly to the other cases, the procedure is iterated considering H subsets (Uh)Hh=1 each with
cardinality n/H . Starting from J1 = U1 the iterations is

LJh∪Uh+1
(Jh ∪ Uh+1, λ). (7)

We note that all the above procedures require specifying the number of iteration to be performed, the
weights matrix to compute the leverage scores at each iteration, and a strategy to select the subsets
(Uh)h. In all the above cases the selection of Uh is based on uniform sampling, while the number of
iterations and weight choices arise from theoretical considerations (see [6, 8, 9] for details).

Note that TWO-PASS SAMPLING uses a set J1 of cardinality roughly 1/λ (an upper bound on d∞(λ))
and incurs in a computational cost of RM2 = n/λ2. In comparison, RECURSIVE-RLS [9] leads
to essentially the same accuracy while improving computations. In particular, the sets Jh are never
larger than deff(λ). Taking into account that at the last iteration performs leverage score sampling on
Uh = [n], the total computational complexity is ndeff(λ)2. SQUEAK [8] recovers the same accuracy,
size of Jh, and ndeff(λ)2 time complexity when |Uh| ' deff(λ), but only requires a single pass over
the data. We also note that a distributed version of SQUEAK is discussed in [8], which allows to
reduce the computational cost to ndeff(λ)2/p, provided p machines are available.
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Algorithm 1 Bottom-up Leverage Scores Sampling (BLESS)
Input: dataset {xi}ni=1, regularization λ, step q, starting reg. λ0, constants q1, q2 controlling the

approximation level.
Output: Mh ∈ [n] number of selected points, Jh set of indexes, Ah weights.

1: J0 = ∅, A0 = [], H = log(λ0/λ)
log q

2: for h = 1 . . . H do
3: λh = λh−1/q
4: set constant Rh = q1 min{κ2/λh, n}
5: sample Uh = {u1, . . . , uRh} i.i.d. ui ∼ Uniform([n])

6: compute ˜̀Jh−1
(xuk , λh) for all uk ∈ Uh using Eq. 3

7: set Ph = (ph,k)Rhk=1 with ph,k = ˜̀
Jh−1

(xuk , λh)/(
∑
u∈Uh

˜̀
Jh−1

(xu, λh))

8: set constant Mh = q2dh with dh = n
Rh

∑
u∈Uh

˜̀
Jh−1

(xu, λh), and
9: sample Jh = {j1, . . . , jMh

} i.i.d. ji ∼Multinomial(Ph, Uh)

10: Ah = RhMh

n diag
(
ph,j1 , . . . , ph,jMh

)
11: end for

2.4 Leverage score sampling with BLESS

The procedure we propose, dubbed BLESS, has similarities to the one proposed in [9] (see (6)),
but also some important differences. The main difference is that, rather than a fixed λ, we consider
a decreasing sequence of parameters λ0 > λ1 > · · · > λH = λ resulting in different algorithmic
choices. For the construction of the subsets Uh we do not use nested subsets, but rather each (Uh)Hh=1
is sampled uniformly and independently, with a size smoothly increasing as 1/λh. Similarly, as in [9]
we proceed iteratively, but at each iteration a different decreasing parameter λh is used to compute
the leverage scores. Using the notation introduced above, the iteration of BLESS is given by

LJh(Uh+1, λh+1) 7→ Jh+1, (8)

where the initial set J1 = U1 is sampled uniformly with size roughly 1/λ0.
BLESS has two main advantages. The first is computational: each of the sets Uh, including the final
UH , has cardinality smaller than 1/λ. Therefore the overall runtime has a cost of onlyRM2 ≤M2/λ,
which can be dramatically smaller than the nM2 cost achieved by the methods in [9], [8] and is
comparable to the distributed version of SQUEAK using p = λ/n machines. The second advantage
is that a whole path of leverage scores {`(i, λh)}Hh=1 is computed at once, in the sense that at each
iteration accurate approximate leverage scores at scale λh are computed. This is extremely useful in
practice, as it can be used when cross-validating λh. As a comparison, for all previous method a full
run of the algorithm is needed for each value of λh.
In the paper we consider two variations of the above general idea leading to Algorithm 1 and
Algorithm 2. The main difference in the two algorithms lies in the way in which sampling is
performed: with and without replacement, respectively. In particular, considering sampling without
replacement (see 2) it is possible to take the set (Uh)Hh=1 to be nested and also to obtain slightly
improved results, as shown in the next section.
The derivation of BLESS rests on some basic ideas. First, note that, since sampling uniformly a set
Uλ of size d∞(λ) ≤ 1/λ allows a good approximation, then we can replace L[n]([n], λ) 7→ J by

LUλ(Uλ, λ) 7→ J, (9)

where J can be taken to have cardinality deff(λ). However, this is still costly, and the idea is to repeat
and couple approximations at multiple scales. Consider λ′ > λ, a set Uλ′ of size d∞(λ′) ≤ 1/λ′

sampled uniformly, and LUλ′ (Uλ′ , λ
′) 7→ J ′. The basic idea behind BLESS is to replace (9) by

LJ′(Uλ, λ) 7→ J̃ .

The key result, see , is that taking J̃ of cardinality

(λ′/λ)deff(λ) (10)

suffice to achieve the same accuracy as J . Now, if we take λ′ sufficiently large, it is easy to see that
deff(λ

′) ∼ d∞(λ′) ∼ 1/λ′, so that we can take J ′ uniformly at random. However, the factor (λ′/λ)
in (10) becomes too big. Taking multiple scales fix this problem and leads to the iteration in (8).
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Algorithm 2 Bottom-up Leverage Scores Sampling without Replacement (BLESS-R)
Input: dataset {xi}ni=1, regularization λ, step q, starting reg. λ0, constant q2 controlling the approxi-

mation level.
Output: Mh ∈ [n] number of selected points, Jh set of indexes, Ah weights.

1: J0 = ∅, A0 = [], H = log(λ0/λ)
log q ,

2: for h = 1 . . . H do
3: λh = λh−1/q
4: set constant βh = min{q2κ

2/(λhn), 1}
5: initialize Uh = ∅
6: for i ∈ [n] do
7: add i to Uh with probability βh
8: end for
9: for j ∈ Uh do

10: compute ph,j = min{q2
˜̀
Jh−1

(xj , λh−1), 1}
11: add j to Jh with probability ph,j/βh
12: end for
13: Jh = {j1, . . . , jMh

}, and Ah = diag
(
ph,j1 , . . . , ph,jMh

)
.

14: end for

2.5 Theoretical guarantees

Our first main result establishes in a precise and quantitative way the advantages of BLESS.
Theorem 1. Let n ∈ N, λ > 0 and δ ∈ (0, 1]. Given t > 0, q > 1 and H ∈ N, (λh)Hh=1 defined as
in Algorithms 1 and 2, when (Jh, ah)Hh=1 are computed

1. by Alg. 1 with parameters λ0 = κ2

min(t,1) , q1 ≥ 5κ2q2
q(1+t) , q2 ≥ 12q (2t+1)2

t2 (1 + t) log 12Hn
δ ,

2. by Alg. 2 with parameters λ0 = κ2

min(t,1) , q1 ≥ 54κ2 (2t+1)2

t2 log 12Hn
δ ,

let ˜̀Jh(i, λh) as in Eq. (3) depending on Jh, Ah, then with probability at least 1− δ:

(a)
1

1 + t
`(i, λh) ≤ ˜̀

Jh(i, λh) ≤ (1 + min(t, 1))`(i, λh), ∀i ∈ [n], h ∈ [H],

(b) |Jh| ≤ q2deff(λh), ∀h ∈ [H].

The above result confirms that the subsets Jh computed by BLESS are accurate in the desired sense,
see (2), and the size of all Jh is small and proportional to deff(λh), leading to a computational
cost of only O

(
min

(
1
λ , n

)
deff(λ)2 log2 1

λ

)
in time and O

(
deff(λ)2 log2 1

λ

)
in space (for additional

properties of Jh see Thm. 4 in appendixes). Table 1 compares the complexity and number of
columns sampled by BLESS with other methods. The crucial point is that in most applications, the
parameter λ is chosen as a decreasing function of n, e.g. λ = 1/

√
n, resulting in potentially massive

computational gains. Indeed, since BLESS computes leverage scores for sets of size at most 1/λ, this
allows to perform leverage scores sampling on matrices with millions of rows/columns, as shown in
the experiments. In the next section, we illustrate the impact of BLESS in the context of supervised
statistical learning.

3 Efficient supervised learning with leverage scores

In this section, we discuss the impact of BLESS in a supervised learning. Unlike most previous
results on leverage scores sampling in this context [6, 8, 9], we consider the setting of statistical
learning, where the challenge is that inputs, as well as the outputs, are random. More precisely, given
a probability space (X × Y, ρ), where Y ⊂ R, and considering least squares, the problem is to solve

min
f∈H
E(f), E(f) =

∫
X×Y

(f(x)− y)2dρ(x, y), (11)
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Algorithm Runtime |J |

Uniform Sampling [5] − 1/λ

Exact RLS Sampl. n3 deff(λ)

Two-Pass Sampling [6] n/λ2 deff(λ)

Recursive RLS [9] ndeff(λ)2 deff(λ)

SQUEAK [8] ndeff(λ)2 deff(λ)

This work, Alg. 1 and 2 1/λ deff (λ)
2 deff(λ)

Table 1: The proposed algorithms are compared with the state of the art (in Õ notation), in terms of time
complexity and cardinality of the set J required to satisfy the approximation condition in Eq. 2.

when ρ is known only through (xi, yi)
n
i=1 ∼ ρn. In the above minimization problem, H is a

reproducing kernel Hilbert space defined by a positive definite kernel K : X × X → R [12].
Recall that the latter is defined as the completion of span{K(x, ·) | x ∈ X} with the inner product
〈K(x, ·),K(x′, ·)〉H = K(x, x′). The quality of an empirical approximate solution f̂ is measured
via probabilistic bounds on the excess riskR(f̂ ) = E(f̂ )−minf∈H E(f).

