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A Supplementary results - Quadrature Fourier Features
1

A.1 Basic definitions

This subsection contains basic definitions and assumptions needed for further results and proofs.

Definitions
Definition 4 (Spectral characteristic function). Let k be a stationary kernel and g ∈ Hk (associated
RKHS) s.t. g(x) =

∑
j∈I αjk(x− xj), then spectral characteristic function of g is

α(ω)
def
=
∑
j∈I

αj exp(iω
⊤xj). (10)

Definition 5 (Approximating Space). Let Fm be an approximating space defined via the basis
functions in the vector Φ, s.t.

Fm(Φ)
def
= {f : Rd → R s.t. f(x) = ψ⊤Φ(x)|ψ ∈ Rm}, (11)

1The original version that appeared stated a wrong lemma on χ2 concentration which has been corrected
without changing the results qualitatively.
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where the vector Φ(x) ∈ Rm, and Φ(x)j = ϕ(ωj , x) for some ωj ∈ [m].

Definition 6 (Total Variation). Let f : D → R, where D ⊂ R be a differentiable function then total
variation of f is defined to be,

TV(f) =

∫
D

|f ′(x)|dx. (12)

Definition 7 (Information Gain). Let k be a kernel defining the posterior variance σt(x)2, and
{xt}Tt=1 the sequence of points chosen. We define the information gain of these points as,

I({xt}Tt=1, ρ)
def
= 1

2

∑T
t=1 log(1 + ρ−2σ2

t−1(xt)), and the maximum information gain as,γT (k)
def
=

max{xt}T
t=1

I({yt}Tt=1, ρ).

Assumptions
Assumption 2 (Uniform Approximation). Let Φ(x)⊤Φ(y) ϵ-uniformly approximate the stationary
kernel k on D = [0, 1]d as in (Def 1).

Assumption 3 (Bound). Let g ∈ H, an RKHS defined via stationary kernel k, such that ∥g∥H ≤ B.

Assumption 4 (Bounded spectral characteristic). Let g be a function from Hk, RKHS induced via
kernel k, s.t. its characteristic spectral function α(ω) is bounded by B i.e. |α(ω)| ≤ B.

Lemma 1. Assumption 4 implies ∥g∥Hk
≤ B and that further implies |g(x)| ≤ B.

A.2 Extensions of QFF - Kernel specific quadrature

First, we note that the there exist a kernel dependent way to approximate the integral that we refer to
as kernel specific. Namely, we use the fact that the Fourier transform p(ω) can be used as weighting
function in numerical integration. However, not all functions can be valid weighting function on an
unbounded domain.

They have to satisfy the following criteria [50]:

1. p(ω) is measurable on a unbounded interval

2. All moment of p(ω) are finite

3. for polynomials s(ω) that are positive
∫
p(ω)s(ω)dω = 0 implies s(ω) = 0.

These conditions are clearly satisfied for squared exponential kernel, and we provided a specialized
quadrature based Fourier Features in Def. 3. There are possibly other kernels satisfying these
conditions that can be created as combinations of the above kernels with other kernel functions. A
elegant framework that can ensure these properties to hold is to design the kernels in the frequency
domain as in [59].

However these conditions cannot be satisfied for Laplace kernel, for example. Its Fourier transform
has unbounded moments. For kernels where kernel specific Fourier Features cannot be constructed,
we present a universal method which requires transformation to a bounded domain in (8), however
the exponential error decrease cannot be ensured in general anymore.

Integration Interval When specialized quadrature methods defined over unbounded domain can-
not be applied, we apply a transformation techniques as outlined in [6] to make the integration
domain bounded. There are several way to proceed; we focus on the transformation from [5],
ω = cot(ϕ) due to its elegance and good convergence properties when the function is sufficiently
regular. Applying the same transformation coordinate-wise on each component of ϕ, we arrive at
the following integral,

k(x− y) =

∫
[0,π]d

p(cot(ϕ))ϕ(cot(ϕ), x)ϕ(cot(ϕ), y)
∏
i=1

1

sin(ϕi)2
dϕ. (13)

General QFF
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Definition 8 (General QFF ). Let Assumption 1 be satisfied, and m = (2m̄)d, where m̄ ∈ N, then
for x ∈ [0, 1]d, we define a mapping

Φ(x)j =


√
p(cot(ϕj))

(∏d
i=1

vj(ϕj,i)
sin2(ϕj,i)

)
cos(cot(ϕj)

⊤x) if j ≤ m√
p(cot(ϕj−m))

(∏d
i=1

vj(ϕj−m,i)
sin2(ϕj−m,i)

)
sin(cot(ϕj−m)⊤x) if 2m > j > m,

(14)

where v(ϕj,i) = 2
(1−ϕj,i)2L′

m−1(ϕj,i)2
and L′

i is the derivative of ith Legendre polynomial. The set

{ϕj}mj=1 is formed by the Cartesian product of {(ϕ̄i + 1)π2 }
m̄
i=1, where each ϕ̄i is defined to be the

zero of ith Legendre polynomial. More details in [22].

When the kernel specific quadrature can be constructed, we always achieve exponential decrease as
the integrand is a simple a trigonometric function which is analytic and its derivative can be easily
bounded. On the other hand, the error characteristic of the general scheme depends on the function
p(cot(ϕ)) cos(δ cot(ϕ))

sin(ϕ)2 for δ ∈ [0, 1]. In particular we state the following bound.

Theorem 4 (Quadrature Fourier Features error). Let Φ(x) ∈ Rm be as in Definition 8 with m =

(2m̄)d, D = [0, 1]d, fδ(ϕ) = p(cot(ϕ)) cos(δ cot(ϕ))
sin(ϕ)2 be s− 1 times absolutely continuous, then

sup
x,y∈D

|k(x, y)− Φ(x)⊤Φ(y)| ≤ d2(d−1) (s+ 2)s+1

s!

1

m̄s+1
max
δ∈D

TV(f
(s)
δ ), (15)

where TV denotes total variation on [0, π]. When fδ(ϕ) is analytic,

sup
x,y∈D

|k(x, y)− Φ(x)⊤Φ(y)| ≤ d2(d−1) 22m̄+1(m̄!)4π

(2m̄+ 1)[2m̄!]3
max

δ∈[0,1],ϕ∈[0,π]
|f (2m)

δ (ϕ)|. (16)

Proof. Follows from Theorems 12 and 13.

A.3 Modified Matérn vs Matérn kernel

In our analysis we have assumed that the Fourier transform of a kernel is decomposable (Assumption
1). Note that the Matérn kernel does not satisfy the decomposability assumption. In order to allow
more generality, we define the modified matern kernel, which coincides with the standard Matern
kernel [38] when d = 1, but differs for multiple dimensions. We define the modified Matérn kernel
via its Fourier transform as,

kn(x, y) =

∫ ∞

−∞

d∏
j=1

1

(1 + γ2ω2
j )

n
cos(ω⊤(x− y))dω, (Modified Matérn-n)

where by dω = dω1 . . . dωj , and x, y ∈ Rd.

A.4 Convergence of general QFF

We show the error convergence for the posterior mean of the general QFF with the modified Matern
kernel in the next Figure. The convergence has been dramatically improved over RFF, although
the convergence is not exponential anymore. The the trend from Theorem 4 reliably predicts the
decrease.

