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Abstract

Multiple-step lookahead policies have demonstrated high empirical competence
in Reinforcement Learning, via the use of Monte Carlo Tree Search or Model
Predictive Control. In a recent work [5], multiple-step greedy policies and their use
in vanilla Policy Iteration algorithms were proposed and analyzed. In this work,
we study multiple-step greedy algorithms in more practical setups. We begin by
highlighting a counter-intuitive difficulty, arising with soft-policy updates: even in
the absence of approximations, and contrary to the 1-step-greedy case, monotonic
policy improvement is not guaranteed unless the update stepsize is sufficiently
large. Taking particular care about this difficulty, we formulate and analyze online
and approximate algorithms that use such a multi-step greedy operator.

1 Introduction

The use of the 1-step policy improvement in Reinforcement Learning (RL) was theoretically inves-
tigated under several frameworks, e.g., Policy Iteration (PI) [18], approximate PI [2, 9, 13], and
Actor-Critic [10]; its practical uses are abundant [22, 12, 25]. However, single-step based improve-
ment is not necessarily the optimal choice. It was, in fact, empirically demonstrated that multiple-step
greedy policies can perform conspicuously better. Notable examples arise from the integration of RL
and Monte Carlo Tree Search [4, 28, 23, 3, 25, 24] or Model Predictive Control [15, 6, 27].

Recent work [5] provided guarantees on the performance of the multiple-step greedy policy and
generalizations of it in PI. Here, we establish it in the two practical contexts of online and approximate
PI. With this objective in mind, we begin by highlighting a specific difficulty: softly updating a policy
with respect to (w.r.t.) a multiple-step greedy policy does not necessarily result in improvement of
the policy (Section 4). We find this property intriguing since monotonic improvement is guaranteed
in the case of soft updates w.r.t. the 1-step greedy policy, and is central to the analysis of many
RL algorithms [10, 9, 22]. We thus engineer several algorithms to circumvent this difficulty and
provide some non-trivial performance guarantees, that support the interest of using multi-step greedy
operators. These algorithms assume access to a generative model (Section 5) or to an approximate
multiple-step greedy policy (Section 6).

2 Preliminaries

Our framework is the infinite-horizon discounted Markov Decision Process (MDP). An MDP is
defined as the 5-tuple (S,A, P,R, γ) [18], where S is a finite state space, A is a finite action space,
∗Department of Electrical Engineering, Technion, Israel Institute of Technology
†INRIA, Villers les Nancy, France

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



P ≡ P (s′|s, a) is a transition kernel, R ≡ r(s, a) is a reward function, and γ ∈ (0, 1) is a discount
factor. Let π : S → P(A) be a stationary policy, where P(A) is a probability distribution on A. Let
vπ ∈ R|S| be the value of a policy π, defined in state s as vπ(s) ≡ Eπ[

∑∞
t=0 γ

tr(st, π(st))|s0 = s].
For brevity, we respectively denote the reward and value at time t by rt ≡ r(st, πt(st)) and vt ≡
v(st). It is known that vπ =

∑∞
t=0 γ

t(Pπ)trπ = (I − γPπ)−1rπ, with the component-wise values
[Pπ]s,s′ , P (s′ | s, π(s)) and [rπ]s , r(s, π(s)). Lastly, let

qπ(s, a) = Eπ[

∞∑
t=0

γtr(st, π(st)) | s0 = s, a0 = a]. (1)

Our goal is to find a policy π∗ yielding the optimal value v∗ such that

v∗ = max
π

(I − γPπ)−1rπ = (I − γPπ
∗
)−1rπ

∗
. (2)

This goal can be achieved using the three classical operators (equalities hold component-wise):

∀v, π, Tπv = rπ + γPπv,

∀v, Tv = max
π

Tπv,

∀v, G(v) = {π : Tπv = Tv},
where Tπ is a linear operator, T is the optimal Bellman operator and both Tπ and T are γ-contraction
mappings w.r.t. the max norm. It is known that the unique fixed points of Tπ and T are vπ and v∗,
respectively. The set G(v) is the standard set of 1-step greedy policies w.r.t. v.

3 The h- and κ-Greedy Policies

In this section, we bring forward necessary definitions and results on two classes of multiple-step
greedy policies: h- and κ-greedy [5]. Let h ∈ N\{0}. The h-greedy policy πh outputs the first
optimal action out of the sequence of actions solving a non-stationary, h-horizon control problem as
follows:

∀s ∈ S, πh(s) ∈ arg max
π0

max
π1,..,πh−1

Eπ0...πh−1

[
h−1∑
t=0

γtr(st, πt(st)) + γhv(sh) | s0 = s

]
.

Since the h-greedy policy can be represented as the 1-step greedy policy w.r.t. Th−1v, the set of
h-greedy policies w.r.t. v, Gh(v), can be formally defined as follows:

∀v, π, Tπh v = TπTh−1v,

∀v, Gh(v) = {π : Tπh v = Thv}.

Let κ ∈ [0, 1]. The set of κ-greedy policies w.r.t. a value function v, Gκ(v), is defined using the
following operators:

∀v, π, Tπκ v = (I − κγPπ)−1(rπ + (1− κ)γPπv)

∀v, Tκv = max
π

Tπκ v = max
π

(I − κγPπ)−1(rπ + (1− κ)γPπv) (3)

∀v, Gκ(v) = {π : Tπκ v = Tκv}.
Remark 1. A comparison of (2) and (3) reveals that finding the κ-greedy policy is equivalent to

solving a κγ-discounted MDP with shaped reward rπv,κ
def
= rπ + (1− κ)γPπv.

In [5, Proposition 11], the κ-greedy policy was explained to be interpolating over all geometrically
κ-weighted h-greedy policies. It was also shown that for κ = 0, the 1-step greedy policy is restored,
while for κ = 1, the κ-greedy policy is the optimal policy.