3.1 Learning with FALKON-BLESS

The algorithm we propose, called FALKON-BLESS, combines BLESS with FALKON [14] a state of
the art algorithm to solve the least squares problem presented above. The appeal of FALKON is that
it is currently the most efficient solution to achieve optimal excess risk bounds. As we discuss in the
following, the combination with BLESS leads to further improvements.
We describe the derivation of the considered algorithm starting from kernel ridge regression (KRR)

f̂λ(x) =

n∑
i=1

K(x, xi)ci, c = (K̂ + λnI)−1Ŷ (12)

where c = (c1, . . . , cn), Ŷ = (y1, . . . , yn) and K̂ ∈ Rn×n is the empirical kernel matrix with entries
(K̂)ij = K(xi, xj). KRR has optimal statistical properties [16], but large O(n3) time and O(n2)
space requirements. FALKON can be seen as an approximate ridge regression solver combining a
number of algorithmic ideas. First, sampling is used to select a subset {x̃1, . . . , x̃M} of the input
data uniformly at random, and to define an approximate solution

f̂λ,M (x) =

M∑
j=1

K(x̃j , x)αj , α = (K>nMKnM + λKMM )−1K>nMy, (13)

where α = (α1, . . . , αM ), KnM ∈ Rn×M , has entries (KnM )ij = K(xi, x̃j) and KMM ∈ RM×M
has entries (KMM )jj′ = K(x̃j , x̃j′), with i ∈ [n], j, j′ ∈ [M ]. We note, that the linear system
in (13) can be seen to obtained from the one in (12) by uniform column subsampling of the empirical
kernel matrix. The columns selected corresponds to the inputs {x̃1, . . . , x̃M}. FALKON proposes to
compute a solution of the linear system 13 via a preconditioned iterative solver. The preconditioner is
the core of the algorithm and is defined by a matrix B such that

BB> =
( n
M
K2
MM + λKMM

)−1

. (14)

The above choice provides a computationally efficient approximation to the exact preconditioner
of the linear system in (13) corresponding to B such that BB> = (K>nMKnM + λKMM )−1. The
preconditioner in (14) can then be combined with conjugate gradient to solve the linear system in (13).
The overall algorithm has complexity O(nMt) in time and O(M2) in space, where t is the number
of conjugate gradient iterations performed.
In this paper, we analyze a variation of FALKON where the points {x̃1, . . . , x̃M} are selected via
leverage score sampling using BLESS, see Algorithm 1 or Algorithm 2, so that M = Mh and
x̃k = xjk , for Jh = {j1, . . . , jMh

} and k ∈ [Mh]. Further, the preconditioner in (14) is replaced by

BhB
>
h =

( n
M
KJh,JhA

−1
h KJh,Jh + λhKJh,Jh

)−1

. (15)
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Time R-ACC 5th/ 95th quant

BLESS 17 1.06 0.57 / 2.03
BLESS-R 17 1.06 0.73 / 1.50
SQUEAK 52 1.06 0.70 / 1.48
Uniform - 1.09 0.22 / 3.75
RRLS 235 1.59 1.00 / 2.70

BLESS BLESS-R SQUEAK Uniform RRLS

1

1.5

2

2.5

3

R
-A

C
C

RLS Accuracy

Figure 1: Leverage scores relative accuracy for λ = 10−5, n = 70 000,M = 10 000, 10 repetitions.

This solution can lead to huge computational improvements. Indeed, the total cost of FALKON-
BLESS is the sum of computing BLESS and FALKON, corresponding to

O
(
nMt+ (1/λ)M2 log n+M3

)
O(M2), (16)

in time and space respectively, where M is the size of the set JH returned by BLESS.

3.2 Statistical properties of FALKON-BLESS

In this section, we state and discuss our second main result, providing an excess risk bound for
FALKON-BLESS. Here a population version of the effective dimension plays a key role. Let ρX
be the marginal measure of ρ on X , let C : H → H be the linear operator defined as follows and
deff
∗(λ) be the population version of deff(λ),

deff
∗(λ) = Tr(C(C + λI)−1), with (Cf)(x′) =

∫
X

K(x′, x)f(x)dρX(x),

for any f ∈ H, x ∈ X . It is possible to show that deff
∗(λ) is the limit of deff(λ) as n goes to infinity,

see Lemma 1 below taken from [15]. If we assume throughout that,

K(x, x′) ≤ κ2, ∀x, x′ ∈ X, (17)

then the operator C is symmetric, positive definite and trace class, and the behavior of deff
∗(λ) can

be characterized in terms of the properties of the eigenvalues (σj)j∈N of C. Indeed as for deff(λ), we
have that deff

∗(λ) ≤ κ2/λ, moreover if σj = O(j−α), for α ≥ 1, we have deff
∗(λ) = O(λ−1/α) .

Then for larger α, deff
∗ is smaller than 1/λ and faster learning rates are possible, as shown below.

We next discuss the properties of the FALKON-BLESS solution denoted by f̂λ,n,t.
Theorem 2. Let n ∈ N, λ > 0 and δ ∈ (0, 1]. Assume that y ∈ [−a2 ,

a
2 ], almost surely, a > 0, and

denote by fH a minimizer of (11). There exists n0 ∈ N, such that for any n ≥ n0, if t ≥ log n,
λ ≥ 9κ2

n log n
δ , then the following holds with probability at least 1− δ:

R(f̂λ,n,t) ≤
4a

n
+ 32‖fH‖2H

(
a2 log2 2

δ

n2λ
+
a deff(λ) log 2

δ

n
+ λ

)
.

In particular, when deff
∗(λ) = O(λ−1/α), for α ≥ 1, by selecting λ∗ = n−α/(α+1), we have

R(f̂λ∗,n,t) ≤ cn−
α
α+1 ,

where c is given explicitly in the proof.

We comment on the above result discussing the statistical and computational implications.

Statistics. The above theorem provides statistical guarantees in terms of finite sample bounds on
the excess risk of FALKON-BLESS, A first bound depends of the number of examples n, the
regularization parameter λ and the population effective dimension deff

∗(λ). The second bound is
derived optimizing λ, and is the same as the one achieved by exact kernel ridge regression which is
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known to be optimal [16, 17, 18]. Note that improvements under further assumptions are possible
and are derived in the supplementary materials, see Thm. 8. Here, we comment on the computational
properties of FALKON-BLESS and compare it to previous solutions.

Computations. To discuss computational implications, we recall a result from [15] show-
ing that the population version of the effective dimension deff

∗(λ) and the effective dimension deff(λ)
associated to the empirical kernel matrix converge up to constants.

Lemma 1. Let λ > 0 and δ ∈ (0, 1]. When λ ≥ 9κ2

n log n
δ , then with probability at least 1− δ,

(1/3)deff
∗(λ) ≤ deff(λ) ≤ 3deff

∗(λ).

Recalling the complexity of FALKON-BLESS (16), using Thm 2 and Lemma 1, we derive a cost

O
(
ndeff

∗(λ) log n+
1

λ
deff
∗(λ)2 log n+ deff

∗(λ)3

)
in time and O(deff

∗(λ)2) in space, for all n, λ satisfying the assumptions in Theorem 2. These
expressions can be further simplified. Indeed, it is easy to see that for all λ > 0,

deff
∗(λ) ≤ κ2/λ, (18)

so that deff
∗(λ)3 ≤ κ2

λ deff
∗(λ)2. Moreover, if we consider the optimal choice λ∗ = O(n−

α
α+1 )

given in Theorem 2, and take deff
∗(λ) = O(λ−1/α), we have 1

λ∗
deff
∗(λ∗) ≤ O(n), and therefore

1
λdeff

∗(λ)2 ≤ O(ndeff
∗(λ)). In summary, for the parameter choices leading to optimal learning rates,

FALKON-BLESS has complexity Õ(ndeff
∗(λ∗)), in time and Õ(deff

∗(λ∗)
2) in space, ignoring log

terms. We can compare this to previous results. In [14] uniform sampling is considered leading to
M ≤ O(1/λ) and achieving a complexity of Õ(n/λ) which is always larger than the one achieved by
FALKON in view of (18). Approximate leverage scores sampling is also considered in [14] requiring
Õ(ndeff(λ)2) time and reducing the time complexity of FALKON to Õ(ndeff(λ∗)). Clearly in this
case the complexity of leverage scores sampling dominates, and our results provide BLESS as a fix.

4 Experiments

Leverage scores accuracy. We first study the accuracy of the leverage scores generated by BLESS
and BLESS-R, comparing SQUEAK [8] and Recursive-RLS (RRLS) [9]. We begin by uniformly
sampling a subsets of n = 7 × 104 points from the SUSY dataset [19], and computing the exact
leverage scores `(i, λ) using a Gaussian Kernel with σ = 4 and λ = 10−5, which is at the limit of our
computational feasibility. We then run each algorithm to compute the approximate leverage scores˜̀
JH (i, λ), and we measure the accuracy of each method using the ratio ˜̀JH (i, λ)/`(i, λ) (R-ACC).

The final results are presented in Figure 1. On the left side for each algorithm we report runtime, mean
R-ACC, and the 5th and 95th quantile, each averaged over the 10 repetitions. On the right side a box-
plot of the R-ACC. As shown in Figure 1 BLESS and BLESS-R achieve the same optimal accuracy
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Figure 4: AUC per iteration of the SUSY dataset Figure 5: AUC per iteration of the HIGGS dataset

of SQUEAK with just a fraction of time. Note that despite our best efforts, we could not obtain
high-accuracy results for RRLS (maybe a wrong constant in the original implementation). However
note that RRLS is computationally demanding compared to BLESS, being orders of magnitude
slower, as expected from the theory. Finally, although uniform sampling is the fastest approach, it
suffers from much larger variance and can over or under-estimate leverage scores by an order of
magnitude more than the other methods, making it more fragile for downstream applications.
In Fig. 2 we plot the runtime cost of the compared algorithms as the number of points grows from
n = 1000 to 70000, this time for λ = 10−3. We see that while previous algorithms’ runtime grows
near-linearly with n, BLESS and BLESS-R run in a constant 1/λ runtime, as predicted by the theory.

BLESS for supervised learning. We study the performance of FALKON-BLESS and compare it
with the original FALKON [14] where an equal number of Nyström centres are sampled uniformly at
random (FALKON-UNI). We take from [14] the two biggest datasets and their best hyper-parameters
for the FALKON algorithm.
We noticed that it is possible to achieve the same accuracy of FALKON-UNI, by using λbless for
BLESS and λfalkon for FALKON with λbless � λfalkon, in order to lower the deff and keep
the number of Nyström centres low. For the SUSY dataset we use a Gaussian Kernel with σ =
4, λfalkon = 10−6, λbless = 10−4 obtaining MH ' 104 Nyström centres. For the HIGGS dataset
we use a Gaussian Kernel with σ = 22, λfalkon = 10−8, λbless = 10−6, obtaining MH ' 3× 104

Nyström centres. We then sample a comparable number of centers uniformly for FALKON-UNI.
Looking at the plot of their AUC at each iteration (Fig.4,5) we observe that FALKON-BLESS
converges much faster than FALKON-UNI. For the SUSY dataset (Figure 4) 5 iterations of FALKON-
BLESS (160 seconds) achieve the same accuracy of 20 iterations of FALKON-UNI (610 seconds).
Since running BLESS takes just 12 secs. this corresponds to a ∼ 4× speedup. For the HIGGS dataset
10 iter. of FALKON-BLESS (with BLESS requiring 1.5 minutes, for a total of 1.4 hours) achieve
better accuracy of 20 iter. of FALKON-UNI (2.7 hours). Additionally we observed that FALKON-
BLESS is more stable than FALKON-UNI w.r.t. λfalkon, σ. In Figure 3 the classification error after
5 iterations of FALKON-BLESS and FALKON-UNI over the SUSY dataset (λbless = 10−4). We
notice that FALKON-BLESS has a wider optimal region (95% of the best error) for the regulariazion
parameter ([1.3× 10−3, 4.8× 10−8]) w.r.t. FALKON-UNI ([1.3× 10−3, 3.8× 10−6]).