A.5 Proximity of quantities

In this section, we summarize theorems and lemmas that imply approximation of posterior mean
and posterior variance given the uniform approximation of a kernel (Assumption 2)
Lemma 2 (Posterior mean has bounded spectral characteristic). Let k be a kernel, δ ∈ (0, e−1) and
{(xt, yt)}Tt=1 be pairs of evaluations of function g ∈ Hk, RKHS associated to k, then the spectral
characteristic function of posterior mean µT is always bounded by ∥y∥2

ρ2 , and if ∥g∥Hk
≤ B then

the spectral characteristic function is bounded by B
√
T

ρ2 + 1
ρ2

√
(T + 2(

√
T + 1) log(1/δ)) with

probability 1− δ.
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(a) Modified matern (ν = 2), T = 1

22 24 26 28 210
Number of Fourier Features [m]

2-9
2-7
2-5
2-3
2-1

Uniform Approx. of mean: |µ̃−µ|∞

QFF
QFF - trend heory
RFF
Trend 1/√m

(b) Modified matern (ν = 2), T = 16

Figure 4: Uniform approximation of the posterior mean for Modified Matern kernel. A sample from the
corresponding GP was used, where T represent the number of points in the posterior.

Lemma 3 (Matrix error). Let k(x, y) be a kernel, and let for k̂(x, y) Assumption 2 be satisfied.
In addition, assume that k(x, y) ≤ 1, and k̂(x, y) ≤ 1, then this implies that for kernel matrices
constructed from observations {xi}ti=1 the following holds∥∥∥Kt − K̃t

∥∥∥
2
≤ ϵt. (17)

Proof. For square matrices ∥A∥2 =
√∑t

ij |Aij |2. As the difference between these two matrices
can be writen as ϵB, where B is symmetric matrix with elements between −1 ≤ Bij ≤ 1, then
∥ϵB∥2 = ϵt.

Lemma 4 (Proximity of spaces - existence result). Let k be a kernel defining Hk and f ∈ Hk, its
RKHS, s.t. spectral characteristic function is bounded by B. Assume the defining points of f come
from D. Let Fm approximating space with a mapping Φ s.t. this mapping defines an ϵ-uniform
approximation to the kernel k, then ∃µ̂ ∈ Fm s.t. supx∈D |µ̂(x)− f(x)| ≤ ϵB.
Theorem 5 (Proximity of means - uniform approximation of posterior mean). Let k be a kernel
defining Hk. Let {(xi, yi)}ti=1 be data observation corrupted by Gaussian iid noise of g satisfying
Assumption 3. The variance of the noise is ρ2 and δ ∈ (0, e−1). Additionally, let Fm be the
approximating space for which proximity of spaces holds. Let the following quantities have the
following definition,

µt = arg min
µ∈Hk

 t∑
j=1

(µ(xi)− yi)
2 + ρ2 ∥µ∥Hk

 (18)

and

µ̃t = arg min
µ∈Fm

 t∑
j=1

(µ(xi)− yi)
2 + ρ2 ∥µ∥Fm

 . (19)

then,

sup
x∈D

|µt(x)− µ̃t(x)| ≤ ϵ
(t+ 1)2

ρ2
(B +

√
2 log(1/δ)) (20)

with probability 1− δ.
Proposition 1 (Approximation of the st. dev.). In addition to the assumptions in Theorem 5 let ϵ < 1
and k(x, x) = 1 then the approximated and true posterior standard deviations satisfy,

σt(x) ≤ σ̃t(x) +
2t2

√
ϵ

ρ
(21)

where the tilde signalizes the FF approximation.
Remark 1. The assumption that k(x, x) = 1 is satisfied for squared exponential kernel, and for
RFF and QFF as defined in 3 and Def. 8 respectively.
Lemma 5 (Maximum Information gain bound for QFF). Let k(x, x′) = Φ(x)⊤Φ(x)′, where Φ(x)
corresponds to the QFF mapping (5). Let ρ be the magnitude of the noise variance, then, γT for this
kernel is smaller than m log(1 + ρ−2T ).
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B Supplementary results - BO with Fourier Features

B.1 Thompson sampling - general FF Theorem

Our analysis of Thompson sampling closely follows the analysis in [9]. In fact, we introduce the
approximation into their proof technique and show that this ϵ-approximation carries through the
analysis and appears in the final result. The general idea is that the error in the approximation
grows as ϵ(m)3 for the uncertainty estimates. If ϵ(m) decreases sufficiently quickly in m - basis
size, then this is not a problem. For example, for squared exponential kernel, the epsilon decreases
exponentially with m. For modified-Matern kernels of high orders, the polynomial decrease is
sufficiently fast such that this error does not dominate as well.

We are able to prove Thompson sampling with Fourier Features with a general ϵ-uniform approxi-
mation.
Theorem 6 (Thompson sampling with Fourier Features). Let δ ∈ (0, e−1), k be additive squared ex-
ponential kernel with G components, and Assumptions 3 and 2 be satisfied, then running Thompson
sampling with the approximated kernel where each acquisition function is optimized to the accuracy
by αt =

1√
t

suffers regret at least

RT ≤ O
(√

ϵ(m)T 3 log(T/δ) + log(T/δ)3/2 max(m log T
√
T ,G

√
Tm(log T )d̄/2+1)

)
(22)

with probability 1− δ where d̄ is the dimension of largest additive component.
Corollary 1 (Same as the Theorem 3 in main text). Under assumptions of Theorem 6, and using
quadrature Fourier features from Definition (3) s.t. mj > 2(logη(T

3))dj , and mj > γ−2
j for each

j ∈ [G], the cumulative regret can be bounded

RT ≤ O

(
G(log T )d̄+1

√
T log

(
T

δ

)3/2
)

(23)

with probability 1− δ.

Proof. Follows directly from Theorems 6 and 1.

B.2 GP-UCB with Fourier Features

In this subsection, we present theorem bounding the regret of GP-UCB with Fourier Features, and
similarly as for Thompson sampling we show that in the special case of squared exponential kernel
and with a specific set of Fourier Features, the asymptotic complexity remains the same as the exact
GP-UCB.
Theorem 7. Let Assumptions 1, 2 and 3 be satisfied, and δ ∈ (0, e−1). The cumulative regret for a
fixed horizon T with the approximated kernel with m Fourier Features on domain D ⊂ [0, 1]d using
UCB acquisition function scales as

O
(
β
1/2
T

(√
ϵ(m)

T 3

ρ2
+
√
T log(T )d +

√
mT )

))
(24)

with probability 1−2δ (the O hides logarithmic dependence on δ and sub-logarithmic on T ), where

β
1/2
t = B +

√
2 log

(
1
δ

)
+ γt(k).

Note that the βt is defined for the true kernel with the maximum mutual information on the true
kernel. For example, for squared exponential γT (k) = O((log T )d+1) as in (34), and hence the
regret bound,

RT = O

(√
ϵ(m)

T 3
√

log(T )d

ρ2
+
√
T log(T )d+1 +

√
mT log(T )d+1)

)
. (25)

Corollary 2 (QFF with UCB). Under the assumptions of Theorem 7, for QFF (Definition 3) and
squared exponential kernel,

R(T ) ≤ O

(
T 3
√

log(T )d+1

ηm/2d
+
√
T log(T )d+1 +

√
mT log(T )d+1

)
(26)
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with m = 2 logη(T
3)d and η = (16/e), the regret becomes R(T ) ≤ O

(√
T log(T )d+1

)
.