Both Tπκ and Tκ are ξκ contraction mappings, where ξκ = γ(1−κ)
1−γκ ∈ [0, γ]. Their respective fixed

points are vπ and v∗. For brevity, where there is no risk of confusion, we shall denote ξκ by ξ.
Moreover, in [5] it was shown that both the h- and κ-greedy policies w.r.t. vπ are strictly better then
π, unless π = π∗.
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Figure 1: The Tightrope Walking MDP used in the counter example of Theorem 1.

Next, let

qπκ(s, a) = max
π′

Eπ
′
[

∞∑
t=0

(κγ)t(r(st, π
′(st)) + γ(1− κ)vπ(st+1) | s0 = s, a0 = a]. (4)

The latter is the optimal q-function of the surrogate, γκ-discounted MDP with vπ-shaped reward (see
Remark 1). Thus, we can obtain a κ-greedy policy, πκ ∈ Gκ(vπ), directly from qπκ :

πκ(s) ∈ arg max
a

qπκ(s, a), ∀s ∈ S.

See that the greedy policy w.r.t. qπκ=0(s, a) is the 1-step greedy policy since qπκ=0(s, a)=qπ(s, a).

4 Multi-step Policy Improvement and Soft Updates

In this section, we focus on policy improvement of multiple-step greedy policies, performed with soft
updates. Soft updates of the 1-step greedy policy have proved necessary and beneficial in prominent
algorithms [10, 9, 22]. Here, we begin by describing an intrinsic difficulty in selecting the step-size
parameter α ∈ (0, 1] when updating with multiple-step greedy policies. Specifically, denote by π′
such multiple-step greedy policy w.r.t. vπ. Then, πnew = (1− α)π + απ′ is not necessarily better
than π.
Theorem 1. For any MDP, let π be a policy and vπ its value. Let πκ ∈ Gκ(vπ) and πh ∈ Gh(vπ)
with κ ∈ [0, 1] and h > 1. Consider the mixture policies with α ∈ (0, 1],

π(α, κ)
def
= (1− α)π + απκ,

π(α, h)
def
= (1− α)π + απh.

Then we have the following equivalences:

1. The inequality vπ(α,κ) ≥ vπ holds for all MDPs if and only if α ∈ [κ, 1].

2. The inequality vπ(α,h) ≥ vπ holds for all MDPs if and only if α = 1.

The above inequalities hold entry-wise, with strict inequality in at least one entry unless vπ = v∗.

Proof sketch. See Appendix A for the full proof. Here, we only provide a counterexample
demonstrating the potential non-monotonicity of π(α, κ) when the stepsize α is not big enough. One
can show the same for π(α, h) with the same example.

Consider the Tightrope Walking MDP in Fig. 1. It describes the act of walking on a rope: in the
initial state s0 the agent approaches the rope, in s1 the walking attempt occurs, s2 is the goal state
and s3 is repeatedly met if the agent falls from the rope, resulting in negative reward.

First, notice that by definition, ∀v, π∗ ∈ Gκ=1(v). We call this policy the “confident” policy.
Obviously, for any discount factor γ ∈ (0, 1), π∗(s0) = a1 and π∗(s1) = a1. Instead, consider the
“hesitant” policy π0(s) ≡ a0 ∀s. We now claim that for any α ∈ (0, 1) and

c >
α

1− α
(5)
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the mixture policy, π(α, κ = 1) = (1− α)π0 + απ∗, is not strictly better than π0. To see this, notice
that vπ0(s1) < 0 and vπ0(s0) = 0; i.e., the agent accumulates zero reward if she does not climb the
rope. Thus, while vπ0(s0) = 0, taking any mixture of the confident and hesitant policies can result in
vπ(α,κ=1)(s0) < 0, due to the portion of the transition to s1 and its negative contribution. Based on
this construction, let κ ∈ [0, 1]. To ensure π∗ ∈ Gκ(vπ), we find it is necessary that

c ≤ κ

1− κ
. (6)

To conclude, if both (5) and (6) are satisfied, the mixture policy does not improve over π0. Due to the
monotonicity of x

1−x , such a choice of c is indeed possible for α < κ.

Theorem 1 guarantees monotonic improvement for the 1-step greedy policy as a special case when
κ = 0. Hence, we get that for any α ∈ (0, 1], the mixture of any policy π and the 1-step greedy policy
w.r.t. vπ is monotonically better then π. To the best of our knowledge, this result was not explicitly
stated anywhere. Instead, it appeared within proofs of several famous results, e.g, [10, Lemma 5.4],
[9, Corollary 4.2], and [21, Theorem 1].

In the rest of the paper, we shall focus on the κ-greedy policy and extend it to the online and the
approximate cases. The discovery that the κ-greedy policy w.r.t. vπ is not necessarily strictly better
than π will guide us in appropriately devising algorithms.

5 Online κ-Policy Iteration with Cautious Soft Updates

In [5], it was shown that using the κ-greedy policy in the improvement stage leads to a convergent PI
procedure – the κ-PI algorithm. This algorithm repeats i) finding the optimal policy of small-horizon
surrogate MDP with shaped reward, and ii) calculating the value of the optimal policy and use it to
shape the reward of next iteration. Here, we devise a practical version of κ-PI, which is model-free,
online and runs in two timescales; i.e, it performs i) and ii) simultaneously.

The method is depicted in Algorithm 1. It is similar to the asynchronous PI analyzed in [16], except
for two major differences. First, the fast timescale tracks both qπ, qπκ and not just qπ . Thus, it enables
access to both the 1-step-greedy and κ-greedy policies. The 1-step greedy policy is attained via the qπ
estimate, which is plugged into a q-learning [29] update rule for obtaining the κ-greedy policy. The
latter essentially solves the surrogate κγ-discounted MDP (see Remark 1). The second difference is in
the slow timescale, in which the policy is updated using a new operator, bs, as defined below. To better
understand this operator, first notice that in Stochastic Approximation methods such as Algorithm 1,
the policy is improved using soft updates with decaying stepsizes. However, as Theorem 1 states,
monotonic improvement is not guaranteed below a certain stepsize value. Hence, for q, qκ ∈ R|S×A|
and policy π, we set bs(q, qκ, π) to be the κ-greedy policy only when assured to have improvement:

bs(q, qκ, π) =

{
aκ(s) if q(s, aκ) ≥ vπ(s),

a1-step(s) else,

where aκ(s)
def
= arg maxa qκ(s, a), a1-step(s)

def
= arg maxa q(s, a), and vπ(s)=

∑
a π(a | s)q(s, a).