5 Conclusions

In this paper we presented two algorithms BLESS and BLESS-R to efficiently compute a small set
of columns from a large symmetric positive semidefinite matrix K, useful for approximating the
matrix or to compute leverage scores with a given precision. Moreover we applied the proposed
algorithms in the context of statistical learning with least squares, combining BLESS with FALKON
[14]. We analyzed the computational and statistical properties of the resulting algorithm, showing that
it achieves optimal statistical guarantees with a cost that is O(ndeff

∗(λ)) in time, being currently the
fastest. We can extend the proposed work in several ways: (a) combine BLESS with fast stochastic
[20] or online [21] gradient algorithms and other approximation schemes (i.e. random features
[22, 23, 24]), to further reduce the computational complexity for optimal rates, (b) consider the
impact of BLESS in the context of multi-tasking [25, 26] or structured prediction [27, 28].
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A Theoretical Analysis for Algorithms 1 and 2

In this section, Thm. 4 and Thm. 5 provide guarantees for the two methods, from which Thm. 1 is
derived.

In particular in Section A.4 some important properties about (out-of-sample-)leverage scores, that
will be used in the proofs, are derived.

A.1 Notation

Let X be a Polish space and K : X ×X → R a positive semidefinite function on X , we denoteH
the Hilbert space obtained by the completion of

H = span{K(x, ·) | x ∈ X}

according to the norm induced by the inner product 〈K(x, ·),K(x′, ·)〉H = K(x, x′). Spaces H
constructed in this way are known as reproducing kernel Hilbert spaces and there is a one-to-one
relation between a kernel K and its associated RKHS. For more details on RKHS we refer the reader
to [29, 30]. Given a kernel K, in the following we will denote with Kx = K(x, ·) ∈ H for all x ∈ X .
We say that a kernel is bounded if ‖Kx‖H ≤ κ with κ > 0. In the following we will always assume
K to be continuous and bounded by κ > 0. The continuity of K with the fact that X is Polish implies
H to be separable [30].

In the rest of the appdendizes we denote with Aλ, the operator A + λI , for any symmetric linear
operator A, λ ∈ R and I the identity operator.

A.2 Definitions

For n ∈ N, (xi)
n
i=1, and J ⊆ {1, . . . , n}, A ∈ R|J|×|J| diagonal matrix with positive diagonal,

denote ˜̀J in eq. (3) by showing the dependence from both J and A as˜̀
J,A(i, λ) = (λn)−1(K̂ii − K̂>J,i(K̂J,J + λnA)−1K̂J,i). (19)

Moreover define ĈJ,A as follows

ĈJ,A =
1

|J |

|J|∑
i=1

A−1
ii Kxji

⊗Kxji
.

We define the out-of-sample leverage scores, that are an extension of ˜̀J,A to any point x in the space
X .
Definition 1 (out-of-sample leverage scores). Let J = {j1, . . . , jM} ⊆ {1, . . . , n}, with M ∈ N
and A ∈ RM×M be a positive diagonal matrix. Then for any x ∈ X and λ > 0 we define

̂̀
J,A(x, λ) =

1

n
‖(ĈJ,A + λI)−1/2Kx‖2H.

Moreover define ̂̀∅,[](x, λ) = (λn)−1K(x, x).

In particular we denote by ̂̀(x, λ) = ̂̀
[n],I(x, λ),

the out of sample version of the leverage scores `(i, λ). Indeed note that ̂̀(xi, λ) = `(i, λ) for i ∈ [n]

and λ > 0 as proven by the next proposition that shows, more generally, the relation between ̂̀J,A
and ˜̀J,A.

Proposition 1. Let n ∈ N, (xi)
n
i=1 ⊆ X . For any λ > 0, J ⊆ {1, . . . , n}, A ∈ R|J|×|J| with A

positive diagonal, we that that for any x ∈ X , ̂̀J,A(x, λ) in Def. 1 and ˜̀J,A(x, λ) in Def. 3, satisfŷ̀
J, n|J|A

(xi, λ) = ˜̀
J,A(i, λ),

when |J | > 0, and ̂̀∅,[](xi, λ) = ˜̀∅,[](i, λ), when |J | = 0, for any i ∈ [n], λ > 0.
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Proof. Let J = {j1, . . . , j|J|}. We will first show that ̂̀J,A(x, λ) is characterized by,

̂̀
J,A(x, λ) =

1

λn
K(x, x)− 1

λn
vJ(x)>(KJ + λ|J |A)−1vJ(x),

withKJ ∈ RM×M with (KJ)lm = K(xjl , xjm) and vJ(x) = (K(x, xj1), . . . ,K(x, xjM )). Denote
with ZJ : H → R|J|, the linear operator defined by ZJ = (Kxj1

, . . . ,Kxj|J|
)>, that is (ZJf)k =〈

Kxjk
, f
〉
H, for f ∈ H and k ∈ {1, . . . |J |}. Then, by denoting with B = |J |A we have

Z∗JB
−1ZJ =

1

|J |

|J|∑
i=1

A−1
ii Kxji

⊗Kxji
= ĈJ,A.

Now note that, since (Q + λI)−1 = λ−1(I − Q(Q + λI)−1) for any positive linear operator and
λ > 0, we have

̂̀
J,A(x, λ) =

1

n

〈
Kx, (ĈJ,A + λI)−1Kx

〉
H

=
1

λn

〈
Kx, (I − ĈJ,A(ĈJ,A + λI)−1)Kx

〉
H

=
K(x, x)

λn
− 1

λn

〈
Kx, Z

∗
JB
−1/2(B−1/2ZJZ

∗
JB
−1/2 + λI)−1B−1/2ZJKx

〉
H
,

where in the last step we use the fact that R∗R(R∗R + λI)−1 = R∗(RR∗ + λI)−1R, for any
bounded linear operator R and λ > 0. In particular we used it with R = B−1/2ZJ . Now note that
ZJZ

∗
J ∈ R|J|×|J| and in particular ZJZ∗J = KJ , moreover ZJKx = v(x), so

̂̀
J,A(x, λ) =

K(x, x)

λn
− 1

λn
v(x)>B−1/2(B−1/2KJB

−1/2 + λI)−1B−1/2v(x)

=
K(x, x)

λn
− 1

λn
v(x)>(KJ + λB)−1v(x)

=
K(x, x)

λn
− 1

λn
v(x)>(KJ + λ|J |A)−1v(x),

where in the second step we used the fact thatB−1/2(B−1/2KB−1/2+λI)−1B−1/2 = (K+λB)−1,
for any invertible B any positive operator K and λ > 0.

Finally note that

̂̀
J, n|J|A

(xi, λ) =
K(x, x)

λn
− 1

λn
v(x)>(KJ + λnA)−1v(x) = ˜̀

J,A(i, λ).

A.3 Preliminary results

Denote with Gλ(A,B) the quantity

Gλ(A,B) = ‖(A+ λI)−1/2(A−B)(A+ λI)−1/2‖,
for A,B positive bounded linear operators and for λ > 0.
Proposition 2. Let A,B be positive bounded linear operators and λ > 0, then

‖I − (A+ λI)−1/2(B + λI)(A+ λI)−1/2‖ = Gλ(A,B) ≤ Gλ(B,A)

1−Gλ(B,A)
,

where the last inequality holds if Gλ(B,A) < 1.

Proof. For the sake of compactness denote with Aλ the operator A+ λI and with Bλ the operator
B + λI . First of all note that I = A

−1/2
λ AλA

−1/2
λ , so

I −A−1/2
λ BλA

−1/2
λ = A

−1/2
λ AλA

−1/2
λ −A−1/2

λ BλA
−1/2
λ

= A
−1/2
λ (Aλ −Bλ)A

−1/2
λ = A

−1/2
λ (A−B)A

−1/2
λ

= A
−1/2
λ B

1/2
λ B

−1/2
λ (A−B)B

−1/2
λ B

1/2
λ A

−1/2
λ ,
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where in the last step we multiplied and divided by B1/2
λ . Then

‖I −A−1/2
λ BλA

−1/2
λ ‖ ≤ ‖A−1/2

λ B
1/2
λ ‖

2‖B−1/2
λ (A−B)B

−1/2
λ ‖,

moreover, by Prop. 7 of [15] (see also Prop. 8 of [23]), if Gλ(B,A) < 1, we have

‖A−1/2
λ B

1/2
λ ‖

2 ≤ (1−Gλ(B,A))−1.

Proposition 3. Let A,B,C be bounded positive linear operators on a Hilbert space. Let λ > 0.
Then, the following holds

Gλ(A,C) ≤ Gλ(A,B) + (1 +Gλ(A,B))Gλ(B,C).

Proof. In the following we denote with Aλ the operator A+ λI and the same for B,C. Then

‖A−1/2
λ (A− C)A

−1/2
λ ‖ ≤ ‖A−1/2

λ (A−B)A
−1/2
λ ‖+ ‖A−1/2

λ (B − C)A
−1/2
λ ‖.

Now note that, by dividing and multiplying for B1/2
λ , we have

‖A−1/2
λ (B − C)A

−1/2
λ ‖ = ‖A−1/2

λ B
1/2
λ B

−1/2
λ (B − C)B

−1/2
λ B

1/2
λ A

−1/2
λ ‖

≤ ‖A−1/2
λ B

1/2
λ ‖

2‖B−1/2
λ (B − C)B

−1/2
λ ‖ = ‖A−1/2

λ B
1/2
λ ‖

2Gλ(B,C).

Finally note that, since ‖Z‖2 = ‖Z∗Z‖ for any bounded linear operator Z, we have

‖A−1/2
λ B

1/2
λ ‖

2 = ‖A−1/2
λ BλA

−1/2
λ ‖ = ‖I + (I −A−1/2

λ BλA
−1/2
λ )‖ ≤ 1 + ‖I −A−1/2

λ BλA
−1/2
λ ‖.

Moreover, by Prop. 2, we have that

‖I −A−1/2
λ BλA

−1/2
λ ‖ = Gλ(A,B).

Proposition 4. Let B be a bounded linear operator, then

1− ‖I −BB∗‖ ≤ σmin(B)2 ≤ σmax(B)2 ≤ 1 + ‖I −BB∗‖.

Proof. Now we recall that, denoting by � the Lowner partial order, for a positive bounded operator
A such that aI � A � bI for 0 ≤ a ≤ b, we have (1− b)I � I −A � (1− a)I � (1 + b)I and so,
since BB∗ = I − (I −BB∗), we have

(1− ‖I −BB∗‖)I � σmin(B)2I � BB∗ � σmax(B)2I � 1 + (1 + ‖I −BB∗‖)I,

from we have the desired result.

Let ‖·‖HS denote the Hilbert-Schmidt norm.

We recall and adapt to our needs a result from Prop. 8 of [15].

