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A Proof of Proposition 1

We prove Prop. 1 in Sec. 4.1. Let us consider a classifier with Lipschitz constant L. Let F (X) be an
output vector of the classifier for a data point X .

The statement to prove is the following:

F (X)tX −max
i6=tX

F (X)i ≥
√

2L‖ε‖2 ⇒ F (X + ε)tX −max
i 6=tX

F (X + ε)i ≥ 0. (1)

If we prove the following, it suffices:

F (X + ε)tX −max
i 6=tX

F (X + ε)i ≥ F (X)tX −max
i6=tX

F (X)i −
√

2L‖ε‖2. (2)

Before proving inequality (2), we have the following lemma.

Lemma 1. For real vectors x and y, the following inequality holds:

|max
i 6=tX

xi −max
i6=tX

yi| ≤ max
i 6=tX
|xi − yi|.

Proof. W.l.o.g. we assume maxi6=tX xi ≥ maxi 6=tX yi. Let j be argmaxi 6=tX xi. Then,

|max
i 6=tX

xi −max
i6=tX

yi| = max
i6=tX

xi −max
i 6=tX

yi

= xj −max
i 6=tX

yi

≤ xj − yj
≤ max

i 6=tX
|xi − yi|

Now, we can prove the inequality (2).

F (X + ε)tX −max
i 6=tX

F (X + ε)i

=F (X)tX −max
i 6=tX

F (X)i + (F (X + ε)tX − F (X)tX )−
(

max
i6=tX

F (X + ε)i −max
i 6=tX

F (X)i

)
≥F (X)tX −max

i 6=tX
F (X)i − |F (X + ε)tX − F (X)tX | − |max

i6=tX
F (X + ε)i −max

i 6=tX
F (X)i|

≥F (X)tX −max
i 6=tX

F (X)i − |F (X + ε)tX − F (X)tX | −max
i 6=tX
|F (X + ε)i − F (X)i|

≥F (X)tX −max
i 6=tX

F (X)i − max
a1,a2∈R

{
|a1|+ |a2|

∣∣∣∣√a21 + a22 ≤ L‖ε‖2
}

=F (X)tX −max
i 6=tX

F (X)i −
√

2L‖ε‖2.

B Lipschitz constant of basic functionals

We prove bounds described in Sec. 5.1. Let f and g be functions with their Lipschitz constants
bounded with L1 and L2, respectively.
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B.1 Composition of functions

‖f(g(X1))− f(g(X2))‖2
‖X1 −X0‖2

=
‖f(g(X1))− f(g(X2))‖2
‖g(X1)− g(X2)‖2

· ‖g(X1)− g(X2)‖2
‖X1 −X0‖2

≤ L1 · L2.

B.2 Addition of functions

Using triangle inequality,
‖(f + g)(X1)− (f + g)(X2))‖2

‖X1 −X0‖2
≤ ‖f(X1)− f(X2))‖2 + ‖g(X1)− g(X2)‖2

‖X1 −X0‖2
≤ L1 + L2.

B.3 Concatenation of functions

‖(f(X1), g(X1))− (f(X0), g(X0))‖2
‖X1 −X0‖2

=

√
‖(f(X1), g(X1))− (f(X0), g(X0))‖22

‖X1 −X0‖22

=

√
‖f(X1)− f(X0)‖22 + ‖g(X1)− g(X0)‖22

‖X1 −X0‖22

≤
√
L2
1 + L2

2.

C Lipschitz constant of linear components

We see the Lipschitz constant of linear components, given in Sec. 5.2, in more detail. We first prove
Theorem 1, and Theorem 2. Next, we focus on its calculation for normalization layers.

C.1 Proof of Theorem 1

Since there exists a matrix representation M of φ and the operator norm of φ in terms of `2-norm is
equivalent to the spectral norm of M , considering v = Mu is sufficient. Now, we have

1

2

∂‖v‖22
∂u

=
1

2

∂(u>M>Mu)

∂u

= M>Mu.

Thus, recursive application of the algorithm in Theorem 1 is equivalent to the power iteration to
M>M . Since the maximum eigen value ofM>M is a square of the spectral norm ofM , u converges
to the square of the spectral norm of M almost surely in the algorithm.