B.3 Details for Numerical Benchmarks

All functions have been scaled to [−0.5, 0.5]d interval which is equivalent in the convergence results
as D = [0, 1]d, since the diameter of the set remains the same. Each of the benchmark function
is scaled by N which normalizes the function such that its maximum is 1. This is done so that no
additional scaling of parameters need to be introduced.

Benchmark Functions

Styb-tang(x) = − 1

2N

d∑
i=1

(xi/8)
4 − 16(xi/8)

2 + 5(xi/8) (27)

Michalewicz(x) =
1

N

d∑
i=1

sin(xi/π − 1/2) sin

(
i(xi − π/2)

π2

)
(28)

Overlapping(x) =
1

N

d−1∑
i=1

exp(−(xi − xi+1)
2/8) (29)

With the Stybtang experiment we used γ = 0.6, with Michalewicz γ = 0.3, with Camelback γ = 0.1,
and with Overlapping γ = 0.5. For adversarial initialization we used initial T points in the negative
part of the domain. For Michalewicz T = 128 and m = 64 for each component, for Stybtang we
used m = 128 for each component and T = 128, for Overlapping T = 512 and m = 256 for each
component. The noise level was ρ = 0.05 in all experiments.

For each of the additive models we used a Lipschitz based optimization, where we specified the grid
to be at most 100 points (due to computational issues). For the generalized additive model as in
the Overlapping experiment we used L-BFGS to optimize the function iteratively on a continuous
domain. In the case of Fourier Features, we use the closed form of the acquisition function.

Free-electron laser experiment This experiment was created by optimizing a simulator of a free
electron laser. The simulator was fit with the real data from the machine. We applied normalization
such that the optimum is at 1 and the noise level was considerably higher at ρ = 1.7 with γ = 0.1.
We did not include any adversarial starting points and started without observations. The model is
additive by design in the simulator so there is no model miss-match.

C Necessary Third-party Results

Lemma 6 (Concentration on the norm of Gaussian vector, Corollary of [27]). Let ζ ∼ N (0, Im)
and δ ∈ (0, e−1) then,

P

(
∥ζ∥2 ≤

√
(m+ 2(

√
m+ 1) log(1/δ))

)
≥ 1− δ. (30)

C.1 RKHS

Theorem 8 (Corollary 3.15 in [1]). Let k be a kernel defining Hk and f ∈ Hk, s.t ∥f∥k ≤ B. Then
with probability (1− δ) under Gaussian noise assumption with variance ρ2,

|f(x)− µt(x)| ≤ β
1/2
t σt(x) (31)

for all x, where,

β
1/2
t = B +

√
2 log

(
1

δ

)
+ γt(k). (32)

Bounding
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Theorem 9 (Theorem 5 in [48]). Let D ⊂ Rd be compact and convex. Assume that the kernel
satisfies k(x, x′) ≤ 1.

1. For d-dimensional Bayesian Linear Regression

γT = O(d log T ). (33)

2. For the squared exponential kernel

γT = O((log T )d+1). (34)

3. For the Matérn kernels with ξ > 1

γT = O(T d(d+1)/(2ξ+d(d+1)) log T ) (35)

Specific bounds for γT (k) for additive models exist in literature. As the models are less expressive,
one expects to get a smaller maximum gain values. The following theorems quantify this.

Theorem 10 (Additive Models γT , Theorem 3. in [26]). Let k(1) and k(2) be two kernel functions
on the same domains D(1) and D(2). Then the additive combination k = k(1) + k(2) defined on
D = D(1) ⊕D(2) (⊕ denotes direct sum) holds that

γT (k) = γT (k
(1)) + γT (k

(2)) + 2 log(T ), (36)

where the argument signalizes the dependence on a kernel.

Corollary 3 (Additive squared exponential kernel). Let k(1) and k(2) be two squared exponential
kernel with inputs from dimensions d1 and d2 respectively. Then, for kernel k = k(1)+ k(2) is equal

to γT = O
(
(log T )d̄+1

)
where d̄

def
= max(d1, d2).

Proof. Using Theorem 10 and Equation (34), we obtain the bound.

For example, a fully additive model with the squared exponential kernel has γT = O(d(log T )2)
instead of O((log T )d+1), which shows a dramatic simplification.

C.2 Numerical Integration

For our analysis we require standard results from Numerical Integration, namely we are require the
following 3 Theorem 11, 12, and 13.

Theorem 11 (Gauss-Hermite quadrature error, [22]). The error on Gauss-Hermite (w(x) =
exp(−x2)) quadrature with m nodes for (2m) times differentiable function f is

ϵ(f,m) ≤ m!
√
π

2m(2m)!
max

ϵ∈[−∞,∞]
|f (2m)(ϵ)|. (37)

Theorem 12 (Gauss-Legengre quadrature error, [22]). The error on Gauss-Lgengre (w(x) = 1)
quadrature with m nodes for (2m) times differentiable function f is

ϵ(f,m) ≤ 22m+1(m!)4

(2m+ 1)[2m!]3
max

ϵ∈[−∞,∞]
|f (2m)(ϵ)|. (38)

Theorem 13 (Theorem 1 in [11]). Let Qn be a positive interpolatory quadrature formula with n
nodes for the weight w, and assume w(x) ≤M(1x2)−1/2 for some M > 0. Then,

|I(wf)−Q(f)|∞ ≤ 5M((s+ 2)π)s+1(s!)−1n−s−1 TV(f)(s)

whenever the total variation is finite, for some s ∈ N0.
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D Proofs of the Results

D.1 From Univariate to Multivariate Integration

In standard textbooks, numerical integration is usually formulated for functions defined on 1D real
interval. Here, we prove necessary lemmas and finally a proposition, which extends the convergence
properties to Cartesian product grids.
Lemma 7. Let us suppose we have two tuples of positive real numbers (a1, . . . , ad) and (â1, . . . , âd)
s.t. |ai − âi| ≤ ϵi, and each |ai| and |âi| are bounded by a positive constant p, then∣∣∣∣∣∣

d∏
j=1

aj −
d∏

j=1

âj

∣∣∣∣∣∣ ≤ p(d−1)
d∑

j=1

ϵj . (39)

Proof. We first prove the assertion for d = 2. There are four combinations of possible orderings of
a1, a2 and â1, â2. However, the problem is symmetric, as a consequence one combination suffices
to show the lemma. Suppose a1 ≥ â1, and a2 ≥ â2, then â1 ≤ a1 ≤ â1+ ϵ1 and â2 ≤ a2 ≤ â2+ ϵ2.
Multiplying the first by a2 and the second by â1, we obtain.

â1a2 ≤ a1a2 ≤ â1a2 + ϵ1a2 (40)
â2â1 ≤ a2â1 ≤ â2â1 + ϵ2â1 (41)

Then
a1a2 − â1â2 ≤ â1a2 + ϵ1a2 − â1â2 ≤ ϵ1a2 + ϵ2â1 ≤ 2p(ϵ1 + ϵ2)

and
a1a2 − â1â2 ≥ â1a2 − â1â2 ≥ 0.

which completes the proof for d = 2.