Proposition 5. Let λ > 0 and v1, . . . , vn with n ≥ 1, be identically distributed random vectors on
separable Hilbert spaceH, such that there exists κ2 > 0 for which ‖v‖H ≤ κ2 almost surely. Denote
by Q the Hermitian operator Q = 1

n

∑n
i=1 E[vi ⊗ vi]. Let Qn = 1

n

∑n
i=1 vi ⊗ vi. Then for any

δ ∈ (0, 1], the following holds

‖(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2‖ ≤ 4κ2β

3λn
+

√
2κ2β

λn

with probability 1− δ and β = log 4 Tr(Q(Q+λI)−1)
‖Q(Q+λI)−1‖δ ≤

8κ2(1+Tr(Q−1
λ Q))

‖Q‖δ .
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Proof. Let Qλ = Q + λI . Here we apply non-commutative Bernstein inequality like [3] (with
the extension to separable Hilbert spaces as in[15], Prop. 12) on the random variables Zi = M −
Q
−1/2
λ vi ⊗Q−1/2

λ vi with Mi = Q
−1/2
λ (E[vi ⊗ vi])Q−1/2

λ for 1 ≤ i ≤ n. Note that the expectation
of Zi is 0. The random vectors are bounded by

‖Q−1/2
λ vi ⊗Q−1/2

λ vi −Mi‖ = ‖Ev′i [Q
−1/2
λ v′i ⊗Q

−1/2
λ v′i −Q

−1/2
λ vi ⊗Q−1/2

λ vi]‖H

≤ 2‖κ2‖‖(Q+ λ)−1/2‖2 ≤ 2κ2

λ
,

and the second orded moment is

E(Zi)
2 = E

〈
vi, Q

−1
λ vi

〉
Q
−1/2
λ vi ⊗Q−1/2

λ vi − Q−2
λ Q2

≤ κ2

λ
E[Q

−1/2
λ v1 ⊗Q−1/2

λ v1] =
κ2

λ
Q(Q+ λI)−1 =: S.

Now we can apply the Bernstein inequality with intrinsic dimension in [3] (or Prop. 12 in [15]).

Now some considerations on β. It is β = log 4 TrS
‖S‖δ =

4 TrQ−1
λ Q

‖Q−1
λ Q‖δ , now we need a lower bound for

‖Q−1
λ Q‖ = σ1

σ1+λ where σ1 = ‖Q‖ is the biggest eigenvalue of Q, now, when 0 < λ ≤ σ1 we have
β ≤ 8 TrQ

λδ .

When λ ≥ σ1, note that Tr(Q(Q+ λI)−1) ≤ λ−1 Tr(Q) ≤ κ2/λ, then

Tr(Q(Q+ λI)−1)

‖Q−1
λ Q‖

≤ κ2

λ σ1

σ1+λ

=
κ2

λ
+
κ2

σ1
≤ 2κ2

σ1
.

So finally β ≤ 8(κ2/‖Q‖+Tr(Q−1
λ Q))

δ

A.4 Analytic decomposition

Lemma 2. Let λ > 0, J, J ′ ⊆ {1, . . . , n}, with |J |, |J ′| ≥ 1 and A ∈ R|J|×|J|, A′ ∈ R|J′|×|J′|
positive diagonal matrices, then

1− 2ν

1− ν
̂̀
J′,A′(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− ν
̂̀
J′,A′(x, λ), ∀x ∈ X,

with ν = Gλ(ĈJ′,A′ , ĈJ,A).

Proof. By denoting with B the operator

B = (ĈJ,A + λI)−1/2(ĈJ′,A′ + λI)1/2,

and according to the characterization of ̂̀J,A(x, λ) via Prop. 1, we havề
J,A(x, λ) = n−1‖(ĈJ,A + λI)−1/2Kx‖2H = n−1‖B (ĈJ′,A′ + λI)−1/2Kx‖2H.

So, by recalling the fact that, by definition of Lowner partial order �, we have a‖v‖2 ≤ ‖Av‖2 ≤
b‖v‖2, for any vector v and bounded linear operator such that aI � A∗A � bI with 0 ≤ a ≤ b, and
the fact that σ(A∗A) = σ(AA∗) = σ(A)2, we have

σmin(B)2‖(ĈJ′,A′ + λI)−1/2Kx‖2H ≤ ‖B(ĈJ′,A′ + λI)−1/2Kx‖2H ≤ σmax(B)2‖(ĈJ′,A′ + λI)−1/2Kx‖2H.

That, by Prop. 1, is equivalent to

σmin(B)2 ̂̀
J′,A′(x, λ) ≤ ̂̀J,A(x, λ) ≤ σmax(B)2 ̂̀

J′,A′(x, λ).

By Prop. 4 we have 1 − ‖I − BB∗‖ ≤ σmin(B)2 ≤ σmax(B)2 ≤ 1 + ‖I − BB∗‖. Finally, by
Prop. 2, we have

‖I −BB∗‖ ≤ ν

1− ν
.
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Lemma 3. Let 0 < λ ≤ λ′, and J ⊆ {1, . . . , n} and A ∈ R|J|×|J|, then

̂̀
J,A(x, λ′) ≤ ̂̀J,A(x, λ) ≤ λ′

λ
̂̀
J,A(x, λ′), ∀x ∈ X.

Proof. If |J | = 0 we have that ̂̀∅,[](x, λ) = K(x,x)
λn and the desired result is easily verified. If |J | ≥ 1,

let B = (CJ,A + λI)−1/2(CJ,A + λ′I)1/2. By recalling the fact that, by definition of Lowner partial
order �, we have a‖v‖2 ≤ ‖Av‖2 ≤ b‖v‖2, for any vector v and bounded linear operator such that
aI � A∗A � bI with 0 ≤ a ≤ b, and the fact that σ(A∗A) = σ(AA∗) = σ(A)2, we have

σmin(B)2‖(ĈJ,A + λ′I)−1/2Kx‖2H ≤ ‖B(ĈJ,A + λ′I)−1/2Kx‖2H ≤ σmax(B)2‖(ĈJ,A + λ′I)−1/2Kx‖2H.

That, by Prop. 1, is equivalent to

σmin(B)2 ̂̀
J,A(x, λ′) ≤ ̂̀J,A(x, λ) ≤ σmax(B)2 ̂̀

J,A(x, λ′).

Now note that

σmin(B)2 ≥ inf
σ≥0

σ + λ′

σ + λ
= 1, σmax(B)2 ≥ sup

σ≥0

σ + λ′

σ + λ
=
λ′

λ
.

Theorem 3. Let λ > 0, J ⊆ {1, . . . , n}, with |J | ≥ 1 and A ∈ R|J|×|J| positive diagonal. Then the
following hold for any x ∈ X ,

1− 2νJ,A
1− νJ,A

̂̀(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− νJ,A
̂̀(x, λ),

where νJ,A = Gλ(Ĉ, ĈJ,A). Morever note that for any |U | ⊆ {1, . . . , n}, we have

νJ,A ≤ ηU + (1 + ηU )βJ,A,U ,

with βJ,A,U = Gλ(ĈU,I , ĈJ,A) and ηU = Gλ(Ĉ, ĈU,I).

Proof. By applying Lemma 2, with their J ′ = {1, . . . , n}, A′ = I , and recalling that ̂̀(x, λ) =̂̀{1,...,n},I , we have for all x ∈ X

1− 2νJ,A
1− νJ,A

̂̀(x, λ) ≤ ̂̀J,A(x, λ) ≤ 1

1− νJ,A
̂̀(x, λ).

To conclude the proof we bound νJ,A in terms of βJ,A,U and ηU , via Prop. 3.

A.5 Proof for Algorithm 1

Lemma 4. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let U ⊆ {1, . . . n}, with |U | ≥ 1. Let (pk)

|U |
k=1 ⊂ R be

a non-negative sequence summing to 1. Let M ∈ N and J = {j1, . . . , jM} with ji sampled i.i.d.
from {1, . . . , |U |} with probability (pk)

|U |
k=1 and A = |U |diag(pj1 , . . . , pjM ). Let τ ∈ (0, 1], and

s := supk∈{1,...,|U |}
1
|U |pk ‖(ĈU,I + λI)−1/2Kxuk

‖2H. When

M ≥ 2s log
4n

τ
,

then the following holds with probability at least 1− τ

‖(ĈU,I + λI)−1/2(ĈJ,A − ĈU,I)(ĈU,I + λI)−1/2‖ ≤

√
4s log 4n

τ

M
.

Proof. Denote with ζi the random variable

ζi =
1

|U |pk
(ĈU,I + λI)−1/2(Kxji

⊗Kxji
)(ĈU,I + λI)−1/2,
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for i ∈ {1, . . . ,M}. In particular note that ζ1, . . . , ζM are i.i.d. since j1, . . . , jM are. Moreover note
the following two facts

‖ζi‖ = sup
k∈{1,...,|U |}

1

|U |pk
‖(ĈU,I + λI)−1/2Kxuk

‖2H = s,

E[ζi] =

|U |∑
k=1

pk
1

|U |pk
(ĈU,I + λI)−1/2(Kxk ⊗Kxk)(ĈU,I + λI)−1/2

= (ĈU,I + λI)−1/2ĈU,I(ĈU,I + λI)−1/2 =: W,

where for the second identity we used the fact that d/lk = 1/(pk|U |). Since by definition of ĈJ,A
we have

1

M

M∑
i=1

ζi = (ĈU,I + λI)−1/2

(
1

|J |

M∑
i=1

1

Aii
Kxji

⊗Kxji

)
(ĈU,I + λI)−1/2

= (ĈU,I + λI)−1/2ĈJ,A(ĈU,I + λI)−1/2,

then, by applying non-commutative Bernstein inequality (Prop. 5 is a version specific for our problem),
we have

‖(ĈU,I + λI)−1/2(ĈJ,A − ĈU,I)(ĈU,I + λI)−1/2‖ =
∥∥ 1

M

M∑
i=1

(ζi − E[ζi])
∥∥ ≤ 2sη

3M
+

√
2s‖W‖η
M

,

with probability at least 1 − τ , and η := log 4 Tr(W )
τ‖W‖ . In particular, by noting that ‖W‖ ≤ 1 by

definition, when M ≥ 2sη, then

2sη

3M
+

√
2s‖W‖η
M

≤ 2sη

3M
+

√
2sη

M
≤ 1

3

√
2sη

M
+

√
2sη

M
≤
√

4sη

M
.

To conclude note that Tr(W )
‖W‖ ≤ rank(W ) ≤ |U | ≤ n, so η ≤ log 4n

τ .

Lemma 5. Let n,R ∈ N, (xi)
n
i=1 ⊆ X . Let U = {u1, . . . , uR} with ui i.i.d. with uniform

probability on {1, . . . , n}. Let τ ∈ (0, 1] and let λ > 0. When

R ≥ 2nκ2

λn+ κ2
log

4n

τ
,

then the following holds with probability 1− τ

‖(Ĉ + λI)−1/2(ĈU,I − Ĉ)(Ĉ + λI)−1/2‖ ≤

√
4nκ2 log 4n

τ

(λn+ κ2)R
.

