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Abstract

Deep Gaussian Processes (DGPs) are hierarchical generalizations of Gaussian Pro-
cesses that combine well calibrated uncertainty estimates with the high flexibility
of multilayer models. One of the biggest challenges with these models is that exact
inference is intractable. The current state-of-the-art inference method, Variational
Inference (VI), employs a Gaussian approximation to the posterior distribution.
This can be a potentially poor unimodal approximation of the generally multimodal
posterior. In this work, we provide evidence for the non-Gaussian nature of the
posterior and we apply the Stochastic Gradient Hamiltonian Monte Carlo method
to generate samples. To efficiently optimize the hyperparameters, we introduce the
Moving Window MCEM algorithm. This results in significantly better predictions
at a lower computational cost than its VI counterpart. Thus our method establishes
a new state-of-the-art for inference in DGPs.

1 Introduction

Deep Gaussian Processes (DGP) [Damianou and Lawrence, 2013] are multilayer predictive models
that are highly flexible and can accurately model uncertainty. In particular, they have been shown to
perform well on a multitude of supervised regression tasks ranging from small (∼500 datapoints) to
large datasets (∼500,000 datapoints) [Salimbeni and Deisenroth, 2017, Bui et al., 2016, Cutajar et al.,
2016]. Their main benefit over neural networks is that they are capable of capturing uncertainty in
their predictions. This makes them good candidates for tasks where the prediction uncertainty plays a
crucial role, for example, black-box Bayesian Optimization problems and a variety of safety-critical
applications such as autonomous vehicles and medical diagnostics.

Deep Gaussian Processes introduce a multilayer hierarchy to Gaussian Processes (GP) [Williams and
Rasmussen, 1996]. A GP is a non-parametric model that assumes a jointly Gaussian distribution for
any finite set of inputs. The covariance of any pair of inputs is determined by the covariance function.
GPs can be a robust choice due to being non-parametric and analytically computable, however, one
issue is that choosing the covariance function often requires hand tuning and expert knowledge of
the dataset, which is not possible without prior knowledge of the problem at hand. In a multilayer
hierarchy, the hidden layers overcome this limitation by stretching and warping the input space,
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Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (∼100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato
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the hyperparameters. Furthermore, calculating the layerwise variance has a higher cost in the VI
setting.

Lastly, we conduct experiments on a variety of supervised regression and classification tasks. We
show empirically that our work significantly improves predictions on medium-large datasets at a
lower computational cost.

Our contributions can be summarized in three points.

1. Demonstrating the non-Gaussianity of the posterior. We provide evidence that every regres-
sion dataset that we examine in this work has a non-Gaussian posterior.

2. We use SGHMC to directly sample from the posterior distribution of a DGP. Experiments
show that this new inference method outperforms preceding works.

3. We introduce Moving Window MCEM, a novel algorithm for efficiently optimizing the
hyperparameters when using a MCMC sampler for inference.

2 Background and Related Work

This section provides the background on Gaussian Processes and Deep Gaussian Processes for
regression and establishes the notation used in the paper.

2.1 Single Layer Gaussian Process

Gaussian processes define a posterior distribution over functions f : RD → R given a set of
input-output pairs x = {x1, . . . , xN} and y = {y1, . . . , yN} respectively. Under the GP model,
it is assumed that the function values f = f(x), where f(x) denotes {f(x1), . . . , f(xN )}, are
jointly Gaussian with a fixed covariance function k : RD ×RD → R. The conditional distribution
of y is obtained via the likelihood function p(y|f). A commonly used likelihood function is
p(y|f) = N (y|f , Iσ2) (constant Gaussian noise).

The computational cost of exact inference is O(N3), rendering it computationally infeasible for
large datasets. A common approach uses a set of pseudo datapoints Z = {z1, . . . zM}, u = f(Z)
[Snelson and Ghahramani, 2006, Titsias, 2009] and writes the joint probability density function as

p(y,f ,u) = p(y|f)p(f |u)p(u) .