C.2 Explanation of Algorithm 2

We use the same notation with Algorithm 2. In Algorithm 2, we only care the direction of the vector
u because we normalize it at every iteration. We first explain that the direction of u converges to a
singular vector of the largest singular value of the linear function f when f is fixed.
Since

∂L

∂u
=
∂L

∂σ
· ∂σ
∂u

= 2
∂L

∂σ
· ∂σ
∂σ2
·
(

1

2

∂σ2

∂u

)
and 2∂L∂σ ·

∂σ
∂σ2 is a scalar, u converges to the same direction with Theorem 1. In other words, u

converges to the singular vector of the largest singular of M .

If u approximates the singular vector, then σ := ‖f(u)‖2 approximates the spectral norm of f . If f
changes a little per iteration, even though Algorithm 2 performs only one step of the power iteration
per iteration, we can keep good approximation of the spectral norm [13].
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C.3 Proof of Theorem 2

From the proof of Theorem 1 in Appendix C.1, we considers power iteration to M>M . Let λ1 be
the largest singular value of a matrix M>M . Since M>M is a symmetric positive definite matrix,
from Theorem 1.1 in Friedman [4], we have

λ1 −Rk ≤
1

2

(
∆k +

√
∆k (4Rk + ∆k)

)
,

where ∆k is bounded by ω − 1 from Prop. 2.2 in [4]. A quantity ω has the following relationship [4]:

Pr(ω − 1 ≥ n) ≤
√

2/π.

Thus, the Theorem 2 holds.

If we use batchsize 128 for the algorithm and take the max of all upper bound, then the failure
probability is less than (2/π)

128/2 ≤ 10−12.

C.4 Calculation of normalization layers

C.4.1 Example: batch-normalization

Batch normalization applies the following function,

xi ← γi
xi − µi√
σ2
i + ε

+ βi, (3)

where γi and βi are learnable parameters and µi, σi are the mean and deviation of (mini) batch,
respectively. Parameters and variables γi, βi, µi, and σi are constant at the inference time. Small
constant ε is generally added for numerical stability. We can rewrite an update of (3) as follows:

xi ←
γi√
σ2
i + ε

xi +

(
−γi

µi√
σ2
i + ε

+ βi

)
.

Since the second term is constant in terms of input, it is independent of the Lipschitz constant. Thus,
we consider the following update:

xi ←
γi√
σ2
i + ε

xi.

The Lipschitz constant can be bounded by max
i
{|γi|/

√
σ2
i + ε}.

Since the opertion is linear, we can also use Algorithm 2 for the calculation. This allows us to
calculate the Lipschitz constant of batch-noramlization and precedent other linear layers jointly.
When we apply the algorithm 2 to a single batch-normalization layer, a numerical issue can offer.
See Appendix C.4.3 for more details.

C.4.2 Other normalizations

In weight normalization [11], the same discussion applies if we replace
√
σ2
i + ε in batch-

normalization with ‖wi‖2, where wi is the i-th row of a weight matrix.

C.4.3 Undesired convergence of power iteration

In some cases, estimation of spectral norm using power iteration can fail in training dynamics. For
example, in batch-normalization layer, u in Algorithm 2 converges to some one-hot vector. Once u
converges, no matter how much other parameters change during training, u stay the same. To avoid
the problem, when we apply Algorithm 2 to normalization layers, we added small perturbations on a
vector u in the algorithm at every iteration after its normalization.

D Lipschitz constant of pooling and activation

D.1 Proof of Theorem 3

First, we prove the following lemma:
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Lemma 2. Let vector X be a concatenation of vectors Xλ(0 ≤ λ ≤ n) and let f be a function
such that f(x) is a concatenations of vectors f(Xλ), where each fλ is a function with its Lipschitz
constant bounded by L. Then, the Lipschitz constant of f can be bounded by L.

‖f(X)− f(Y )‖22
‖X − Y ‖22

=

∑
λ

‖fλ(Xλ)− fλ(Yλ)‖22

‖X − Y ‖22

≤

∑
λ

L2‖Xλ − Yλ‖22

‖X − Y ‖22
=L2

Since n-th time repetition is the same with n-th time concatenation, which is explained in Ap-
pendix B.3, its Lipschitz constant is bounded by

√
n. Using Appendix B.3 and the above lemma, we

obtain the bound in Theorem 3.

D.2 Proof of Corollary 1

notation: chin, chout, hk, wk: input channel size, output channel size, kernel height, kernel width.
W ′: a matrix which kernel of a convolution W ∈ Rchout×chin×hk×wk is reshaped into the size
chout × (chin × hk × wk).

proof: The operation in a convolution layer satisfies the assumption in Theorem 3, where all fi are
the matrix multiplication of W ′. Thus, the right inequality holds. Since matrix multiplication with
W ′ is applied at least once in the convolution, the left inequality holds.