Proof. Denote by ζi the random variable ζi = (Ĉ + λI)−1/2(Kxui
⊗ Kxui

)(Ĉ + λI)−1/2, for
i ∈ {1, . . . , R}. Note that ζi are i.i.d. since ui are. Moreover note that

‖ζi‖ = sup
i∈{1,...,n}

‖(Ĉ + λI)−1/2Kxi‖2 ≤ sup
i∈{1,...,n}

‖( 1

n
Kxi ⊗Kxi + λI)−1/2Kxi‖2

≤ nκ2

λn+ κ2
=: v.

Moreover note that

E[ζi] =
1

n

n∑
i=1

(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2 = (Ĉ + λI)−1/2Ĉ(Ĉ + λI)−1/2 =: W.

So we have, by non-commutative Bernstein inequality (Prop. 5 is a version specific for our problem),

‖(Ĉ + λI)−1/2(ĈU,I − Ĉ)(Ĉ + λI)−1/2‖ =
∥∥ 1

M

M∑
i=1

(ζi − E[ζi])
∥∥ ≤ 2vη

3R
+

√
2v‖W‖η

R
,
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with probability at least 1 − τ , and η := log 4 Tr(W )
τ‖W‖ . In particular, by noting that ‖W‖ ≤ 1

by definition, when R ≥ 2nκ2η
(λn+κ2)R , analogously to the end of the proof of Lemma 4, we have

2vη
3R +

√
2v‖W‖η

R ≤
√

4nκ2η
(λn+κ2)R . To conclude note that Tr(W )

‖W‖ ≤ rank(W ) ≤ n, so η ≤ log 4n
τ .

Lemma 6. Let n,R ∈ N, (xi)
n
i=1 ⊆ X . Let U = {u1, . . . , uR} with ui i.i.d. with uniform

probability on {1, . . . , n}. Let τ ∈ (0, 1] and let λ > 0. When

R ≥ 16nκ2

λn+ κ2
log

4n

τ
,

then the following holds with probability 1− τ

n

R

R∑
i=1

̂̀(xui , λ) < max

(
5,

6

5
deff(λ)

)
.

Proof. First of all denote with zi the random variable zi = n
R
̂̀(xui , λ) and note that (zi)

R
i=1 are

i.i.d. since (ui)
R
i=1 are. Moreover, by the characterization of ̂̀(x, λ) via Prop. 1, we have

|zi| ≤ sup
k∈{1,...,n}

‖(Ĉ +λI)−1/2Kxk‖2 ≤ ‖(Kxk ⊗Kxk/n+λI)1/2Kxk‖2 ≤
κ2

R(κ2/n+ λ)
=: v,

moreover we have

E[zi] = E[Tr((Ĉ + λI)−1(Kxui
⊗Kxui

))] = Tr((Ĉ + λI)−1E[Kxui
⊗Kxui

])

= Tr

(
(Ĉ + λI)−1

n∑
k=1

1

n
Kxk ⊗Kxk

)
= Tr

(
(Ĉ + λI)−1Ĉ

)
= deff(λ).

So by applying Bernstein inequality, the following holds with probability at least 1− τ∣∣∣∣∣ nR
R∑
i=1

̂̀(xui , λ)− deff(λ)

∣∣∣∣∣ =

∣∣∣∣∣ 1

R

R∑
i=1

(zi − E[zi])

∣∣∣∣∣ ≤ 2v log 2
τ

3R
+

√
2vdeff(λ) log 2

τ

3R
.

So we have

n

R

R∑
i=1

̂̀(xui , λ) ≤ deff(λ)+

∣∣∣∣∣ nR
R∑
i=1

̂̀(xui , λ)− deff(λ)

∣∣∣∣∣ ≤ deff(λ)+
2v log 2

τ

3R
+

√
2vdeff(λ) log 2

τ

R
.

Now, if deff(λ) ≤ 4, since R ≥ 16v log 2
τ , we have that

deff(λ) +
2v log 2

τ

3R
+

√
2vdeff(λ) log 2

τ

R
≤ 4 +

1

24
+

√
1

2
< 5.

If deff(λ) > 4, since R ≥ 16v log 2
τ , we have

deff(λ) +
2v log 2

τ

3R
+

√
2vdeff(λ) log 2

τ

3R
≤

(
1 +

1

24deff(λ)
+

√
1

8deff(λ)

)
deff(λ) <

6

5
deff(λ).

Theorem 4. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let δ ∈ (0, 1], t, q > 1, λ > 0 and H, dh, λh, Jh, Ah, Uh

as in Alg. 1. Let Āh = n
|J|Ah and νh = Gλh(Ĉ, ĈJh,Āh), βh = Gλh(ĈUh,I , ĈJh,Āh), ηh =

Gλh(Ĉ, ĈUh,I). When

λ0 =
κ2

min(t, 1)
, q1 ≥

5κ2q2

q(1 + t)
, q2 ≥ 12q

(2t+ 1)2

t2
(1 + t) log

12Hn

δ
,
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then the following holds with probability 1− δ: for any h ∈ {0, . . . ,H}

a)
1

T
̂̀(x, λh) ≤ ̂̀

Jh,Āh(x) ≤ min(T, 2)̂̀(x, λh), ∀x ∈ X,

b) dh ≤ 3q deff(λh) ∨ 10q, and |Jh| ≤ q2(3qdeff(λh) ∨ 10q).

c) βh ≤
7

11cT
, ηh ≤

3

11cT
, νh ≤

1

cT
.

(20)

where T = 1 + t and cT = 2 + 1/(T − 1).

Proof. Let H , cT , q and λh, Uh, Jh, Ah, dh, Ph = (ph,k)Rhk=1, for h ∈ {0, . . . ,H} as defined in
Alg. 1 and define τ = δ/(3H). Now we are going to define some events and we prove a recurrence
relation that they satisfy. Finally we unroll the recurrence relation and bound the resulting events in
probability.

Definitions of the events Now we are going to define some events that will be useful to prove
the theorem. Denote with Eh the event such that the conditions in Eq. (20)-(a) hold for Jh, Ah, Uh.
Denote with Fh the event such that

n

Rh

∑
u∈Uh

̂̀(xu, λh−1) ≤ 6

5
deff(λ).

Denote with B1,h the event such that βh, satisfies

βh ≤

√
4sh log 4n

τ

Mh
, with sh := sup

k∈{1,...,Rh}

1

Rhph,k
‖(ĈUh,I + λhI)−1/2Kxuk

‖2. (21)

Denote with B2,h the event such that ηh, satisfies

ηh ≤

√
4κ2n log κ2

λhτ

(λhn+ κ2)Rh
.

First bound for sh. Note that, by definition of ph,k, that is, by Prop. 1

ph,k = n˜̀Jh−1,Ah−1
(xuk , λh)/(dhRh) = n̂̀Jh−1,Āh−1

(xuk , λh)/(dhRh),

so

sh = sup
k∈{1,...,Rh}

dh‖(ĈUh,I + λhI)−1/2Kxuk
‖2

n̂̀Jh−1,Āh−1
(xuk , λh)

= sup
u∈Uh

dh ̂̀Uh,I(xu, λh)̂̀
Jh−1,Āh−1

(xu, λh)
,

where the last step consists in apply the definition of ̂̀Uh,I . By applying Lemma 2 and 3 tồ
Uh,I(x, λh), we have

̂̀
Uh,I(x, λh) ≤ 1

1− ηh
̂̀(x, λh) ≤ λh−1

λh(1− ηh)
̂̀(x, λh−1)

and analogously by applying Lemma 3 to ̂̀Jh−1,Āh−1
(x, λh), we have ̂̀Jh−1,Āh−1

(x, λh) ≥̂̀
Jh−1,Āh−1

(x, λh−1). So, by extending the sup of sh to the whole X , we have

sh ≤ dh sup
x∈X

̂̀
Uh,I(x, λh)̂̀

Jh−1,Āh−1
(x, λh)

≤ λh−1dh
λh(1− ηh)

sup
x∈X

̂̀(x, λh−1)̂̀
Jh−1,Āh−1

(x, λh−1)
.

Now we are ready to prove the recurrence relation, for h ∈ {1, . . . H},

Eh ⊇ B1,h ∩B2,h ∩ Eh−1 ∩ Fh.
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Analysis of E0. Note that, since ‖Ĉ‖ ≤ κ2, then 1
κ2+λI � (Ĉ + λI)−1 � 1

λ , so for any x ∈ X
the following holds

K(x, x)

(κ2 + λ)n
≤ ̂̀(x, λ) ≤ K(x, x)

λn
.

Since λ0 = κ2

min(2,T )−1 and ̂̀∅,[](x, λ0) = K(x,x)
λ0n

, we have

1

T
̂̀(x, λ0) ≤ 1

T

K(x, x)

λn
≤ `∅,[](x, λ0) =

K(x, x)

λ0n
=

min(2, T )K(x, x)

(κ2 + λ0)n
≤ min(2, T )̂̀(x, λ0).

Setting conventionally d0, ν0, η0, β0 = 0 (they are not used by the algorithm or the proof), we have
that E0 holds everywhere and so, with probability 1.

Analysis of Eh−1 ∩ B1,h ∩ B2,h. First note that under Eh−1, the following holdŝ̀
Jh−1,Āh−1

(x, λh−1) ≥ 1
T
̂̀(x, λh−1) and so

sh ≤
λh−1dh

λh(1− ηh)
sup
x∈X

̂̀(x, λh−1)̂̀
Jh−1,Āh−1

(x, λh−1)
≤ λh−1dh
λh(1− ηh)

sup
x∈X

̂̀(x, λh−1)
1
T
̂̀(x, λh−1)

≤ Tλh−1dh
λh(1− ηh)

.

Now note that under B2,h, by applying the definition of Rh in Alg. 1, by the condition on q1, we have

ηh ≤

√
4κ2n log κ2

λhτ

(λhn+ κ2)Rh
≤

√
4 log κ2

λhτ

q1
≤ 3/(11cT ) ≤ 3/22.

So under B1,h ∩ B2,h ∩ Eh−1 and the fact that q = λh−1

λh
, we have sh ≤ Tλh−1dh

λh(1−ηh) ≤ (8/7)qTdh
and so, since Mh = q2dh, by the condition on q2, we have

βh ≤

√
4sh log 4n

τ

Mh
≤

√
(32/7)qTdh log 4n

τ

Mh
=

√
(32/7)qT log 4n

τ

q2
<

7

11cT
,

where in the last step we used the definition of Mh in Alg. 1. Then, since under B1,h ∩B2,h ∩Eh−1

we have that βh ≤ 7/(11cT ), ηh ≤ 3/(11cT ) ≤ 3/22, then, by applying Proposition 3 to νh w.r.t.
ηh, βh, we have

νh ≤ ηh + (1 + ηh)βh ≤
(

3

11
+

(
1 +

3

22

)
7

11

)
1

cT
<

1

cT
.

Then 1
T ≤

1−2νh
1−νh and 1

1−νh ≤ min(T, 2), so by applying Thm. 3, we have

1

T
̂̀(x, λh) ≤ ̂̀Jh,Āh(x, λh) ≤ min(T, 2)̂̀(x, λh).