Using mathematical induction, we assume the result is valid for d and prove that the result has to
hold for d+ 1. Namely, assume shorthand b =

∏d
j=1 aj and b̂ =

∏d
j=1 âj , then

∣∣∣b− b̂
∣∣∣ ≤ p(d−1)

d∑
j=1

ϵj = ε,

and both |b| and |b̂| are bounded by pk. Thus, we can proceed in the same manner as we did for
d = 2, only in the last step we take different error and bound, to arrive at,

bad+1 − b̂âd+1 ≤ pε+ pd−1ϵd+1 ≤ pd
d∑

j=1

ϵj + pdϵd+1,

which leads to ∣∣∣bad+1 − b̂âd+1

∣∣∣ ≤ pd
d+1∑
j=1

ϵj .

The positivity of the difference is ensured using a similar argument as for d = 2.

Proposition 2. Let ω ∈ Rd, and δ ∈ [0, 1]d. Under Assumption 1, assume that a quadrature rule
of each single integral

∫
pi(ωi) cos(ωiδi)dωi or

∫
p(ωi) sin(ωiδi)dωi can be upper bounded with ϵ

accuracy for each coordinate i, then the quadrature error of
∫
p(ω) cos(ω⊤δ)dω scales as d2(d−1)ϵ.

Proof of Proposition 2.

I =

∫ d∏
i=1

pi(ωi) cos(ω
⊤x)dω (42)

=

∫
p1(ω1) cos(ω

⊤
1 x1)dω1

∫ d∏
i=2

p(ωi) cos(ω2x2 + . . . )dω2 . . . dωd (43)
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−
∫
p(ω1) sin(ω

⊤
1 x1)dω1

∫ d∏
i=2

p(ωi) sin(ω2x2 + . . . )dω2 . . . dωd (44)

= . . . (45)

Applying this, we notice that we have 2d−1 terms in our decomposition where each combination
of sin and cos with ω1 . . . ωd appears once. Each term is product of d integrals which can be
approximated with an error ϵ.

Using Lemma 7 and the fact that the integrals are bounded by 1, we can bound the quadrature error
of the whole expression as d2d−1ϵ.

D.2 Quadrature Fourier Features - QFF

Proof of theorem 1. We first show that we get the desired decrease for d = 1, and subsequently
generalize using the Proposition 2.

The integral we are trying to approximate

k(δ) =

∫ ∞

−∞
exp

(
γ2ω2

2

)
cos(ωδ)dω (46)

can be rewritten using x = ωγ/2 to get

k(δ) =

√
2

γ

∫ ∞

−∞
exp(−x2) cos

(
δ
√
2

γ
x

)
. (47)

Now, we observe that the weighting function is exp(−x2) for standard Gauss-Hermite quadrature
with integrand being f(x) = cos( δ

√
2

γ x). In order to apply Theorem 11, we require the maximum
of |f (2m̄)(x)|,

max
x∈[−∞,∞]

|f (2m̄)(x)| =

(
δ
√
2

γ

)2m
δ≤1

≤

(√
2

γ

)2m̄

. (48)

Using this expression and Theorem 11, we arrive at, where d = 1

sup
x,y∈D

|k(x, y)− Φ(x)⊤Φ(y)| ≤ m̄!
√
π

2m̄(2m̄)!

(√
2

γ

)2m̄

. (49)

Using Stirling approximation, we can make the estimate factorial free,

sup
x,y∈D

|k(x, y)− Φ(x)⊤Φ(y)| ≤
√
π

2

1

m̄m̄

(
e

4γ2

)m̄

(50)

Using the fact that we have tensor product grid with Assumption 1 and Proposition 2 the result
generalizes with the proper scaling factor.

D.3 Proximity of mean and variance

Proof of Lemma 2. Due to the Representer theorem [43], one can express µT (x) =∑T
t=1 αtk(x, xt) = α⊤

T kT (x), where in the regularized RKHS estimate αT = (K + ρ2I)−1y,
where evaluation {y}Tt=1 are stacked in a vector and the matrix K = k(xi, xj) for i, j ∈ [T ].

Using the definition of spectral characteristic function α(ω) =
∑t

j=1 αt exp(−iωxt), and |α(ω)| =√
∥αT ∥2 =

√
y⊤(K+ Iρ2)−2y ≤ 1

ρ2 ∥y∥ . As y is finite, the spectral characteristic function must
be bounded as well. Further, each yt = g(xt) + ϵt and given that |g(x)| ≤ B. Consequently,
we are able to provide a concentration result using Lemma 6. Namely, we have that P(∥y∥2 ≤
√
TB +

√
(T + 2(

√
T + 1) log(1/δ)))) ≥ 1− δ. Multiplying by ρ−2 finishes the proof.
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Proof of Lemma 1. Complex conjugate is denoted as a star (∗).

|α(ω)|2 =

∑
j∈I

αj exp(iω
⊤xj)

∗∑
j∈I

αj exp(iω
⊤xj)

 =

∑
i,j∈I

αjαi exp(iω
⊤(xj − xi))

 .

Also note that

∥g∥2k =
∑
ij∈I

αiαjk(xi − xj) =

∫
Rd

p(ω)
∑
ij∈I

αiαj exp(iω
⊤(xi − xj))dω = Ep(ω)[|α(ω)|2].

Now, ∥g∥2k = Ep(ω)[|α(ω)|2] ≤ maxω |α(ω)|2
∫
Rd p(ω)dω ≤ B, as p(ω) is a probability distribu-

tion.

Proof of Lemma 4. The proof goes by construction. We know that f =
∑

j∈I k(x, xj)αi,

where I is possibly countably infinite index set. The spectral characteristic function α(ω)
def
=∑

j∈I αj exp(iω
⊤xj) is bounded with B by assumption. We construct the following µ̂ =∑

j∈I αjΦ(x)
⊤Φ(xj), and show the following relation for it

sup
x∈D

|µ̂(x)− f(x)| ≤
∑
j∈I

αj sup
x∈D

|Φ(x)⊤Φ(xj)− k(x, xj)| (51)

≤ max
ω

|α(ω)|ϵ ≤ Bϵ, (52)

which finishes the proof.

Proof of Theorem 5. Let us define µ̂t be defined as in Lemma 4. In general the quantities with tilde
come from the approximated kernel. We use the shorthand for vector k̃ ∈ Rt s.t. k̃t(x)j = k̃(xj , x),
and similar for the kernel matrix Kt at time t. We insert this quantity into the following chain of
reasoning,

sup
x∈D

|µt(x)− µ̃t(x)| ≤ sup
x∈D

|µt(x)− µ̂t(x)|+ sup
x∈D

|µ̂t(x)− µ̃t(x)|

Lem. 4
≤ ϵB + sup

x∈D
|µ̂t(x)− µ̃t(x)|

Representer thm.
= ϵB + sup

x∈D
|k̃t(x)⊤(α− α̃)|

by def.
≤ ϵB + ∥α− α̃∥1
≤ ϵB +

∥∥∥((Kt + ρI)−1 − (K̃t + ρI)−1)y
∥∥∥
1

norm. eq.
≤ ϵB +

√
t
∥∥∥((Kt + ρ2I)−1 − (K̃t + ρ2I)−1)y

∥∥∥
2

≤ ϵB +
√
t
∥∥∥(Kt + ρ2I)−1 − (K̃t + ρ2I)−1

∥∥∥
2
∥y∥2

submultiplicative
≤ ϵB +

√
t
∥∥∥(K̃t + ρ2I)−1

∥∥∥
2

∥∥(Kt + ρ2I)−1
∥∥
2

∥∥∥(Kt − K̃t)
∥∥∥
2
∥y∥2

Bounded
≤ ϵB +

√
t

ρ2

∥∥∥(Kt − K̃t)
∥∥∥
2
∥y∥2

Bounded
≤ ϵB +

√
t

ρ2

∥∥∥(Kt − K̃t)
∥∥∥
2
∥y∥2

(17), Lemma 2
≤ ϵ

(
∥y∥2
ρ2

+
t3/2

ρ2
∥y∥2

)
= ϵ

∥y∥2
ρ2

(
1 + t3/2

)
Lemma6
≤ ϵ(t3/2 + 1)