The distribution of f given the inducing outputs u can be expressed as p(f |u) = N (µ,Σ) with
µ = KxZK

−1
ZZu

Σ = Kxx −KxZK
−1
ZZK

T
xZ

where the notation KAB refers to the covariance matrix between two sets of points A, B with entries
[KAB ]ij = k(Ai, Bj) where Ai and Bj are the i-th and j-th elements of A and B respectively.

In order to obtain the posterior of f , u must be marginalized, yielding the equation

p(f |y) =

∫
p(f |u)p(u|y)du .

Note that f is conditionally independent of y given u.

For single layer GPs, Variational Inference (VI) can be used for marginalization. VI approximates the
joint posterior distribution p(f ,u|y) with the variational posterior q(f ,u) = p(f |u)q(u), where
q(u) = N (u|m,S).

This choice of q(u) allows for exact inference of the marginal q(f |m,S) =
∫
p(f |u)q(u)du =

N (f |µ̃, Σ̃)
where µ̃ = KxZK

−1
ZZm ,

Σ̃ = Kxx −KxZK
−1
ZZ(KZZ − S)K−1ZZK

T
xZ .

(1)

The variational parametersm and S need to be optimized. This is done by minimizing the Kullback-
Leibler divergence of the true and the approximate posteriors, which is equivalent to maximizing a
lower bound to the marginal likelihood (Evidence Lower Bound or ELBO):
log p(y) ≥ Eq(f ,u)

[
log p(y,f ,u)− log q(f ,u)

]
= Eq(f |m,S)

[
log p(y|f)

]
−KL

[
q(u)||p(u)

]
.
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2.2 Deep Gaussian Process

In a DGP of depth L, each layer is a GP that models a function fl with input fl−1 and output fl for
l = 1, . . . , L (f0 = x) as illustrated in the left part of Figure 1. The inducing inputs for the layers are
denoted by Z1, . . .,ZL with associated inducing outputs u1 = f1(Z1), . . .,uL = fL(ZL).

The joint probability density function can be written analogously to the GP model case:

p
(
y, {fl}Ll=1, {ul}Ll=1

)
= p(y|fL)

L∏
l=1

p(fl|ul)p(ul) . (2)

2.3 Inference

The goal of inference is to marginalize the inducing outputs {ul}Ll=1 and layer outputs {fl}Ll=1 and
approximate the marginal likelihood p(y). This section discusses prior works regarding inference.

Doubly Stochastic Variation Inference DSVI is an extension of Variational Inference to DGPs
[Salimbeni and Deisenroth, 2017] that approximates the posterior of the inducing outputs ul with
independent multivariate Gaussians q(ul) = N (ul|ml,Sl).

The layer outputs naturally follow the single layer model in Eq. 1:

q(fl|fl−1) = N (fl|µ̃l, Σ̃l) ,

q(fL) =

∫ L∏
l=1

q(fl|fl−1)dfl . . . dfL−1 .

The first term in the resulting ELBO, L = Eq(fL)

[
log p(y|fL)

]
−
∑L
l=1 KL

[
q(ul)||p(ul)

]
, is then

estimated by sampling the layer outputs through minibatches to allow scaling to large datasets.

Sampling-based inference for Gaussian Processes In a related work, Hensman et al. [2015] use
Hybrid MC sampling in single layer GPs. They consider joint sampling of the GP hyperparameters
and the inducing outputs. This work cannot straightforwardly be extended to DGPs because of
the high cost of sampling the GP hyperparameters. Moreover, it uses a costly method, Bayesian
Optimization, to tune the parameters of the sampler which further limits its applicability to DGPs.

3 Analysis of the Deep Gaussian Process Posterior

Adopting a new inference method over variational inference is motivated by the restrictive form that
VI assumes about the posterior distribution. The variational assumption is that p({ul}Ll=1|y) takes
the form of a multivariate Gaussian that assumes independence between the layers. While in a single
layer model, a Gaussian approximation to the posterior is provably correct [Williams and Rasmussen,
1996], this is not the case for DGPs.