Analysis of Eh−1 ∩ Fh. First note that under Eh−1 the following holds ̂̀Jh−1,Āh−1
(x, λh−1) ≤

min(T, 2)̂̀(x, λh−1), so, by applying Lemma 3 to ̂̀Jh−1,Āh−1
(x, λh), we have

dh =
n

Rh

∑
u∈Uh

̂̀
Jh−1,Āh−1

(xu, λh) ≤ λh−1n

λhRh

∑
u∈Uh

̂̀
Jh−1,Āh−1

(xu, λh−1) ≤ 2λh−1n

λhRh

∑
u∈Uh

̂̀(xu, λh−1).

Moreover under Fh, we have n
Rh

∑
u∈Uh

̂̀(xu, λh−1) ≤ max(5, 6
5deff(λh−1)), so, under Eh−1∩Fh,

we have
dh ≤ 2qmax(5, (6/5)deff(λh−1)) ≤ max(10q, 3qdeff(λh)).

This implies that
|Jh| = Mh = q2dh ≤ q2 max(10q, 3qdeff(λh))

Unrolling the recurrence relation. The two results above imply Eh ⊇ B1,h ∩B2,h ∩Eh−1 ∩Fh.
Now we unroll the recurrence relation, obtaining

Eh ⊇ E0 ∩ (∩hj=1Fj) ∩ (∩hj=1B1,j) ∩ (∩hj=1B2,j),

so by taking their intersections, we have

∩Hh=0Eh ⊇ E0 ∩ (∩Hj=1Fj) ∩ (∩Hj=1B1,j) ∩ (∩Hj=1B2,j). (22)
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Bounding B1,h, B2,h, Fh in high probability Let h ∈ [H]. The probability of the event B1,h can
be written as P(B1,h) =

∫
P(B1,h|Uh, Ph)dP(Uh, Ph). Now note that P(B1,h|Uh, Ph) is controlled

by Lemma 4, that proves that for any Uh, Ph, the probability of P(B1,h|Uh, Ph) is at least 1 − τ .
Then

P(B1,h) =

∫
P(B1,h|Uh, Ph)dP(Uh, Ph) ≥ inf

Uh
P(B1,h|Uh, Ph) ≥ 1− τ.

To see that P(B1,h|Uh, Ph) is controlled by Lemma 4, note that, since |Uh| is exactlyRh, by definition
of Āh and Ah

Āh =
|Jh|
n
Ah = |Uh| diag(pj1 , . . . , pj|Jh|),

that is exactly the condition on the weights required by Lemma 4 which controls exactly Equation (21).
Finally B2,h, Fh are directly controlled respectively by Lemmas 5 and 6 and so hold with probability
at least 1− τ each. Finally note that E0 holds with probability 1. So by taking the intersection bound
according to Equation (22), we have that ∩Hh=0Eh holds at least with probability 1− 3Hτ .

A.6 Proof for Algorithm 2

Lemma 7. Let λ > 0, n ∈ N, δ ∈ (0, 1]. Let (xi)
n
i=1 ⊆ X . Let b ∈ (0, 1] and p1, . . . , pn ∈ (0, b].

Let u1, . . . un sampled independently and uniformly on [0, 1]. Let vj be independentBernoulli(pj/b)
random variables, with j ∈ [n]. Denote by zj the random variable zj = 1uj≤bvj . Finally, let the
random set J containing j iff zj = 1. Let A = n

|J| (pj1 , . . . , pj|J|), where j1, . . . , j|J| are the sorting
of J . Then the following holds with probability at least 1− δ

Gλ(Ĉ, ĈJ,A) ≤ 2sη

3n
+

√
2sη

n
, with s = sup

i∈[n]

1

pi
‖(Ĉ + λI)−1/2Kxi‖2H,

with s = log 4n
δ .

Proof. Let ζi be defined as

ζi =
zi
pi

1

n
(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2,

for i ∈ [n], where zi are the Bernoulli random variables computed by Algorithm 2. First note that

(Ĉ + λI)−1/2ĈJ,A(Ĉ + λI)−1/2 =
1

|J |
∑
j∈J

|J |
npj

(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2

=
1

n

∑
j∈J

1

pj
(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2

=
1

n

n∑
i=1

zi
pj

(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2

=

n∑
i=1

ζi.

In particular we study the expectation and the variance of ζi to bound Gλ(Ĉ, ĈJ,A). By noting that
the expectation of zi is E[zi] = E[1ui≥bvi] = E[1ui≥b]E[vi] = b× pi

b = pi, for any i ∈ [n], then

E
n∑
i=1

ζi =

n∑
i=1

E[zi]

pi

1

n
(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2

=

n∑
i=1

1

n
(Ĉ + λI)−1/2(Kxi ⊗Kxi)(Ĉ + λI)−1/2

= (Ĉ + λI)−1/2Ĉ(Ĉ + λI)−1/2 =: W,

21



Now we will bound almost everywhere ‖ζi‖ as

‖ζi‖ ≤ sup
i∈[n]

zi
pi

1

n
‖(Ĉ + λI)−1/2Kxi‖2H ≤

1

n
sup
i∈[n]

1

pi
‖(Ĉ + λI)−1/2Kxi‖2H.

We are ready to apply non-commutative Bernstein inequality (Prop. 5 is specific version for this
setting), obtaining, with probability at least 1− δ

Gλ(Ĉ, ĈJ,A) = ‖ 1

n

n∑
i=1

(ζi − E[ζi])‖ ≤
2sη

3n
+

√
2sη

n
,

with η = log 4 Tr(W )
‖W‖δ . Finally note that since Tr(W )/‖W‖ ≤ rank(W ) ≤ n, we have η ≤

log 4n
δ .

Lemma 8. Let λ > 0, n ∈ N, δ ∈ (0, 1]. Let (xi)
n
i=1 ⊆ X . Let b ∈ (0, 1] and p1, . . . , pn ∈ (0, b].

Let u1, . . . un sampled independently and uniformly on [0, 1]. Let vj be independentBernoulli(pj/b)
random variables, with j ∈ [n]. Denote by zj the random variable zj = 1uj≤bvj . Finally, let the
random set J containing j iff zj = 1. Then the following holds with probability at least 1− δ

|J | ≤
∑
i∈[n]

pi + (1 +

√∑
i∈[n]

pi) log
3

δ
.

Proof. By definition of Jh, note that
|J | =

∑
i∈[n]

zi.

We are going to concentrate the sum of random variables via Bernstein. Any zi is bounded, by
construction, by 1. Moreover

E[zi] = E[1ui≥bvi] = E[1ui≥b]E[vi] = b× pi
b

= pi.

Analogously E[z2
i ]− E[zi]

2 = pi − p2
i ≤ pi. By applying Bernstein inequality, we have

|
∑
i∈[n]

(zi − pi)| ≤ log
2

δ
+

√√√√log
2

δ

∑
i∈[n]

pi,

with probability 1− δ. Then with the same probability,

|J | ≤
∑
i∈[n]

pi + (1 +

√∑
i∈[n]

pi) log
3

δ
.

Theorem 5. Let n ∈ N, (xi)
n
i=1 ⊆ X . Let δ ∈ (0, 1], t, q > 1, λ > 0 and H, dh, λh, Jh, Ah as in

Alg. 2. Let νh = Gλ(Ĉ, ĈJh,Āh). When

λ0 =
κ2

min(t, 1)
, q1 ≥ 2Tq(1 + 2/t) log

4n

δ

then, the following holds with probability 1− δ: for any h ∈ {0, . . . ,H}

a)
1

T
̂̀(x, λh) ≤ ̂̀

Jh,Āh(x) ≤ min(T, 2)̂̀(x, λh), ∀x ∈ X,

b) |Jh| ≤ 3q1 min(T, 2) (5 ∨ deff(λh)) log
6H

δ
,

c) νh ≤
1

cT
.

(23)

where T = 1 + t and cT = 2 + 1/(T − 1).

Proof. Let H , cT , q and λh, Jh, Ah, (ph,i)
n
i=1 for h ∈ {0, . . . ,H} as defined in Alg. 2 and define

τ = δ/(2H). Now we are going to define some events and we prove a recurrence relation that they
satisfy. Finally we unroll the recurrence relation and bound the resulting events in probability.
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Definitions of the events Now we are going to define some events that will be useful to prove the
theorem. Denote with Eh the event such that the conditions in Eq. (23)-(a) hold for Jh, Āh. Denote
with Zh the event such that

|Jh| ≤
∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
.

Denote with Vh the event such that νh := Gλh(ĈU,I , ĈJh,Ah), satisfies

νh ≤ sh log
8κ2

λhτ
+

√
2sh log

8κ2

λhτ
, with sh = sup

i∈[n]

1

nph,i
‖(Ĉ + λhI)−1/2Kxi‖2H. (24)

Analysis of sh. Note that, by definition of ph,i, for Algorithm 2, and of ̂̀, we have so

sh = sup
i∈[n]

1

nph,i
‖(Ĉ + λhI)−1/2Kxi‖2H = sup

i∈[n]

̂̀(xi, λi)
q1
˜̀
Jh,Ah(xi)

= sup
i∈[n]

̂̀(xi, λi)
q1
̂̀
Jh,Āh(xi)

.

with Āh = n
|J|Ah, where the last step is due to the equivalence between ˜̀and ̂̀in Proposition 1.

Now we are ready to prove the recurrence relation, for h ∈ {1, . . . H},

Eh ⊇ Vh ∩ Zh ∩ Eh−1.

Analysis of E0. Note that, since ‖Ĉ‖ ≤ κ2, then 1
κ2+λI � (Ĉ + λI)−1 � 1

λ , so for any x ∈ X
the following holds

K(x, x)

(κ2 + λ)n
≤ ̂̀(x, λ) ≤ K(x, x)

λn
.

Since λ0 = κ2

min(2,T )−1 and ̂̀∅,[](x, λ0) = K(x,x)
λ0n

, we have

1

T
̂̀(x, λ0) ≤ 1

T

K(x, x)

λn
≤ `∅,[](x, λ0) =

K(x, x)

λ0n
=

min(2, T )K(x, x)

(κ2 + λ0)n
≤ min(2, T )̂̀(x, λ0).

Setting conventionally d0, ν0, η0, β0 = 0 (they are not used by the algorithm or the proof), we have
that E0 holds everywhere and so, with probability 1.