ρ2

(√
tB +

√
(t+ 2(

√
t+ 1) log(1/δ))

)
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where the last step holds with probability 1 − δ. We choose to provide a harsher but less technical
upper bound,

sup
x∈D

|µt(x)− µ̃t(x)| ≤ ϵ
(t+ 1)2

ρ2
(B +

√
2 log(1/δ)) (53)

with 1− δ which finishes the proof.

Proof of Proposition 1. We employ a similar technique as in the proof of the Theorem 5. Let v(x) ∈
Rt be vector with bounded elements |vi| ≤ 1 s.t.

k̃t(x) = kt(x) + ϵv(x), (54)

where ϵ comes from ϵ-uniform approximation of the kernel.

σt(x)
2 = 1− kt(x)

⊤(Kt + ρ2I)−1kt(x)

= σ̃t(x)
2 − kt(x)

⊤(Kt + ρ2I)−1kt(x) + k̃t(x)
⊤(K̃t + ρ2I)−1k̃t(x)

(54)
= σ̃t(x)

2 + kt(x)
⊤(−(Kt + ρ2I)−1 + (K̃t + ρ2I)−1)kt(x) + 2ϵv(x)⊤(K̃t + ρ2I)−1kt(x)

+ϵ2v(x)⊤(K̃t + ρ2I)−1v(x)
pos. def.
≤ σ̃t(x)

2 + kt(x)
⊤((Kt + ρ2I)−1 − (K̃t + ρ2I)−1)kt(x) + 2ϵv(x)⊤(K̃t + ρ2I)−1kt(x) +

ϵ2t

ρ2

≤ σ̃t(x)
2 + t

kt(x)
⊤((Kt + ρ2I)−1 − (K̃t + ρ2I)−1)kt(x)

kt(x)⊤kt(x)
+ 2ϵv(x)⊤(K̃t + ρ2I)−1kt(x) +

ϵ2t

ρ2

≤ σ̃t(x)
2 + tλmax((Kt + ρ2I)−1 − (K̃t + ρ2I)−1) +

2t2ϵ

ρ2
+
ϵ2t

ρ2

= σ̃t(x)
2 + t

∥∥∥(Kt + ρ2I)−1 − (K̃t + ρ2I)−1
∥∥∥2
2
+

2t2ϵ

ρ
+
ϵ2t

ρ2

≤ σ̃t(x)
2 +

t

ρ2

∥∥∥Kt − K̃t

∥∥∥2
2
+

2t2ϵ

ρ2
+
ϵ2t

ρ2

(17)
≤ σ̃t(x)

2 +
t3ϵ2

ρ2
+

2t2ϵ

ρ2
+
ϵ2t

ρ2

≤ σ̃t(x)
2 +

4t3ϵ

ρ2

Again we use a harsh bound, but for the final results it does not matter, Hence, σt(x) ≤ σ̃t(x) +
2t3/2

√
ϵ

ρ ≤ σ̃t(x) +
2t2

√
ϵ

ρ due to sub-additivity.

D.4 Polynomial algorithm

Proof of Lemma 6. As the norm of a multivariate vector of dimension m is distributed with χ2
m

distribution to get the tail bound we use a appropriate tail bound. Namely, we use a result from [27]
that P (∥ζ∥22 ≥ m+

√
2mx+ 2x) ≤ exp(−x), which yields after simplification that

P (∥ζ∥22 ≤ m+ 2(
√
m+ 1) log(1/δ)) ≥ 1− δ, (55)

for δ ∈ (0, e−1). Taking the square root of the result, which is monotone transformation yields the
result. This finishes the proof.

Proof of Lemma 5. Note first that Φ(XT ) ∈ RT×m. Then,

γT ≤ log
∣∣I+ ρ−2Φ(XT )Φ(XT )

⊤∣∣
= log

∣∣I+ ρ−2Φ(XT )
⊤Φ(XT )

∣∣
Hadamard ineq.

≤ log
∣∣I+ ρ−2D

∣∣
≤ m log

∣∣1 + ρ−2λmax(D)
∣∣

23



≤ m log
∣∣1 + ρ−2T

∣∣
where D = Im×m diag(Φ(XT )

⊤Φ(XT )), which are by definition T , as each ∥Φ(x)∥2 = 1 due to
Remark 1.

Lemma 8. Let k be an approximated kernel with Fourier features, k(x, y) = Φ(x)⊤Φ(y), where
Φ(x) ∈ Rm, and Φ(x)j = vj cos(ω

⊤
j x) and Φ(x)j+m/2 = vj sin(ω

⊤
j x) for j ∈ [0,m/2]. In

addition, let the following quantities be defined as follows,

Σ
def
= Φ(X)⊤Φ(X) + ρ2I (56)

ν
def
= (Σ)−1Φ(X)⊤y, (57)

then the sample from posterior f given (X, y) has form f(x) = Φ(x)⊤θ, where θ ∼ N (ν,Σ−1).

Moreover, the sample is Lipschitz continuous with L = ∥θ∥2
√∑m/2

i=1 2v2i ∥ωi∥2 with respect to
Euclidean norm.

Proof. The first statement follows from considerations in [56]. For the second claim we show L is
suitable constant s.t. the following holds

|θ⊤(Φ(x)− Φ(y))| ≤ L ∥x− y∥2 . (58)

Trigonometric function cos and sin are trivially 1-Lipschitz continuous due to mean value theorem.
Thus,

∥Φ(x)− Φ(y)∥2 =

√√√√m/2∑
i=1

v2i ((cos(ω
⊤
i x)− cos(ω⊤

i y))
2 + (sin(ω⊤

i x)− sin(ω⊤
i y))

2)

≤

√√√√m/2∑
i=1

2v2i ∥ωi∥2 ∥x− y∥22 =

√√√√m/2∑
i=1

2v2i ∥ωi∥2 ∥x− y∥2 ,

which can be used to provide a bound on a Cauchy-Schwartz of (58). This completes the proof.

Lemma 9 (Iterative updates). Let the quantities in (57) and (56) be defined over Xt, then the fol-
lowing holds two iterative updates rules for the two quantities defined over Xt+1, which is obtained
by contacatenaing observation xt+1 to the matrix, are as follows,

νt+1 = νt −
(Σt)

−1Φ(xt+1)(Φ(xt+1)
⊤νt − yt+1)

1 + Φ(xt+1)⊤(Σt)−1Φ(xt+1)
(59)

Σt+1 = Σt +Φ(xt+1)Φ(xt+1)
⊤. (60)

Proof. The second equation is trivial and the first one can be obtained by applying Sherman-
Woodbury rank one inverse and assembling the relation.