This result is similar to Cisse et al. [2], but we can provide better bounds by carefully calculating the
number of repetition, given in Appendix D.3.

D.3 Tighter bound of n-repetition in Theorem 3

We provide tight number of the repetition for pooling and convolutional layers here.

notation: hin, win: height and width of input array.
hk, wk: kernel height, kernel width.
hs, ws: stride height, stride width.

number of repetition:⌈
min(hk, hin − hk + 1)

hs

⌉
·
⌈

min(wk, win − wk + 1)

ws

⌉
.

derivation: First of all, the repetition is bounded by the size of reception field, which is hk · wk.
This is provided by Cisse et al. [2]. Now, we extend the bound by considering the input size and
stride. Firstly, we consider the input size after padding. If both the input and kernel size are 8× 8, the
number of repetition is obviously bounded by 1. Similarly, the number of repetition can be bounded
by the following:

min(hk, hin − hk + 1) ·min(wk, win − wk + 1).

We can further bound the time of repetition by considering the stride as follows:⌈
min(hk, hin − hk + 1)

hs

⌉
·
⌈

min(wk, win − wk + 1)

ws

⌉
.
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Table 1: Lipschitz constants of major activation functions.

Activation Lipschitz constant
ReLU 1

Leaky ReLU [8] max(1, |α|)
sigmoid 1/4

tanh 1
soft plus [1] 1

ELU [3] max(1, |α|)

D.3.1 The Lipschitz constant of fi in Theorem 3 for Pooling layers

max-pooling: Lipschitz constant of max function is bounded by one.

average-pooling: Before bounding the Lipschitz constant, we note that the following inequality
holds for a vector X: (

n∑
i=1

Xi

)2

≤ n
n∑
i=1

X2
i .

This can be proved using

1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(
Xi −

1

n

n∑
i=1

Xi

)2

≥ 0.

Now, we bound the Lipschitz constant of the average function Avg(·).

‖Avg(X)−Avg(Y )‖2
‖X − Y ‖2

=
|Avg(X − Y )|
‖X − Y ‖2

=

|
hk·wk∑
i=1

(Xi − Yi)|

‖X − Y ‖2
/(hk · wk)

≤ 1√
hk · wk

.

D.4 Activation functions

Table 1 lists up the Lipschitz constants of activation functions and other nonlinear functions commonly
used in deep neural networks. From Theorem 3, we only need to consider the Lipschitz constants
elementwisely.

E Lipschitz-Margin Training stabilization

We empirically found that applying the addition only when a prediction is correct stabilizes the
training. Thus, in the training, we scale the addition with

αF,X := min
i 6=tX

{
max

(
0,min

(
1,
F (X)tX − F (X)i√

2cLF

))}
.

Even though αF,X depends on LF , we do not back-propagate it.

Similarly, we observed that strong regularization at initial stage of training can make training unstable.
Thus, we set an initial value of c small and linearly increased it to the target value in first 5 epochs as
learning rate scheduling used in Goyal et al. [5].

F Experimental setups

In this section, we describe the details of our experimental settings.
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Table 2: Network structure used for experiment 6.1. For convolutional layers, output size denotes
channel size of output.

output size kernel padding stride

convolution 16 (4,4) (1,1) (2,2)
ReLU - - - -

convolution 32 (4,4) (1,1) (2,2)
ReLU - - - -

fully-connected 100 - - -
ReLU - - - -

fully-connected 10 - - -

F.1 Experiment 6.1

F.1.1 Base network

We used the same network, optimizer and hyperparameters with Kolter and Wong [7]. A network
consisting of two convolutional and two fully-connected layers was used. Table 2 shows the details
of its structure.

F.1.2 Hyperprameters

All models were trained using Adam optimizer [6] for 20 epochs with a batch size of 50. The learning
rate of Adam was set to 0.001. Note that these setting is the same with Kolter and Wong [7]. For
a LMT model, we set c = 1. For an AT model, we tuned hyperparemter c of C&W attack from
[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000] and chose the best one on validation data.

F.1.3 Estimation of inequality (5)

(A): We calculated (A) with Proposition 2.

(B): We took the max of the local Lipschitz constant calculated for (C).