Analysis of Eh−1 ∩ Vh. Note that under Eh−1, we have ̂̀Jh−1,Āh−1
(x, λh−1) ≥ 1

T
̂̀(x, λh−1), so

sh = sup
i∈[n]

̂̀(xi, λh)

q1
̂̀
Jh,Āh(xi, λh−1)

≤ T sup
i∈[n]

̂̀(xi, λh)

q1
̂̀(xi, λh−1)

≤ Tλh−1

λh
sup
i∈[n]

̂̀(xi, λh−1)

q1
̂̀(xi, λh−1)

=
Tλh
q1λh−1

=
Tq

q1
,

where we used the fact that ̂̀(xi, λh) ≤ λh−1

λh
̂̀(xi, λh−1), via Lemma 3. In particular since we are in

Vh, this means that, since q1 ≥ 2Tq(1 + 2/t) log 4n
δ , we have

νh ≤
Tq

q1
log

8κ2

λhτ
+

√
2
Tq

q1
log

8κ2

λhτ
≤ (4 + 2t−1)−2 +

√
2/(4 + 2t−1)2 (25)

≤ (1/8 +
√

1/8)(2 + t−1)−1 ≤ 1

2cT
. (26)

Then 1
T ≤

1−2νh
1−νh and 1

1−νh ≤ min(T, 2), so by applying Thm. 3, we have

1

T
̂̀(x, λh) ≤ ̂̀Jh,Āh(x, λh) ≤ min(T, 2)̂̀(x, λh).
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Analysis of Eh−1 ∩ Zh. First consider
∑
i∈[n] ph,i. By the fact that ˜̀Jh−1,Ah−1

= ̂̀
Jh−1,Āh−1

, by
Proposition 1, we have∑

i∈[n]

ph,i = q1

∑
i∈[n]

˜̀
Jh−1,Ah−1

(xi, λh) = q1

∑
i∈[n]

̂̀
Jh−1,Āh−1

(xi, λh)

≤ q1
λh−1

λh

∑
i∈[n]

̂̀
Jh−1,Āh−1

(xi, λh−1),≤ q1 min(T, 2)
λh−1

λh

∑
i∈[n]

̂̀(xi, λh−1),

≤ q1 min(T, 2)
λh−1

λh

∑
i∈[n]

̂̀(xi, λh) = q1 min(T, 2)deff(λh),

where we applied in order (1) Lemma 3, to bound ̂̀
Jh−1,Āh−1

(xi, λh) in terms of̂̀
Jh−1,Āh−1

(xi, λh−1), (2) the fact that we are in the event Eh−1 and so ̂̀Jh−1,Āh−1
(xi, λh−1) ≤

min(T, 2)̂̀(xi, λh−1), then (3) again Lemma 3 to bound ̂̀(xi, λh−1) w.r.t. ̂̀(xi, λh), and (4) finally
the definition of deff(λh).

Now if deff(λh) ≤ 10, we have that∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
≤ 15q1 min(T, 2) log

3

τ
.

If deff(λh) > 10, we have that∑
i∈[n]

ph,i + (1 + (
∑
i∈[n]

ph,i)
1/2) log

3

τ
≤ 3deff(λh)q1 min(T, 2) log

3

τ
.

So under Eh−1 ∩ Zh, we have that

|J | ≤ 3q1 min(T, 2) (5 ∨ deff(λh)) log
3

τ
.

Unrolling the recurrence relation. The two results above imply Eh ⊇ Vh ∩Zh ∩Eh−1. Now we
unroll the recurrence relation, obtaining

Eh ⊇ E0 ∩ (∩hj=1Zj) ∩ (∩hj=1Vj),

so by taking their intersections, we have

∩Hh=0Eh ⊇ E0 ∩ (∩Hj=1Zj) ∩ (∩Hj=1Vj). (27)

Bounding Vh, Zh in high probability Let h ∈ [H]. Denote by Ph = (ph,j)j∈[n]. The probability
of the eventZh can be written as P(Zh) =

∫
P(Zh|Ph)dP(Ph). Now note that P(Zh|Ph) is controlled

by Lemma 8, that proves that the probability of P(Zh|Ph) is at least 1− τ . Then

P(Zh) =

∫
P(Zh|Ph)dP(Ph) ≥ inf

Ph
P(Zh|Ph) ≥ 1− τ.

The probability event Vh is lower bounded by 1− τ , via the same reasoning, using Lemma 7. Finally
note that E0 holds with probability 1. So by taking the intersection bound according to Equation (27),
we have that ∩Hh=0Eh holds at least with probability 1− 3Hτ .

A.7 Proof of Theorem 1

Proof. The proof of this theorem splits in the proof for Algorithm 1 that corresponds to Theorem 4
and the proof for Algorithm 2, that corresponds to Theorem 5. In particular, the result abou leverage
scores is expressed in terms of out-of-sample-leverage-scores ̂̀Jh,Ah (Definition 1). The desired
result, about ˜̀Jh,Ah , is obtained via Proposition 1.

Note that the two theorems provides stronger guarantees than the ones required by this theorem.
We will use only points (a) and (b) of their statements. Moreover they prove the result for the
out-of-sample-leverage-scores (Definition 1) and here we specify the result only for x = xi, with
i ∈ [n].
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B Theoretical Analysis for Falkon with BLESS

In this section the FALKON algorithm is recalled in detail. Then it is proved in Thm. 6 that the excess
risk of FALKON-BLESS is bounded by the one of Nyström-KRR. In Thm. 7 the learning rates for
Nyström-KRR with BLESS are provided. In Thm. 8 a more general version of Thm. 2 is provided,
taking into account more refined regularity conditions on the learning problem. Finally the proof of
Thm. 2 is derived as a corollary.

B.1 Definition of the algorithm

Definition 2 (Generalized Preconditioner). Given λ > 0, (x̃j)
M
j=1 ⊆ X , M ∈ N and A ∈ RM×M

positive diagonal matrix, we say that B is a generalized preconditioner, if

B =
1√
n
A−1/2QT−1R−1,

where Q ∈ RM×q partial isometry with Q>Q = I and q ≤M , where T,R ∈ Rq×q are invertible
triangular, and Q,T,R satisfy

A−1/2KMMA
−1/2 = QT>TQ>, R =

1

M
TT> + λI,

with KMM ∈ RM×M defined as (KMM )ij = K(x̃i, x̃j).
Example 1 (Examples of Preconditioners). The following are some ways to compute preconditioners
satisfying Def. 2

1. If KMM in the definition above is full rank, then we can choose

Q = I, T = chol(A−1/2KMMA
−1/2), R = chol(

1

M
TT> + λI),

where chol is the Cholesky decomposition.

2. If KMM is rank deficient, let q = rank(KMM ), then

(Q,Z) = qr(A−1/2KMMA
−1/2), T = chol(Q>A−1/2KMMA

−1/2Q), R = chol(
1

M
TT>+λI),

where qr is the QR rank-revealing decomposition.

3. If instead of qr we want to use the eigendecomposition, then let (λj , uj)
M
j=1 be the eigenvalue

decomposition of A1/2KMMA
1/2 with λ1 ≥ · · · ≥ λM ≥ 0 and let q = rank(KMM ).

Then

Q = (u1, . . . , uq), T = diag(
√
λ1, . . . ,

√
λq), R = diag

(√
λ1

M
+ λ, . . . ,

√
λq
M

+ λ

)
.

Definition 3 (Generalized Falkon Algorithm). Let λ > 0 and t, n,M ∈ N. Let (xi, yi)
n
i=1 ⊆ X ×Y

be the dataset. Given J ⊆ [n] let X̃J = ∪j∈Jxj be the selected Nyström centers and denote by
{x̃1, . . . , x̃|J|} the points in X̃J . Let A ∈ R|J|×|J| be a positive diagonal matrix of weights and K
the kernel function. Let B, q be as in Def. 2 based on X̃M and A. The Generalized Falkon estimator
is defined as follows

f̂λ,J,A,t =

|J|∑
i=1

αiK(x, x̃i), with α = Bβt,

where βt ∈ Rq denotes the vector resulting from t iterations of the conjugate gradient algorithm
applied to the following linear system

Wβ = b, W = B>(K>nMKnM + λnKMM )B, b = B>K>nMy,

with KnM ∈ Rn×M , (KnM )ij = K(xi, x̃j), and KMM ∈ RM×M , (KMM )ij = K(x̃i, x̃j), and
with y = (y1, . . . , yn) ∈ Rn.
Definition 4 (Standard Nyström Kernel Ridge Regression). With the same notation as above, the
standard Nyström Kernel Ridge Regression estimator is defined as

f̃λ,J =

|J|∑
i=1

αiK(x, x̃i), with α = (K>nMKnM + λnKMM )†y.
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B.2 Main results

Here, Thm. 6 proves the excess risk of FALKON-BLESS is bounded by the one of Nyström-KRR.
In Thm. 7 the learning rates for Nyström-KRR are provided. In Thm. 8 a more general version of
Thm. 2 is provided, taking into account more refined regularity conditions on the learning problem.
Finally the proof of Thm. 2 is derived as a corollary.

Let Zn = (xi, yi)
n
i=1 be a dataset and J ⊆ {1, . . . , n} and A ∈ R|J|×|J| positive diagonal matrix.

In the rest of this section we denote by f̂λ,J,A,t the Falkon estimator as in Def. 3 trained on Zn and
based on the Nyström centers X̃M = ∪j∈J{xj} and weights A with regularization λ and number of
iterations t. Moreover we denote by f̂λ,J the standard Nyström estimator trained on Zn and based on
the Nyström centers X̃M .

The following theorem is obtained by combining Lemma 2, 3 and Thm. 1 of [14], with our Prop. 2.

Theorem 6. Let λ > 0, n ≥ 3, δ ∈ (0, 1], tmax ∈ N. Let Zn = (xi, yi)
n
i=1 be an i.i.d. dataset. Let

H and (λh)Hh=0, (Mh)Hh=0, (Jh)Hh=0, (Ah)Hh=0 be outputs of Alg. 1 runned with parameter T = 2.

The following holds with probability 1− 2δ: for each h ∈ {0, . . . ,H} such that 0 < λh ≤ ‖C‖,

R(f̂λh,Jh,Ah,t) ≤ R(f̃λh,Jh) + 4v̂ e−t

√
1 +

9κ2

λhn
log

nHtmax

δ
, ∀t ∈ {0, . . . , tmax},

with v̂ := 1
n

∑n
i=1 yi.

Proof. Let τ = δ/(tmaxH) and let h ∈ {1, . . . ,H}. By Lemma 2 and Lemma 3 of [14], we have
that, when Gλ(Ĉ, C̃Jh,Ah) < 1, with their C̃Jh,Ah = ĈJh,Āh and Āh defined as in theorem 4, then
the condition number of Wh, that is the preconditioned matrix in Def. 3 with λ = λh, is controlled by

cond(Wh) ≤ 1 +Gλh(C̃Jh,Ah , Ĉ)

1−Gλh(C̃Jh,Ah , Ĉ)
.

Now, by Prop. 2, we have

Gλh(C̃Jh,Ah , Ĉ) ≤ Gλh(Ĉ, C̃Jh,Ah)

1−Gλh(Ĉ, C̃Jh,Ah)
.

So, combining the two results above, we have that when Gλh(Ĉ, C̃Jh,Ah) ≤ 1/3

cond(Wh) ≤ 1

1− 2 Gλh(Ĉ, C̃Jh,Ah)
≤ 3.

Now denote by Eh,t the event such that

R(f̂λh,Jh,Ah,t) ≤ R(f̃λh,Jh) + 4v̂2 e−t

√
1 +

9κ2

λhn
log

n

τ
.