We respectively denote the state and state-action-pair visitation counters after the n-th time-step by
νn(s)

def
=
∑n
k=1 1s=sk and φn(s, a)

def
=
∑n
k=1 1(s,a)=(sk,ak). The stepsize sequences µf (·), µs(·)

satisfy the common assumption (B2) in [16], among which limn→∞ µs(n)/µf (n)→ 0. The second
moments of {rn} are assumed to be bounded. Furthermore, let ν be some measure over the state
space, s.t. ∀s ∈ S, ν(s) > 0. Then, we assume to have a generative model G(ν, π), using which we
sample state s ∼ ν, sample action a ∼ π(s), apply action a and receive reward r and next state s′.

The fast-timescale update rules in lines 6 and 8 can be jointly written as the sum ofHπ
κ (q, qκ) (defined

below) and a martingale difference noise.
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Algorithm 1 Two-Timescale Online κ-Policy-Iteration
1: initialize: π0, q0, qκ,0.
2: for n = 0, . . . do
3: sn, an, rn, s

′
n ∼ G(ν, πn)

4: # Fast-timescale updates
5: δn = rn + γvπn(s′n)− qn(sn, an)
6: qn+1(sn, an)← qn(sn, an) + µf (φn+1(sn, an))δn
7: δκ,n = rn + γ(1− κ)vπn(s′n) + κγmaxa′ qκ,n(s′n, a

′)− qκ,n(sn, an)
8: qκ,n+1(sn, an)← qκ,n(sn, an) + µf (φn+1(sn, an))δκ,n
9: # Slow-timescale updates

10: πn+1(sn)← πn(sn) + µs(νn+1(sn))(bsn(qn+1, qκ,n+1, πn)− πn(sn))
11: end for
12: return: π

Definition 1. Let q, qκ ∈ R|S||A|. The mapping Hπ
κ : R2|S||A| → R2|S||A| is defined as follows

∀(s, a) ∈ S ×A.

Hπ
κ (q, qκ)(s, a)

def
=

[
r(s, a) + γEs′,aπq(s′, aπ)

r(s, a) + γ(1− κ)Es′,aπq(s′, aπ) + κγEs′ maxa′ qκ(s′, a′)

]
,

where s′ ∼ P (· | s, a), aπ ∼ π(s′).

The following lemma shows that, given a fixed π,Hπ
κ is a contraction, equivalently to [16, Lemma 5.3]

(see Appendix B for the proof).
Lemma 2. Hπ

κ is a γ-contraction in the max-norm. Its fixed point is [ qπ, qπκ ]>, as defined in (1), (4).

Finally, based on several intermediate results given in Appendix C and relaying on Lemma 2, we
establish the convergence of Algorithm 1.
Theorem 3. The coupled process (qn, qκ,n, πn) in Algorithm 1 converges to the limit (q∗, q∗, π∗),
where q∗ is the optimal q-function and π∗ is the optimal policy.

For κ = 1, the fast-timescale update rule in line 8 corresponds to that of q-learning [29]. For that κ,
Algorithm 1 uses an estimated optimal q-function to update the current policy when improvement is
assured. For κ < 1, the estimated κ-dependent optimal q-function (see (4)) is used, again with the
‘cautious’ policy update. Moreover, Algorithm 1 combines an off-policy algorithm, i.e., q-learning,
with an on-policy Actor-Critic algorithm. To the best of our knowledge, this is the first appearance of
these two approaches combined in a single algorithm.

6 Approximate κ-Policy Iteration with Hard Updates

Theorem 1 establishes the conditions required for guaranteed monotonic improvement of softly-
updated multiple-step greedy policies. The algorithm in Section 5 then accounts for these conditions
to ensure convergence. Contrarily, in this section, we derive and study algorithms that perform
hard policy-updates. Specifically, we generalize the prominent Approximate Policy Iteration (API)
[13, 7, 11] and Policy Search by Dynamic Programming (PSDP) [1, 19]. For both, we obtain
performance guarantees that exhibit a tradeoff in the choice of κ, with optimal performance bound
achieved with κ > 0. That is, our approximate κ-generalized PI methods outperform the 1-step
greedy approximate PI methods in terms of best known guarantees.

For the algorithms here we assume an oracle that returns a κ-greedy policy with some error. Formally,
we denote by Gκ,δ,ν(v) the set of approximate κ-greedy policies w.r.t. v, with δ approximation error
under some measure ν.
Definition 2 (Approximate κ-greedy policy). Let v : S → R be a value function, δ ≥ 0 a real
number and ν a distribution over S. A policy π ∈ Gκ,δ,ν(v) if νTπκ v ≥ νTκv − δ.

Such a device can be implemented using existing approximate methods, e.g., Conservative Policy
Iteration (CPI) [9], approximate PI or VI [7], Policy Search [21], or by having an access to an
approximate model of the environment. The approximate κ-greedy oracle assumed here is less
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restrictive than the one assumed in [5]. There, a uniform error over states was assumed, whereas here,
the error is defined w.r.t. a specific measure, ν. For practical purposes, ν can be thought of as the
initial sampling distribution to which the MDP is initialized. Lastly, notice that the larger κ is, the
harder it is to solve the surrogate κγ-discounted MDP since the discount factor is bigger [17, 26, 8];
i.e., the computational cost of each call to the oracle increases.