(C): First, we added a random perturbation which each element is sampled from a Gaussian with
zero-mean and variance v , where v is set as a reciprocal number of the size of input dimension. Next,
we calculated the size of a gradient with respect to the input. We repeated the above two for 100
times and used the maximum value between them as an estimation of the local Lipschitz constant.

(D): We used DeepFool [9].

F.2 Experiment 6.2

Wide residual network [14] with 16 layers and a width factor k = 4 was used. We sampled 10000
images from an extra data available for SVHN dataset as validation data and combined the rest with
the official training data, following Cisse et al. [2]. All inputs were preprocessed so that each element
has a value in a range 0-1.

Models were trained with Nesterov Momentum [10] for 160 epochs with a batch size of 128. The
initial learning rate was set to 0.01 and it was multiplied by 0.1 at epochs 80 and 120. For naive
models, the weight decay with λ = 0.0005 and the dropout with a dropout ratio of 0.4 were used.
For Parseval networks, the weight decay was removed except for the last fully-connected layer and
Parseval regularization with β = 0.0001 was added, following Cisse et al. [2]. For a network with
the spectral norm regularization, the weight decay was removed and the spectral norm regularization
with λ = 0.01 was used following Yoshida and Miyato [13]. We note that both Cisse et al. [2] and
Yoshida and Miyato [13] used batch-normalization for their experimental evaluations and thus, we
left it for them. For LMT, we used c = 0.01 and did not apply weight decay. In residual blocks, the
Lipschits constant for the convolutional layer and the batch normalization layer was jointly calculated
as described in Sec. 5.2.
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G Additional discussion

G.1 Application

Since the proposed calculation method of guarded areas imposes almost no computational overhead at
inference time, this property has various potential applications. First of all, we note that in real-world
applications, even though true labels are not available, we can calculate the lower bounds on the
size of perturbations needed to change the predictions. The primary use is balancing between the
computational costs and the performance. When the provably guarded areas are sufficiently large,
we can use weak and computationally cheap detectors of perturbations, because the detectors only
need to find large perturbations. For data with small guarded areas, we may resort to computationally
heavy options, e.g., strong detectors or denoising networks.

G.2 Improvements from Parseval networks

Here, we discuss the difference between our work and Cisse et al. [2]. In the formulation of Parseval
networks, the goal is to limit the change in some Lipschitz continuous loss by constraining the
Lipschitz constant. However, since the existence of adversarial perturbations corresponds to the 0-1
loss, which is not continuous, their discussion is not applicable. For example, if we add a scaling layer
to the output of a network without changing its parameters, we can control the Lipschitz constant of
the network. However, this does not change its prediction and this is irrelevant to the existence of
adversarial perturbations. Therefore, considering solely the Lipschitz constant can be insufficient. In
LMT, the insufficiency is avoided using Proposition 1 and 2.

Additionally, we point out three differences. First, in Parseval networks, the upper bound of each
component is restricted to be smaller than one. This makes their theoretical framework incompatible
with some frequently used layers such as the batch normalization layer. Since they just ignore the
effects of such layers, Parseval networks cannot control the Lipschitz constant of networks with
normalization layers. On the other hand, our calculation method of guarded area and LMT can
handle such layers without problems. Second, Parseval networks force all singular values of the
weight matrices to be close to one, meaning that Parseval networks prohibit weight matrices to dump
unnecessary features. As Wang et al. [12] pointed out, learning unnecessary features can be a cause
of adversarial perturbations, which indicates the orthonormality condition has adverse effects that
encourage the existence of adversarial perturbations. Since LMT does not penalize small singular
values, LMT does not suffer the problem. Third, LMT requires only differentiable bounds of the
Lipschitz constants. This lets LMT be easily extended to networks with various components. On the
other hand, the framework of Parseval networks requires special optimization techniques for each
component.

G.3 Extensions of LMT

The formulation of LMT is highly flexible, so we can consider some extended versions. First, we
consider the applications that require guarded area different in classes. For example, to distinguish
humans from cats will be more important than to classify Angora cats from Persian cats. In LMT,
such knowledge can be combined by specifying different hyperparameter c for each pair of classes.
Second, we consider a combination of adversarial trainings. It will be more reasonable to require
smaller margins for the inputs with large perturbations. In LMT, we can incorporate this intuition
by changing c according to the size of perturbations or merely set c to zero for perturbed data. This
ability of LMT to be easily combined with other notions is one of the advantages of LMT.
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