First, we illustrate with a toy problem that the posterior distribution in DGPs can be multimodal.
Following that, we provide evidence that every regression dataset that we consider in this work results
in a non-Gaussian posterior distribution.

Multimodal toy problem The multimodality of the posterior of a two layer DGP (L = 2) is
demonstrated on a toy problem (Table 1). For the purpose of the demonstration, we made the
simplifying assumption that σ2 = 0, so the likelihood function has no noise. This toy problem has
two Maximum-A-Posteriori (MAP) solutions (Mode A and Mode B). The table shows the variational
posterior at each layer for DSVI. We can see that it fits one of the modes randomly (depending on the
initialization) while completely ignoring the other. On the other hand, a sampling method such as
SGHMC (as implemented in the following section) explores both of the modes and therefore provides
a better approximation to the posterior.

Empirical evidence To further support our claim regarding the multimodality of the posterior, we
give empirical evidence that ,for real-world datasets, the posterior is not Gaussian.
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Table 1: The layer inputs and outputs of a two layer DGP. Under DSVI, we show the mean and the
standard deviation of the variational distribution. In the case of SGHMC, samples from each layer
are shown. The two MAP solutions are shown under Mode A and Mode B.

Toy Problem DSVI SGHMC Mode A Mode B
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Figure 2: The toy prob-
lem with 7 datapoints.
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We conduct the following analysis. Consider the null hypothesis that the posterior under a dataset is a
multivariate Gaussian distribution. This null hypothesis implies that the distribution of each inducing
output is a Gaussian. We examine the approximate posterior samples generated by SGHMC for
each inducing output, using the implementation of SGHMC for DGPs described in the next section.
In order to derive p-values, we apply the kurtosis test for Gaussianity [Cramer, 1998]. This test is
commonly used to identify multimodal distributions because these often have significantly higher
kurtosis (also called 4th moment).

For each dataset, we calculate the p-values of 100 randomly selected inducing outputs and compare
the results against the probability threshold α = 10−5. The Bonferroni correction was applied to α
to account for the high number of concurrent hypothesis tests. The results are displayed in the right
part of Figure 1. Since every single dataset had p-values under the threshold, we can state with 99%
certainty that all of these datasets have a non-Gaussian posterior.

4 Sampling-based Inference for Deep Gaussian Processes

Unlike with VI, when using sampling methods, we do not have access to an approximate posterior
distribution q(u) to generate predictions with. Instead, we have to rely on approximate samples
generated from the posterior which in turn can be used to make predictions [Dunlop et al., 2017,
Hoffman, 2017].

In practice, run a sampling process which has two phases. The burn-in phase is used to determine
the hyperparameters of the model and the sampler. The hyperparameters of the sampler are selected
using a heuristic auto-tuning approach, while the hyperparameters of the DGP are optimized using
the novel Moving Window MCEM algorithm.

In the sampling phase, the sampler is run using the fixed hyperparameters. Since consecutive samples
are highly correlated, we save one sample every 50 iterations and generate 200 samples for prediction.

Once the posterior samples are obtained, predictions can be made by combining the per-sample
predictions to obtain a mixture distribution. Note that it is not more expensive to make predictions
using this sampler than in DSVI since DSVI needs to sample the layer outputs to make predictions.

4.1 Stochastic Gradient Hamiltonian Monte Carlo

SGHMC [Chen et al., 2014] is a Markov Chain Monte Carlo sampling method [Neal, 1993] for
producing samples from the intractable posterior distribution of the inducing outputs p(u|y) purely
from stochastic gradient estimates.

With the introduction of an auxiliary variable, r, the sampling procedure provides samples from
the joint distribution p(u, r|y). The equations that describe the MCMC process can be related to
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