Using the concept of concentrability coefficients introduced in [13] (there, they were originally termed
“diffusion coefficients”), we follow the line of work in [13, 14, 7, 19, 11] to prove our performance
bounds. This allows a direct comparison of the algorithms proposed here with previously studied
approximate 1-step greedy algorithms. Namely, our bounds consist of concentrability coefficients
C(1), C(2), C(2,k) and Cπ

∗(1) from [19, 11], as well as two new coefficients Cπ
∗

κ and Cπ
∗(1)

κ .
Definition 3 (Concentrability coefficients [19, 11])). Let µ, ν be some measures over S. Let {c(i)}∞i=0
be the sequence of the smallest values in [1,∞) ∪ {∞} such that for every i, for all sequences
of deterministic stationary policies π1, π2, .., πi, µ

∏i
j=1 P

πj ≤ c(i)ν. Let C(1)(µ, ν) = (1 −
γ)
∑∞
i=0 γ

ic(i) and C(2,k)(µ, ν) = (1 − γ)2
∑∞
i,j=0 γ

i+jc(i + j + k). For brevity, we denote
C(2,0)(µ, ν) as C(2)(µ, ν). Similarly, let {cπ∗(i)}∞i=0 be the sequence of the smallest values in
[1,∞)∪{∞} such that for every i, µ

(
Pπ
∗)i ≤ cπ∗(i)ν. LetCπ

∗(1)(µ, ν) = (1−γ)
∑∞
i=0 γ

icπ
∗
(i).

We now introduce two new concentrability coefficients suitable for bounding the worst-case perfor-
mance of PI algorithms with approximate κ-greedy policies.

Definition 4 (κ-Concentrability coefficients). Let Cπ
∗(1)

κ (µ, ν) = ξ
γC

π∗(1)(µ, ν) + (1− ξ)κc(0).
Also, let Cπ

∗

κ (µ, ν) ∈ [1,∞) ∪ {∞} be the smallest value s.t. dπ
∗

κ,µ ≤ Cπ
∗

κ (µ, ν)ν, where
dπ
∗

κ,µ = (1− ξ)µ(I − ξDπ∗

κ Pπ
∗
)−1 is a probability measure and Dπ

κ = (1− κγ)(I − κγPπ)−1 is
a stochastic matrix.

In the definitions above, ν is the measure according to which the approximate improve-
ment is guaranteed, while µ specifies the distribution on which one measures the loss
Es∼µ[v∗(s)− vπk(s)] = µ(v∗ − vπk) that we wish to bound. From Definition 4 it holds that
Cπ
∗

κ=0(µ, ν) = Cπ
∗
(µ, ν); the latter was previously defined in, e.g, [19, Definition 1].

Before giving our performance bounds, we first study the behavior of the coefficients appearing in
them. The following lemma sheds light on the behavior of Cπ

∗

κ (µ, ν). Specifically, it shows that
under certain constructions, Cπ

∗

κ (µ, ν) decreases3 as κ increases (see proof in Appendix D).
Lemma 4. Let ν(α) = (1 − α)ν + αµ. Then, for all κ′ > κ, there exists α∗ ∈ (0, 1) such that
Cπ
∗

κ′ (µ, ν(α∗)) ≤ Cπ∗κ (µ, ν). The inequality is strict for Cπ
∗

κ (µ, ν) > 1. For µ = ν this implies that
Cπ
∗

κ (ν, ν) is a decreasing function of κ.

Definition 4 introduces two coefficients with which we shall derive our bounds. Though traditional
arithmetic relations between them do not exist, they do comply to some notion of ordering.
Remark 2 (Order of concentrability coefficients). In [19], an order between the concentrability
coefficients was introduced: a coefficient A is said to be strictly better than B — a relation we denote
with A ≺ B — if and only if i)B <∞ implies A <∞ and ii) there exists an MDP for which A <∞
and B =∞. Particularly, it was argued that

Cπ
∗
(µ, ν) ≺ Cπ

∗(1)(µ, ν) ≺ C(1)(µ, ν) ≺ C(2)(µ, ν), and

C(2,k1)(µ, ν) ≺ C(2,k2)(µ, ν) if k2 < k1.

In this sense, Cπ
∗(1)

κ (µ, ν) is analogous to Cπ
∗(1)(µ, ν), while its definition might suggest improve-

ment as κ increases. Moreover, combined with the fact that Cπ
∗

κ (µ, ν) improves as κ increases, as
Lemma 4 suggests, Cπ

∗

κ (µ, ν) is better than all previously defined concentrability coefficients.

6.1 κ-Approximate Policy Iteration

A natural generalization of API [13, 19, 11] to the multiple-step greedy policy is κ-API, as given in
Algorithm 2. In each of its iterations, the policy is updated to the approximate κ-greedy policy w.r.t.
vπk−1 ; i.e, a policy from the set Gκ,δ,ν(vπk−1).

3A smaller coefficient is obviously better. The best value for any concentrability coefficient is 1.

6



Algorithm 2 κ-API
initialize κ ∈ [0, 1], ν, δ, vπ0

v ← vπ0

for k = 1, .. do
πk ← Gκ,δ,ν(v)
v ← vπk

end for
return π

Algorithm 3 κ-PSDP

initialize κ ∈ [0, 1], ν, δ, vπ0 ,Π = [ ]
v ← vπ0

for k = 1, .. do
πk ← Gκ,δ,ν(v)
v ← Tπkκ v
Π←Append(Π, πk)

end for
return Π

The following theorem gives a performance bound for κ-API (see proof in Appendix E), with

Cκ−API(µ, ν) = (1− κ)2C(2)(µ, ν) + (1− γ)κ
(

(1− κ)C(1)(µ, ν) + (1− γκ)Cπ
∗(1)

κ (µ, ν)
)
,

C
(k,1)
κ−API(µ, ν) = (1− κγ)

(
κ(1− κγ)Cπ

∗

κ (µ, ν) + (1− κ)2C(1)(µ, ν))
)
,

C
(k,2)
κ−API(µ, ν) = (1− κ)κ

(
(1− γ)C(1)(µ, ν) + g(κ)(1− κ)γkC(2,k)(µ, ν)

)
,

where g(κ) is a bounded function for κ ∈ [0, 1].