Since cond(Wh) ≤ 3, we have that log

√
cond(Wh)+1√
cond(Wh)+1

≥ 1 and so can apply Theorem 1 of [14] with

their parameter ν = 1, obtaining that each Eh,t, with t ∈ {0, . . . , tmax} hold with probability 1− τ .
So by taking the intersection bound, we know that Eh := ∩tmax

t=0 Eh,t holds with probability 1− tmaxτ .

Finally denote by FH the event: Gλh(Ĉ, C̃Jh,Ah) ≤ 1/3 for any h ∈ {0, . . . ,H}. Note that
Theorem 4 states that, by running Alg. 1 with T = 2, the event FH holds with probability at least
1− δ.

The desired result correspond to the event ∩Hh=1Eh ∩ FH which, by taking the intersection bound,
holds with probability at least 1− δ − tmaxHτ .
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B.3 Result for Nyström-KRR and BLESS

We introduce here the ideal and empirical operators that we will use in the following to prove the
main results of this work and then we prove learning rates for Nyström-KRR.

In the following denote with C : H → H the linear operator

C =

∫
Kx ⊗KxdρX(x),

and, given a set of input-output pairs {(xi, yi)}ni=1 with (xi, yi) ∈ X × Y independently sampled
according to ρ on X × Y , we define the empirical counterparts of the operators just defined as
Ŝ : H → Rn s.t.

f ∈ H 7→ 1√
n

(〈Kxi , f〉H)ni=1 ∈ Rn,

with adjoint Ŝ∗ : Rn → H s.t.

v = (vi)
n
i=1 ∈ Rn 7→ 1√

n

n∑
i=1

viKxi ,

Now we introduce some assumption that will be satisfied by the conditions on Thm. 2.
Assumption 1. There exists B, σ > 0 such that the following holds almost everywhere on X

E[|y − E[y|x]|p | x] ≤ p!

2
Bp−2σ2.

Assumption 2. There exists r ∈ [1/2, 1] and g ∈ H such that

fH = Cr−1/2g,

Theorem 7 (Generalization properties of Nyström-RR using BLESS). Let δ ∈ (0, 1] and
λ > 0, n ∈ N.Under Asm. 1, 2, let the Nyström estimator as in Definition 4 and assume that
(Jh)Hh=1, (Ah)Hh=1, (λh)Hh=1 is obtained via Alg. 1 or 2. When 9κ2

n log n
δ ≤ λ ≤ ‖C‖, then the

following holds with probability 1− 4δ

R(f̃λh,Jh) ≤ 8‖g‖H

B log 2
δ

n
√
λh

+

√
σ2deff(λh) log 2

δ

n
+ λ

1/2+v
h

 .

Proof. The proof consists in following the decomposition in Thm. 1 of [15], valid under Asm. 2 and
using our set Jh to determin the Nyström centers. First note that under Assumption 2, there exists a
function fH ∈ H, such that E(fH) = inff∈H E(f) (see [16] and also [17, 18]). According to Thm. 2
of [15], under Asm. 2, we have that

R(f̃λh,Jh)1/2 ≤ q(S(λh, n)︸ ︷︷ ︸
Sample error

+ C(Mh)1/2+v︸ ︷︷ ︸
Computational error

+ λ
1/2+v
h︸ ︷︷ ︸

Approximation error

),

where S(λ, n) = ‖(C + λI)−1/2(Ŝ∗nŷ − ĈnfH)‖ and C(Mh) = ‖(I − PMh
)(C + λI)1/2‖2 with

PMh
= ĈJh,IĈ

†
Jh,I

. Moreover q = ‖g‖H(β2 ∨ (1 + θβ)), β = ‖(Ĉn + λI)−1/2(C + λI)1/2‖,
θ = ‖(Ĉn + λI)1/2(C + λI)−1/2‖.
The term S(λh, n) is controlled under Asm. 1 by Lemma 4 of the same paper, obtaining

S(λ, n) ≤
B log 2

δ

n
√
λh

+

√
σ2deff(λh) log 2

δ

n
,

with probability at least 1− δ. The term β is controlled by Lemma 5 of the same paper,

β ≤ 2,

with probability 1− δ under the condition on λ. Moreover

θ2 = ‖(C + λI)−1/2Ĉ(C + λI)−1/2‖ ≤ 1 + ‖(C + λI)−1/2(Ĉ − C)(C + λI)−1/2‖,
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where the last term is bounded by 1/2 with probability 1 − δ under the same condition on λ, via
Prop. 8 and the following Remark 1 of the same paper.

Now we study the term C(Mh) that is the one depending on the result of BLESS. First note that,
since diag(Ah) > 0, then

PMh
= ĈJh,IĈ

†
Jh,I

= ĈJh,ĀhĈ
†
Jh,Āh

.

By applying Proposition 3 and Proposition 7 of the same paper, the following holds

C(Mh) ≤ λh

1−Gλh(Ĉ, ĈJh,Āh)
,≤ 2λh,

with probability at least 1− δ, where we applied Thm. 4-(c) and Thm. 5-(c), which control exactly
Gλh(Ĉ, ĈJh,Āh) and prove it to be smaller than 1/2 in high probability.

Finally by taking the intersection bound of the events above, we have

R(f̃λh,Jh)1/2 ≤ 4‖g‖H

B log 2
δ

n
√
λh

+

√
σ2deff(λh) log 2

δ

n
+ 2λ

1/2+v
h

 ,

with probability 1− 4δ.

Theorem 8 (Generalization properties of learning with FALKON-BLESS). Let δ ∈ (0, 1] and
λ > 0, n ≥ 3, tmax ∈ N. Let Zn = (xi, yi)

n
i=1 be an i.i.d. dataset. Let H and MH , JH , AH be

outputs of Alg. 1 runned with parameter T = 2. Let y ∈ [−a/2, a/2] almost surely, with a > 0.
Under 2, Let λ > 0, n ≥ 3, δ ∈ (0, 1], when 9κ2

n log n
δ ≤ λ ≤ ‖C‖, then the following holds with

probability 1− 6δ

R(f̂λ,JH ,AH ,t) ≤ 4a e−t + 32‖g‖2H

(
a2 log2 2

δ

n2λ
+
adeff(λ) log 2

δ

n
+ 2λ1+2r

)
, ∀t ∈ {0, . . . , tmax},

Proof. The result is obtained by combining Thm. 6, with Thm. 7 and noting that when y ∈
[−a/2, a/2] almost surely, then it satisfies Asm. 1 with B, σ ≤ a.

B.4 Proof of Thm. 2

Proof. The result is a corollary of Thm. 8, where we assumed only the existence of fH. This
correspond to assume Asm. 2, with r = 1/2 and g = fH (see [16]).

C More details about BLESS and BLESS-R

BLESS (Alg. 1). Here we describe our bottom-up algorithm in detail (see Algorithm 1). The central
element is using a decreasing list of {λh}hh=1, from a given λ0 � λ up to λ. The idea is to iteratively
construct a LSG set that approximates well the RLS for a given λh, based on the accurate RLS
computed using a LSG set for λh−1. The crucial observation of the proposed algorithm is that when
λh−1 ≥ λh then

∀i : `(i, λh) ≤ λh
λh−1

`(i, λh−1), deff(λh) ≤ λh
λh−1

deff(λh−1),

(see Lemma 3, for more details). By smoothly decreasing λh, the LSG at step h will only be a
λh/λh−1 factor worse than our previous estimate, which is automatically compensated by a λh/λh−1

increase in the size of the LSG. Therefore, to maintain an accuracy level for the leverage scores
approximation as in Eq. (2) and small space complexity, it is sufficient to select a logaritmically
spaced list of λ’s from λ0 = κ2 to λ (see Thm. 1), in order to keep λh/λh−1 as a small constant.
This implies an extra multiplicative computational cost for the whole algorithm of only log(κ2/λ).

More in detail, we initialize the Algorithm setting D0 = (∅, []) to the empty LSG. Afterwards, we
begin our main loop where at every step we reduce λh by a q factor, and then use Dh−1 to construct
a new LSG Dh. Note that at each iteration we construct a set Jh larger than Jh−1, which requires
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computing ˜̀Dh−1
(i, λh) for samples that are not in Jh−1, and therefore not computed at the previous

step. Computing approximate leverage scores for the whole dataset would be highly inefficient,
requiring O(nM2

h) time which makes it unfeasible for large n. Instead, we show that to achieve the
desired accuracy it is sufficient to restrict all our operations to a sufficiently large intermediate subset
Uh sampled uniformly from [n]. After computing ˜̀Dh−1

(i, λh) only for points in Uh, we select
Mh points with replacements according to their RLS to generate Jh. With a similar procedure we
update the weights in Ah. We will see in Thm. 1, |Uh| ∝ 1/λh is sufficient to guarantee that this
intermediate step produces a set satisfying Equation (2), and also takes care of increasing |Uh| to
increase accuracy as λh decreases. Moreover the algorithm uses a Mh ∝

∑
u∈Uh

˜̀
Dh−1

(i, λh) that
we prove in Thm. 1, to be in the order of deff(λh). In the end, we return either the final LSG DH to
compute approximations of `(i, λ), or any of the intermediate Dh if we are interested in the RLSs
along the regularization path {λh}Hh=1.

BLESS-R (Alg. 2) The second algorithm we propose, is based on the same principles of
Algorithm 1, while simplifying some steps of the procedure. In particular it removes the need
to explicitly track the normalization constant dh and the intermediate uniform sampling set, by
replacing it with rejection sampling. At each iteration h ∈ [H], instead of drawing the set Uh from
a uniform distribution, and then sampling Jh, from Uh, Algorithm 2 performs a single round of
rejection sampling for each column according to the following identity

P(zh,i = 1) = P(zh,i = 1|uh,i ≤ βh)P(uh,i ≤ βh) = βhph,i/βh = ph,i ∝ ˜̀Dh−1
(xi, λh−1),

where zh,i is the r.v. which is 1 if i ∈ [n], while uh,i is the probability that the column i passed the
rejection sampling step, while βh a suitable treshold which mimik the effect of the set Uh.

Space and time complexity. Note that at each iteration constructing the generator ˜̀Dh−1
,

requires computing the inverse (KJh + λhnI)−1, with M3
h time complexity, while each of

the Rh evaluations ˜̀Dh−1
(i, λh) takes only M2

h time. Summing over the H iterations Alg. 1
runs in O(

∑H
h=1M

3
h + RhM

2
h) time. Noting that Rh ' 1/λh, that Mh ' dh ≤ 1/λh, and

that
∑
h λ
−1
h =

∑
h q

h−Hλ−1 = q−q−H
q−1 λ−1, the final cost is O

(
λ−1 maxhM

2
h

)
time, and

O
(
maxhM

2
h

)
space. Similarly, Alg. 2 only evaluates ˜̀Dh−1

for the points that pass the rejection
steps which w.h.p. happens only O(nβh) = O(1/λ) times, so we have the same time and space
complexity of Alg. 1.
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