Lemma 10 (Bounded mean norm). Let the quantities in (57) be defined over Xt, then we can
present a following bound on the approximated mean,

∥νT ∥2 ≤
√
βT γT (k)T + T

√
2ρ2 log(3/δ) + ϵ

(T + 1)3

3ρ2
(B +

√
2 log(3/δ)) (61)

with probability 1− δ and ∥νt∥2 = 0

Proof. Let us define a shorthand Ct−1 = Φ(xt)
⊤νt−1 − yt. Moreover, Lemma 9 implies a Löwner

ordering on the matrices
Σt ⪰ Σt−1 ⪰ Iρ2. (62)

Hence, using the iterative update from Lemma 9 we know

∥νt∥2 ≤ ∥νt−1∥2 + |Ct−1|
√

Φ(xt)⊤(Σt−1)−2Φ(xt)

1 + Φ(xt)⊤(Σt−1)−1Φ(xt)
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(62)
≤ ∥νt−1∥2 + |Ct−1|ρ ∥Φ(xt)∥2

∥Φ(x)∥2=1

≤ ∥νt−1∥2 + |Ct−1|ρ

Now, |Ct−1| ≤ |µ̃t−1(xt) − g(xt) − ϵt| ≤ |µ̃t−1(xt) − µt−1(xt)| + β
1/2
t σ(xt) +

√
2ρ2 log(2/δ)

with probability 1− δ. Using Theorem 5,

|Ct−1| ≤ ϵ
(t)3/2

ρ2
(B +

√
2 log(2/δ)) + β

1/2
t (δ/3)σ(xt) +

√
2ρ2 log(3/δ)

with probability 1− δ (we used union bound and suitably scaled the δ, i.e. βt is also function of δ),
where A = ∥µt∥Hk

.

Substituting into the above equation and summing the recurrence,

∥νT ∥2 ≤
√
βT γT (k)T + T

√
2ρ2 log(3/δ) + ϵ

(T )3

3ρ2
(B +

√
2 log(3/δ)) (63)

with probability 1− δ.

Theorem 14 (Polynomial number of steps). Let δ ∈ (0, e−1) and k be an additive non-overlapping
kernel with G groups and d̄ = maxj∈G dj - maximal dimension. Moreover, let Φ(·) ∈ Rmj be the
approximation of the additive component j of a kernel as in Definition 3, where mj ≥ 2 logη(T

3)dj

andmj ≥ 1
γ2
j

where η = 16/e. Running the Algorithm 1 with any global optimization with accuracy
α requires at most

O

(
G log(Tδ )

d̄/2

αd̄

(
T 3/2(log T )d̄ + T 2(log T )2

)d̄)
(64)

evaluation of black-box function with probability 1− δ.

Proof. As the algorithm iterates on the group, we can bound the number of evaluations done by
looking at the largest group dj and assuming that for each group the same number of evaluations
needs to be done. LetM be number of Fourier Features basis of the largest group, namely according
to the definition of we have M = 2 log(T 3)dj .

Due to Theorem 1 consequently becomes (using a harsh-bound),

ϵ(T ) ≤ G

√
π

2
T−3 (65)

Any global optimization of Lipschitz continuous functions solving the optimization to the accuracy
α requires at most

G

(
L

α
+ 1

)d̄

(66)

evaluations of the black-box function [34].

According to the Lemma 8 the acquisition function we need to optimize at each round is Lipschitz

continuous with Lt = ∥θt∥2
√∑M/2

i=1 2v2i ∥ωi∥2. Using the decomposition

∥θt∥2 =
∥∥∥νt +Σ

1/2
t ζt

∥∥∥ ≤ ∥νt∥+
1

ρ
∥ζ∥ ,

where ζ ∼ N (0, IM ) (Consequence of (62)).

In order to obtain a concentration on Lt, we use Lemma 6 with M dimensional vectors,

P

(
∥θt∥ ≤ (∥νt∥+ ρ−1

√
(M + 2(

√
M + 1) log(1/δ)))

)
≥ 1− δ,
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and hence consequently,

P

Lt ≤

√√√√m/2∑
i=1

2v2i ∥ωi∥2(∥νt∥+ ρ−1

√
(M + 2(

√
M + 1) log(T/δ))) for all t ≤ T

 ≥ 1− δ.

Substituting for ∥νt∥ with twice the δ from (61), specifies the concentration inequality fully.

To upper-bound the number of evaluation we insert Lt into (66), and sum over the finite horizon T

G

αd̄

T∑
t=1

(
S̄

(
∥νt∥+ ρ−1

√
(M + 2(

√
M + 1) log(2T/δ))

)
+ α

)d̄

(67)

where S̄ =

√∑M/2
i=1 2v2i ∥ωi∥2. Using asymptotic results from (61), and with (34) and the max

bound of the sum, we get

O

(
G log(Tδ )

d̄/2

αd̄

(
T 3/2(log T )d̄+1 + T 2(log T )2

)d̄)
(68)

with probability 1-δ.

Corollary 4. Under the assumptions of Theorem 14 assuming fully additive non-overlapping the
number of black-box evaluations in Algorithm 1 is at most,

O

(
d
√

log(T/δ)

α

(
T 2(log T )2

))
.

D.5 UCB

Proof of Theorem 7.

RT =

T∑
t=1

g(x∗)− g(xt)

(31)
≤

T∑
t=1

µt(x
∗) + β

1/2
t σt(x

∗)− g(xt)

≤
T∑

t=1

µ̃t(x
∗) + ϵ

(t+ 1)3/2

ρ2
(B +

√
2 log(1/δ)) + β

1/2
t σt(x

∗)− g(xt)

≤
T∑

t=1

µ̃t(x
∗) + ϵ

(t+ 1)3/2

ρ2
(B +

√
2 log(1/δ)) + β

1/2
t

(
σ̃t(x

∗) +
ϵt2

ρ2

)
− g(xt)

alg.
≤

T∑
t=1

µ̃t(x
t) + ϵ

(t+ 1)3/2

ρ2
(B +

√
2 log(1/δ)) + β

1/2
t

(
σ̃t(x

t) +

√
ϵt2

ρ2

)
− g(xt)

≤
T∑

t=1

µt(x
t) + 2ϵB

(t+ 1)3/2

ρ2
(B +

√
2 log(1/δ)) + β

1/2
t

(
σ̃t(x

t) +

√
ϵt2

ρ2

)
− g(xt)

≤
T∑

t=1

2ϵB
(t+ 1)3/2

ρ2
(B +

√
2 log(1/δ)) + β

1/2
t

(
σ̃t(x

t) +

√
ϵt2

ρ2

)
+ β

1/2
t σt(x

t)

≤ 2ϵB
(T )3

ρ2
(B +

√
2 log(1/δ)) + β

1/2
T

T∑
t=1

(
σ̃t(x

t) + σt(x
t)
)
+

√
ϵt2

ρ2

≤ 2ϵB
(T )3

ρ2
(B +

√
2 log(1/δ)) + β

1/2
T

(
C1

√
T log(T )d + C2

√
mT

)
+

√
ϵT 3β

1/2
T

3ρ2
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= O
(
β
1/2
T

(√
ϵ(m)

T 3

ρ2
+
√
T log(T )d +

√
mT )

))
We use Theorem 8 twice, holds with probability 1−δ. Similarly, for each twe use twice the theorem
on proximity of means which holds with 1 − δ. Taking union bound over these, gives us that the
final inequality holds with 1− 2δ where the probability enters through in βT .