Theorem 5. Let πk be the policy at the k-th iteration of κ-API and δ be the error as defined in
Definition 2. Then

µ(v∗ − vπk) ≤ Cκ−API(µ, ν)

(1− γ)2
δ + ξk

Rmax

1− γ
.

Also, let k =

⌈
log Rmax

δ(1−γ)
1−ξ

⌉
. Then µ(v∗ − vπk) ≤ C

(k,1)
κ−API(µ,ν)

(1−γ)2 log
(
Rmax

(1−γ)δ

)
δ +

C
(k,2)
κ−API(µ,ν)

(1−γ)2 δ + δ.

For brevity, we now discuss the first part of the statement; the same insights are true for the second
as well. The bound for the original API is restored for the 1-step greedy case of κ = 0, i.e,
µ(v∗ − vπk) ≤ C(2)(µ,ν)

(1−γ)2 δ + γkRmax

1−γ [19, 11]. As in the case of API, our bound consists of a fixed
approximation error term and a geometrically decaying term. As for the other extreme, κ = 1,
we first remind that in the non-approximate case, applying Tκ=1 amounts to solving the original
γ-discounted MDP in a single step [5, Remark 4]. In the approximate setup we investigate here,
this results in the vanishing of the second, geometrically decaying term, since ξ = 0 for κ = 1. We
are then left with a single constant approximation error: µ(v∗ − vπk) ≤ c(0)δ. Notice that c(0) is
independent of π∗ (see Definition 3). It represents the mismatch between µ and ν [9].

Next, notice that, by definition (see Definition 3), C(2)(µ, ν) > (1−γ)2c(0); i.e., C
(2)(µ,ν)
(1−γ)2 δ > c(0)δ.

Given the discussion above, we have that the κ-API performance bound is strictly smaller with κ = 1
than with κ = 0. Hence, the bound suggests that κ-API is strictly better than the original API for
κ = 1. Since all expressions there are continuous, this behavior does not solely hold point-wise.
Remark 3 (Performance tradeoff). Naively, the above observation would lead to the choice of κ = 1.
However, it is reasonable to assume that δ, the error of the κ-greedy step, itself depends on κ, i.e,
δ ≡ δ(κ). The general form of such dependence is expected to be monotonically increasing: as the
effective horizon of the surrogate κγ-discounted MDP becomes larger, its solution is harder to obtain
(see Remark 1). Thus, Theorem 5 reveals a performance tradeoff as a function of κ.

6.2 κ-Policy Search by Dynamic Programming

We continue with generalizing another approximate PI method – PSDP [1, 19]. We name it κ-PSDP
and introduce it in Algorithm 3. This algorithm updates the policy differently from κ-API. However,
similarly to κ-API, it uses hard updates. We will show this algorithm exhibits better performance
than any other previously analyzed approximate PI method [19].

The κ-PSDP algorithm, unlike κ-API, returns a sequence of deterministic policies, Π. Given this
sequence, we build a single, non-stationary policy by successively runningNk steps of Π[k], followed
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by Nk−1 steps of Π[k − 1], etc, where {Ni}ki=1 are i.i.d. geometric random variables with parameter
1 − κ. Once this process reaches π0, it runs π0 indefinitely. We shall refer to this non-stationary
policy as σκ,k. Its value vσκ,k can be seen to satisfy

vσκ,k = TΠ[k]
κ TΠ[k−1]

κ . . . TΠ[1]
κ vπ0 .

This algorithm follows PSDP from [19]. Differently from it, the 1-step improvement is generalized to
the κ-greedy improvement and the non-stationary policy behaves randomly. The following theorem
gives a performance bound for it (see proof in Appendix F).
Theorem 6. Let σκ,k be the policy at the k-th iteration of κ-PSDP and δ be the error as defined in
Definition 2. Then

µ(v∗ − vσκ,k) ≤ C
π∗(1)
κ (µ, ν)

1− ξ
δ + ξk

Rmax

1− γ
.

Also, let k =

⌈
log Rmax

δ(1−γ)
1−ξ

⌉
. Then µ(v∗ − vσκ,k) ≤ Cπ

∗
κ (µ,ν)
(1−ξ)2 log

(
Rmax

(1−γ)δ

)
δ + δ.

Compared to κ-API from the previous section, the κ-PSDP bound consists of a different fixed
approximation error and a shared geometrically decaying term. Regarding the former, notice that
C
π∗(1)
κ (µ, ν) ≺ Cκ−API(µ, ν), using the notation from Remark 2. This suggests that κ-PSDP is

strictly better than κ-API in the metrics we consider, and is in line with the comparison of the original
API to the original PSDP given in [19].

Similarly to the previous section, we again see that substituting κ = 1 gives a tighter bound than

κ = 0. The reason is that C
π∗(1)(µ,ν)

1−γ δ > c(0)δ, by definition (see Definition 3); i.e., we have that
κ-PSDP is generally better than PSDP. Also, contrarily to κ-API, here we directly see the performance
improvement as κ increases due to the decrease of Cπ

∗

κ prescribed in Lemma 4, for the construction
given there. Moreover, the κ tradeoff discussion in Remark 3 applies here as well.

An additional advantage of this new algorithm over PSDP is reduced space complexity. This can be
seen from the 1− ξ in the denominator in the choice of k in the second part of Theorem 6. It shows
that, since ξ is a strictly decreasing function of κ, better performance is guaranteed with significantly
fewer iterations by increasing κ. Since the size of stored policy Π is linearly dependent on the number
of iterations, larger κ improves space efficiency.

7 Discussion and Future Work

In this work, we introduced and analyzed online and approximate PI methods, generalized to the
κ-greedy policy, an instance of a multiple-step greedy policy. Doing so, we discovered two intriguing
properties compared to the well-studied 1-step greedy policy, which we believe can be impactful in
designing state-of-the-art algorithms. First, successive application of multiple-step greedy policies
with a soft, stepsize-based update does not guarantee improvement; see Theorem 1. To mitigate this
caveat, we designed an online PI algorithm with a ‘cautious’ improvement operator; see Section 5.

The second property we find intriguing stemmed from analyzing κ generalizations of known approx-
imate hard-update PI methods. In Section 6, we revealed a performance tradeoff in κ, which can
be interpreted as a tradeoff between short-horizon bootstrap bias and long-rollout variance. This
corresponds to the known λ tradeoff in the famous TD(λ).

The two characteristics above lead to new compelling questions. The first regards improvement
operators: would a non-monotonically improving PI scheme necessarily not converge to the optimal
policy? Our attempts to generalize existing proof techniques to show convergence in such cases have
fallen behind. Specifically, in the online case, Lemma 5.4 in [10] does not hold with multiple-step
greedy policies. Similar issues arise when trying to form a κ-CPI algorithm via, e.g., an attempt to
generalize Corollary 4.2 in [9]. Another research question regards the choice of the parameter κ given
the tradeoff it poses. One possible direction for answering it could be investigating the concentrability
coefficients further and attempting to characterize them for specific MDPs, either theoretically or via
estimation. Lastly, a next indisputable step would be to empirically evaluate implementations of the
algorithms presented here.
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A Proof of Theorem 1

We start with a generalization of a useful lemma; its original version appeared in, e.g., [20, Lemma 10].
Lemma 7. Let v be a value function, π a policy, and κ ∈ [0, 1]. Then

Tπκ v − v = (I − κγPπ)−1(Tπv − v).

Proof. The proof is a straightforward generalization of the proof in [20, Lemma 10], and [9, Re-
mark 6.1].

Tπκ v − v = (I − κγPπ)−1(rπ + (1− κ)γPπv)− v
= (I − κγPπ)−1(rπ + (1− κ)γPπv − (I − κγPπ)v)

= (I − κγPπ)−1(rπ + γPπv − v)

= (I − κγPπ)−1(Tπv − v).

This elementary lemma relates the ‘κ-advantage’ to the 1-step advantage and is useful to prove
Theorem 1 and some following results.

First, since π(α, κ) = (1− α)π + απκ, we have that

Pπ(α,κ) = (1− α)Pπ + αPπκ ,

rπ(α,κ) = (1− α)rπ + αrπκ ;

thus, since vπ is the fixed-point of Tπ,

Tπ(α,κ)vπ = (1− α)Tπvπ + αTπκvπ = (1− α)vπ + αTπκvπ. (7)
Using this, we now prove the first statement of Theorem 1.

vπ(α,κ) − vπ = (I − γPπ(α,κ))−1(Tπ(α,κ)vπ − vπ)

= α(I − γPπ(α,κ))−1(Tπκvπ − vπ)

= α(I − γPπ(α,κ))−1(I − κγPπκ)(I − κγPπκ)−1(Tπκvπ − vπ)

= α(I − γPπ(α,κ))−1(I − κγPπκ)(Tπκκ vπ − vπ)

= α(I − γPπ(α,κ))−1(I − γPπ(α,κ) + γ(Pπ(α,κ) − κPπκ))(Tπκκ vπ − vπ)

= α
(
I + γ(I − γPπ(α,κ))−1

)
((1− α)Pπ + (α− κ)Pπκ)(Tπκκ vπ − vπ). (8)

For the first relation we use Lemma 7 with κ = 1 and the fact that, by definition,
T
π(α,κ)
κ=1 vπ(α,κ) = vπ(α,κ). For the second relation we use (7), for the fourth we again use Lemma 7,

and for the last relation we use that Pπ(α,κ) − κPπκ = (1− α)Pπ + (α− κ)Pπκ .

Next, we show that for α ≥ κ, all terms in (8) are component-wise bigger than or
equal to zero. First, using a Taylor expansion, (I − γPπ(α,κ))−1 =

∑
t γ

t(Pπ(α,κ))t ≥ 0
component-wise, since it is a weighted sum of transition matrices with positive weights.
The same applies for (1− α)Pπ + (α− κ)Pπκ , when α ≥ κ. Thus, for α ≥
κ, (I + γ(I − γPπ(α,κ))−1((1− α)Pπ + (α− κ)Pπκ) ≥ 0 component-wise. Lastly, since
πκ ∈ Gκ(vπ), vπ = Tπκ v

π ≤ Tκvπ = Tπκκ vπ, with equality holding if and only if vπ = v∗ [5,
Lemma 3]. Thus, Tπκκ vπ − vπ ≥ 0. This concludes the proof for the first statement, for the κ-greedy
policy.

For the κ-greedy policy part of the proof for the second statement, we now provide more details
on the counterexample presented in Section 4. For convenience, we bring the MDP example here
again in Fig. 2. Consider the mixture of the “hesitant” and “confident” policies: π(α, κ = 1) =
(1− α)π0 + απ(α, κ = 1). It can be shown that its value is

vπ(α,κ=1)(s0) =
γα

1− γ(1− α)
vπ(α,κ=1)(s1),

vπ(α,κ=1)(s1) = γ
−c(1− α) + α

1− γ
.

11



s0 s1 s2

s3

a0

0

a1

0
a0

0

a1

0
a0

1

a0

−c

Figure 2: The Tightrope Walking MDP used in the proof of Theorem 1. This class of MDPs is
parametrized by c > 0.

Thus, we deduce that for any α ∈ (0, 1) and

c >
α

1− α
, (9)

vπ(α,κ=1)(s0) < vπ(s0) = 0, i.e, the mixture policy, π(α, κ = 1), is not strictly better then π0.