D.6 Thompson sampling - I

Definition 9 (Necessary definitions). We work we a filtration Ft−1, which incorporates all events
that lead up until the sampling of {(xj , yj)}t−1

j=1.

β
1/2
t

def
= B +

1

ρ

√
2 log(1/δ) + γt(k) (69)

β̃
1/2
t

def
=

1

ρ

√
2 log(1/δ) +m (70)

B
1/2
t

def
= max(β

1/2
t , β̃

1/2
t ) (71)

ξ(ϵ, t)
def
=

√
ϵ

(
t2

ρ2
(B +

√
2 log(1/δy) + 4ρB

1/2
t )

)
(72)

Let the set of saturated arms be,

St
def
= {x ∈ D|g(x∗)− g(x) ≤ 2B

1/2
t σ̃t−1(x) + ξ(ϵ, t)} (73)

Lemma 11 (Concentration for a linear sample path). Let θt ∼ N (νt−1, (Σt−1)
−1), then let sample

of approximated posterior be f̃t(x) = Φ(x)⊤θt, where Φ(x) ∈ R2m is as in the Definition 3, then

|f̃t(x)− µ̃t−1(x)| ≤ β̃
1/2
t σ̃t(x) (74)

with probability 1− δ.

Proof. We can introduce the following decomposition θt = νt−1 + Σ
−1/2
t−1 ε, where ε ∼

N (0, Im). Using decomposition of Fourier features µ̃t−1 = ν⊤t−1Φ(x), |f̃t(x) − µ̃t−1(x)|2 =

|Φ(x)(Σ−1/2
t−1 )ε|2 = (Φ(x)⊤Σ−1

t−1Φ) ∥ε∥
2
2. Thus, we are able to relate the expression to σ̃(x)t−1 =√

Φ(x)⊤ρ2Σ−1
t−1Φ(x).

As the norm of a multivariate vector of dimensionm is distributed with χ2
m distribution to get the tail

bound we use a appropriate tail bound. Namely, we use a result from [27] that P (∥ε∥22 ≥ m+2x) ≤
exp(−x), which yields that

P (∥ε∥22 ≤ m+ 2 log(1/δ)) ≥ 1− δ. (75)

Consequently, |f̃t(x)− µ̃t−1(x)|2 ≤ (m+2 log(1/δ)
ρ2 σ̃t−1(x)

2 = β̃tσ̃t(x)
2 and taking the square root

yields the result.

Lemma 12 (Gaussian Anti-concentration, [9]). For a Gaussian variable X with mean µ and vari-
ance σ2, for any β > 0,

P

(
X − µ

σ
> β

)
≥ e−β2

4
√
πβ

. (76)

Lemma 13. Let k be a kernel s.t. k(x, x) = 1 and the observation to construct the confidence
bounds be corrupted by noise with variance ρ2, the the posterior variance is lower bounded by√

ρ
ρ+t .

27



Proof. The posterior standard deviation is σt(x) =
√
k(x, x)− kt(x)⊤(Kt)−1kt(x). The variance

at one point x can decrease the most if all observations up till time t were evaluated at x only. Hence
the matrix Kt = S + Iρ2 and kt(x) = 1 are vector of full ones, where S is a matrix full of ones.
Using basic algebra, we obtain that

σt(x)
2 ≥ 1− 1⊤(S+ Iρ2)1 =

ρ

ρ+ t
,

where the last equality follows from Propositions for ρ-matrix in [33].

D.7 Thompson sampling - II

Lemma 14. Let Assumption 3 and Φ(·)⊤Φ(·) ϵ-uniformly approximate the kernel k,ϵ < 1 ,δy ∈
(0, e−1), and denoting the approximated quantities with tilde then,

P[f̃t(x) ≥ g(x)|Ft−1] ≥ (1− δy)p exp

(
−2

√
ρ+ t

ρBt
ξ(ϵ, t)− ρ+ t

ρBt
ξ(ϵ, t)2

)
(77)

where p = 1
4
√
π

, where 1− δy comes from the Theorem 5.

Proof.

P(f̃t(x) > g(x)|Ft−1) = P

(
f̃t(x)− µ̃t−1(x)

B
1/2
t σ̃t−1(x)

>
g(x)− µ̃t−1(x)

B
1/2
t σ̃t−1(x)

|Ft−1

)
We notice that this scaling by B1/2

t = max(β
1/2
t , β̃

1/2
t ) combined with Lemma 11 allows us to

apply Lemma 12, with the ϑ = g(x)−µ̃t−1(x)

B
1/2
t σ̃t−1(x)

, as

P(f̃t(x) > g(x)|Ft−1) ≥
e−ϑ2

4
√
πϑ

≥ e−ϑ2

4
√
π

where for the second inequality we assumed ϑ > 1.

Further, Analyzing the expression,

ϑ = |g(x)− µ̃t−1(x)|
B

1/2
t σ̃t(x)

(78)

≤ |g(x)− µt−1(x)|+ |µt−1(x)− µ̃t−1(x)|
B

1/2
t σ̃t(x)

(79)

≤ B
1/2
t σt−1(x)

B
1/2
t σ̃t−1(x)

+
ϵ t

2

ρ2 (B +
√
2 log(1/δy))

B
1/2
t σ̃t−1(x)

(80)

≤ σt−1(x)

σ̃t−1(x)
+ ϵ

√
ρ+ t

t

t2(B +
√
2 log(1/δy))

ρ2B
1/2
t

(81)

where we used Theorems 8 and 5 for the second to last step, and Lemma 13 in the last step.

Analyzing the expression, we apply Proposition 1, and that B1/2
t ≥ 1 to get the final expression,

ϑ ≤ 1 +

√
ρ+ t

ρ

√
ϵ

(
2t2

ρ
+

√
ϵt2(B +

√
2 log(1/δy))

ρ2B
1/2
t

)
≤ 1 +

√
ρ+ t

ρBt
ξ(ϵ, t) (82)

where we have use that
√
ϵ < 1.

Lemma 15. Let the Φ(·)⊤Φ(·) ϵ-uniformly approximate the kernel k, δy ∈ (0, e−1), and denoting
the approximated quantities with tilde then the probability of picking a unsaturated arm is,

P(xt ∈ D \ St|Ft−1) ≥ (1− δy)p exp

(
−2

√
ρ+ t

ρBt
ξ(ϵ, t)− ρ+ t

ρBt
ξ(ϵ, t)2

)
, (83)

where p = 1
4
√
π

, where 1− δy comes from the Theorem 5.
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Proof. Note that first that we know the following three inequalities,

|g(x)− µt−1|
Theorem 8

≤ B
1/2
t σt−1(x)

|f̃t(x)− µ̃t−1|
Lemma 11

≤ B
1/2
t σ̃t−1(x)

|µt−1(x)− µ̃(x)|
Theorem 5

≤ ϵ
t2

ρ2
(B +

√
2 log(1/δy))

Consequently,

|f̃t(x)− g(x)| ≤ 2B
1/2
t σ̃t−1(x) +B

1/2
t

2t2
√
ϵ

ρ
+ ϵ

t3/2

ρ2
(B +

√
2 log(1/δy))

= 2B
1/2
t σ̃t−1(x) + ξ(ϵ, t). (84)

The point xt is chosen as a maximizer of f̃t. Hence, if xt ∈ D \ St, then the values of f̃t over St

must be larger namely over x∗,

P
def
= P(xt ∈ D \ St|Ft−1) ≥ P(f̂t(x

∗) ≥ f̂t(x)|x ∈ St,Ft−1).