We now find the conditions to ensure that the κ-greedy policy w.r.t. vπ0 is the optimal policy; this
will generalize the above construction, made for κ = 1, to any κ ∈ [0, 1]. Observe that for any c > 0
and κ it holds that πκ(s1) = a1 = π∗(s1), where πκ ∈ Gκ(vπ0). Thus, we solely need to consider
the policy which is different than π∗ at state s0, π̃(s0) = a0 6= π∗(s0) and π̃(s1) = π∗(s1). To find
which condition ensures the κ-greedy policy w.r.t. vπ0 is π∗ (and not π̃), we require

Tπ
∗

κ vπ0(s0) ≥ T π̃κ vπ0(s0). (10)

Satisfying this condition insures that π∗ ∈ Gκ(vπ0). By definition,

Tπ
∗

κ vπ0(s0) = Eπ
∗

[∑
t

(κγ)t(r(st, π
∗(st)) + γ(1− κ)vπ0(st+1) | st=0 = s0

]

=(κγ)0 (γ(1− κ)vπ0(s1))) + (κγ)1 (γ(1− κ)vπ0(s2)) +

∞∑
t=2

(κγ)t(1 + vπ0(s2))

=(κγ)0

(
γ(1− κ)(− γc

1− γ
)

)
+ (κγ)1

(
γ(1− κ)

1

1− γ

)
+

∞∑
t=2

(κγ)t(1 + γ(1− κ)
1

1− γ
)

=γ(1− κ)(− γc

1− γ
) + κγ

γ

1− γ
. (11)

Similarly, and since π̃(s0) = a0, we have that

T π̃κ v
π0(s0) = 0 (12)

Plugging (11) and (12) into (10), we get the condition

c ≤ κ

1− κ
. (13)

To finalize the counterexample and show that strict policy improvement is not guaranteed, we choose
c such that both (9) and (13) are satisfied. Such feasible choice exists when α < κ, due to the
monotonicity of x

1−x .

The monotonic improvement of π(α, h) for α = 1 was proved in [5, Lemma 1]. To build the
counter example, again consider the Tightrope MDP. Let π0 be the ‘hesitant’ policy. For any
γ ∈ (0, 1), h > 1, it holds that π∗ ∈ Gh(vπ0). Thus, it suffices to satisfy (9) alone to show that
π(α, h) = (1− α)π0 + απ∗ is not monotonically better then π. Large enough c value ensures that.
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B Proof of Lemma 2

We start by showing the contraction property of Hπ
κ . Let (s, a) be a fixed state-action pair, Q1, Q2 ∈

R2|S×A|. For any state-action pair (s, a), Qi(s, a) is a two-component vector. We denote its first
component by qi(s, a) and its second component by qi,κ(s, a). See that

||q1 − q2||∞ ≤ ||Q1 −Q2||∞, (14)
||q1,κ − q2,κ||∞ ≤ ||Q1 −Q2||∞. (15)

Taking a component-wise absolute value, we have that

|Hπ
κQ1 −Hπ

κQ2|(s, a)

=|Hπ
κ (q1, q1,κ)−Hπ

κ (q2, q2,κ)|(s, a)

=γ

[
|Es′,aπ [q1(s′, aπ))− q2(s′, π(s′))] |

|(1− κ)Es′,aπ [q1(s′, aπ)− q2(s′, aπ))] + κEs′ [maxa′ q1,κ(s′, a′)−maxa′ q2,κ(s′, a′)]|

]
,

where s′ ∼ P (· | s, a), aπ ∼ π(s′).

Let us focus on the first component of the above vector. We have that

γ|Es′,aπ [q1(s′, aπ)− q2(s′, aπ)] | ≤ γ||q1 − q2||∞ ≤ γ||Q1 −Q2||∞,
where we used the standard bound, |E[X]| ≤ ||X||∞ and (14). Similarly, for the second component,
we have that

γ
∣∣∣((1− κ)Es′,aπ [q1(s′, aπ)− q2(s′, aπ)] + κEs′,a[max

a′
q1,κ(s′, a′)−max

a′
q2,κ(s′, a′)]

)∣∣∣
≤γ
(

(1− κ)|Es′,aπ [q1(s′, aπ)− q2(s′, aπ)] |+ κEs′,a[|max
a′

q1,κ(s′, a′)−max
a′

q2,κ(s′, a′)|]
)

≤γ
(

(1− κ)|Es′,aπ [q1(s′, aπ)− q2(s′, aπ)] |+ κEs′,a′ [max
a′
|q1,κ(s′, a′)− q2,κ(s′, a′)|]

)
≤γ ((1− κ)||q1 − q2||∞ + κ||q1,κ − q2,κ||∞)

≤γ ((1− κ)||Q1 −Q2||∞ + κ||Q1 −Q2||∞) = γ||Q1 −Q2||∞,
where for the first relation we used the triangle inequality, for the second we used the standard
bound |maxx∈X f(x)−maxx∈X g(x)| ≤ maxx∈X |f(x)− g(x)|, for the third we used the bound
|E[X]| ≤ ||X||∞, and for the last (14)-(15).

From the above we get that

||Hπ
κQ1 −Hπ

κQ2||∞ ≤ γ||Q1 −Q2||∞;

i.e., the operator Hπ
κ is a γ contraction mapping in the max-norm.

It is clear that the fixed point of the first component is qπ . The fixed point of the second component is
the fixed point of the optimal Bellman operator of the κγ-discounted, reward shaped, surrogate MDP
(see Remark 1). Its solution is, by construction, qπκ (see (4)).

C Proof of Theorem 3

The proof of Theorem 3 follows the proof in [16, Section 5.1], with several generalizations given
below.