We use first the (84) and then the fact that x ∈ St to obtain the final result,

P ≥ P(f̂t(x
∗) ≥ g(x)− 2B

1/2
t σ̃t−1(x)− ξ(ϵ, t)|x ∈ St,Ft−1) ≥ P(f̂t(x

∗) ≥ g(x∗)|Ft−1).

Applying the Lemma 14 finishes the result.

Remark 2. Note, we can control the quantities in the above Lemma by lowering ϵ, as ϵ → 0,
(1 − δy)p exp(−2

√
ρ+t
ρ ξ(ϵ, t) − ρ+t

ρ ξ(ϵ, t)2) → 1−δy
4
√
πe

, as in the analysis of non-approximated
Thompson sampling [9].

Lemma 16. Let the Φ(·)⊤Φ(·) ϵ-uniformly approximate the kernel k, δy ∈ (0, e−1), and denoting
the approximated quantities with tilde then the expected instantaneous regret is

E[rt|Ft−1] ≤ B
1/2
t (4p(ξ(ϵ, t)) + 2)E[σ̃t−1(xt)|Ft−1] + 3ξ(ϵ, t), (85)

where rt = g(x∗)− g(xt), and

p(ξ(ϵ, t))
def
= (1− δy)p exp

(
−2

√
ρ+ t

ρBt
ξ(ϵ, t)− ρ+ t

ρBt
ξ(ϵ, t)2

)
, (86)

with probability 1− δy

Proof. Let us first define the following point,

x̄t = arg min
x∈D\St

σ̃t(x). (87)

Then, we split the analysis to two points

First we obtain a useful lower bound

E[σ̃t−1(xt)|Ft−1] ≥ E[σ̃t−1(xt)|xt ∈ D \ St,Ft−1]P(xt ∈ D \ St) (88)
+E[σ̃t−1(xt)|xtSt,Ft−1]P(xt ∈ St)

≥ σ̃t−1(x̄t)p(ξ(ϵ, t)). (89)

Secondly, let us consider the following,

rt = g(x∗)− g(xt) = g(x∗)− g(x̄t) + g(x̄t)− g(xt)
(84)
≤ g(x∗)− g(x̄t) + f̃t(x̄t) + 2B

1/2
t σ̃t−1(x̄t)− f̃t(xt) + 2B

1/2
t σ̃t−1(xt) + 2ξ(ϵ, t)

29



(87), xt is maximizer
≤ 4B

1/2
t σ̃t−1(x̄t) + 2B

1/2
t σ̃t−1(xt) + 3ξ(ϵ, t)

(89)
≤ 4B

1/2
t p(ξ(ϵ, t))E[σ̃t−1(xt)|Ft−1] + 2B

1/2
t σ̃t−1(xt) + 3ξ(ϵ, t)

E[rt|Ft−1]
Tower prop.

≤ B
1/2
t (4p(ξ(ϵ, t)) + 2)E[σ̃t−1(xt)|Ft−1] + 3ξ(ϵ, t).

Remark 3 (Martingale sequence). Let the Φ(·)⊤Φ(·) ϵ-uniformly approximate the kernel k, δy ∈
(0, e−1), and denoting the approximated quantities with tilde then let us define the following,

Xt = rt −B
1/2
t (4p(ξ(ϵ, t)) + 2)σ̃t−1(xt) + 3ξ(ϵ, t) (90)

Yt =

t∑
s=1

Xs. (91)

due to Lemma 16, Yt is a martingale.
Lemma 17. Let ξ(ϵ, t) be as in Definition 9 and p(ξ(ϵ, t)) as in (86), then ξ(ϵ, t) is increasing
function of t, and p(ξ(ϵ, t)) is decreasing function of t bounded by 1−δy

4
√
π

from below.

Proof. The first statement follow from definition of ξ(ϵ, t). The second statement follows from the

first statement, namely, exp(−2
√

ρ+t
ρ ξ(ϵ, t)− ρ+t

ρ ξ(ϵ, t)2) → 0 as t→ ∞.

Proof of Theorem 6. Due to Remark 3, we know that the sum in (91) is a martingale. Consequently,
we can apply Azuma-Hoeffding inequality. To apply it we need that |Yt − Yt−1| is bounded. In our
case, we it is bounded by Xt. Thus,

P
def
= P

YT ≤

√√√√2 log(1/δ1)

T∑
t=1

X2
t

 ≥ 1− δ1.

We note that the fact that the problem is not solved to the optimality introduces a
√
T factor to the

regret which will be absorbed by the asymptotic notation.

We use the following notational shorthandQ1/2
T = B

1/2
T (π(1−δy)+2) andRT =

∑T
t=1 rt. Conse-

quently, substituting the results insidethe above equation, and using |rt| ≤ 2B due to boundedness
assumption and Lemma 17,

1− δ1 ≤

P

RT ≤
T∑

t=1

Q
1/2
t σ̃t−1(xt) + 3ξ(ϵ, t) +

√√√√2 log

(
1

δ1

) T∑
t=1

(
2B +Q

1/2
t + 3ξ(ϵ, t)

)2 ≤

P

(
RT ≤ 3ξ(ϵ, T )T +Q

1/2
T

T∑
t=1

σ̃t−1(xt) +

√
2T log

(
1

δ1

)(
2B +Q

1/2
T + 3ξ(ϵ, T )

)2)
≤

P

(
RT ≤ 3ξ(ϵ, T )T +Q

1/2
T

√
TγT (k̃) +

√
2T log

(
1

δ1

)(
2B +Q

1/2
T + 3ξ(ϵ, T )

)2)
≤

P

(
RT ≤ O

(√
ϵT 3 +B

1/2
T

√
TγT (k̃)

(
1 + log

(
1

δ1

))))
(33)
≤

P
(
RT ≤ O

(√
ϵT 3 +B

1/2
T

√
Tm log T

))

B
1/2
T = O

(
max(

√
m,
√
γT (k))

)
30



Using Corollary 3, we can provide a bound on maximum information gain of additive squared
exponential kernel. Thus, the final bound becomes,

P

(
RT ≤ O

(√
ϵT 3 log(1/δ) + log(1/δ)3/2 max

(
m log T

√
T ,G

√
Tm(log T )d̄+2

)))
. (92)

We take union on the probability that Azuma inequality holds, each round of sampling the Lemma
11 (δ inside BT ), Theorem 5 (δy) and Theorem 8 holds (δ inside BT ). Thus, the final result with
δ1 = δy = δ holds with 1− (3 + T )δ). Rearanging with the new delta δ̃ = δ

T finishes the proof.

31