C.1 Lipschitzness of the Slow Time Scale Fixed-Point

Before following the main lemmas in [16] and showing they hold for Online κ-PI (Algorithm 1), we
shall show that the solution of the fast-time scale ODE (found using a fixed-point argument), [qπ, qπκ ],
is Lipschitz-continuous in the slow time-scale iterate, π.
Lemma 8. Let π : S ×A → [0, 1] be a stochastic policy. For any π1, π2 and q1, q2 ∈ R|S×A|, let

||π1 − π2||∞
def
= max

s

∑
a

|π1(a | s)− π2(a | s)|,

||q1 − q2||∞
def
= max

s,a
|q1(s, a)− q2(s, a)|.
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Then qπ and qπκ are Lipschitz-continuous in π in the max-norm; i.e.,

||qπ1 − qπ2 ||∞ ≤ La||π1 − π2||∞,
||qπ1
κ − qπ2

κ ||∞ ≤ Lb||π1 − π2||∞,

where La, Lb > 0, are functions of γ, κ,Rmax.

Proof. We start by proving that ||vπ1 − vπ2 ||∞ ≤ L||π1 − π2||∞, i.e, vπ is Lipschitz in π.

||vπ1 − vπ2 ||∞ = ||Tπ1vπ1 − Tπ2vπ2 ||∞
≤ ||Tπ1vπ1 − Tπ1vπ2 + Tπ1vπ2 − Tπ2vπ2 ||∞
≤ ||Tπ1vπ1 − Tπ1vπ2 ||∞ + ||Tπ1vπ2 − Tπ2vπ2 ||∞
≤ γ||vπ1 − vπ2 ||∞ + ||Tπ1vπ2 − Tπ2vπ2 ||∞, (16)

where the last relation is due to the fact Tπ1 is a γ-contraction. We continue by calculating
|Tπ1vπ2 − Tπ2vπ2 |(s).

|Tπ1vπ2 − Tπ2vπ2 |(s) ≤ |
∑
a

(
π1(a | s)− π2(a | s)

)
r(s, a)|+ γ|

∑
s′

(Pπ1

s′,s − P
π2

s′,s)v
π2(s′)|.

(17)

We bound each term in (17). The first term can be bounded by,

|
∑
a

(
π1(a | s)− π2(a | s)

)
r(s, a)| ≤

∑
a

|
(
π1(a | s)− π2(a | s)

)
||r(s, a)|

≤ Rmax max
s

∑
a

|(π1(a | s)− π2(a | s))|

= Rmax||π1 − π2||∞. (18)

In the first relation we used the triangle inequality and in the second inequality the fact that |r(s, a)|
is bounded by Rmax.

The second term in (17) can be bounded by,

|
∑
s′

(Pπ1

s′,s − P
π2

s′,s)v
π2(s′)| = |

∑
s′,a

P (s′ | s, a)(π1(a | s)− π2(a | s))vπ2(s′)|

≤
∑
a

∑
s′

P (s′ | s, a)|(π1(a | s)− π2(a | s))vπ2(s′)|

≤
∑
a

∑
s′

P (s′ | s, a)|(π1(a | s)− π2(a | s))||vπ2(s′)|

≤
∑
a

∑
s′

P (s′ | s, a)|(π1(a | s)− π2(a | s))|Rmax

1− γ

=
∑
a

|(π1(a | s)− π2(a | s))|Rmax

1− γ
∑
s′

P (s′ | s, a)

=
∑
a

|(π1(a | s)− π2(a | s))|Rmax

1− γ

≤ max
s

∑
a

|(π1(a | s)− π2(a | s))|Rmax

1− γ
=
Rmax

1− γ
||π1 − π2||∞

(19)

In the first relation we used the triangle inequality, in the forth relation we used the fact that for any π
and s, vπ(s) ≤ Rmax

1−γ , and in the fifth relation the fact that for any s and a, P (s′ | s, a) is a probability
function, thus sums to one.

Using (18), (19) to bound (17) yields that for any s,

|Tπ1vπ2 − Tπ2vπ2 |(s) ≤ Rmax

1− γ
||π1 − π2||∞.
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Thus, ||Tπ1vπ2 − Tπ2vπ2 ||∞ ≤ Rmax

1−γ ||π1 − π2||∞. Plugging this bound into (16) and rearranging
yields,

||vπ1 − vπ2 ||∞ ≤
Rmax

(1− γ)2
||π1 − π2||∞, (20)

giving that L = Rmax

(1−γ)2 .

We continue by analysing ||Tκvπ1−Tκvπ2 ||∞. We remind the reader that Tκvπ satisfies the following
fixed-point equation:

Tκv
π(s) = max

a

[
r(s, a) + γ(1− κ)

∑
s′

P (s′ | s, a)vπ(s′) + κγ
∑
s′

P (s′ | s, a)(Tκv
π)(s′)

]
def
= T̄πκ Tκv

π(s),

where we defined the ‘optimal’ Bellman operator of the surrogate MDP to be T̄πκ (see Re-
mark 1). Furthermore, since this operator is the optimal Bellman operator of a κγ-discounted
MDP, it is a κγ contraction mapping. We now use a similar technique as the above to show
||Tκvπ1 − Tκvπ2 ||∞ ≤ Lκ||π1 − π2||∞, i.e, Tκvπ is Lipschitz in π.

||Tκvπ1 − Tκvπ2 ||∞ = ||T̄π1
κ Tκv

π1 − T̄π2
κ Tκv

π2 ||∞
≤ ||T̄π1

κ Tκv
π1 − T̄π1

κ Tκv
π2 ||∞ + ||T̄π1

κ Tκv
π2 − T̄π2

κ Tκv
π2 ||∞

≤ κγ||Tκvπ1 − Tκvπ2 ||∞ + ||T̄π1
κ Tκv

π2 − T̄π2
κ Tκv

π2 ||∞.
We now bound the second term.
|T̄π1
κ Tκv

π2 − T̄π2
κ Tκv

π2 |(s) ≤ max
a

γ(1− κ)|
∑
s′

P (s′ | s, a)(vπ1 − vπ2)(s′)|

≤ max
a

γ(1− κ)
∑
s′

P (s′ | s, a)|vπ1 − vπ2 |(s′)

≤ max
a

γ(1− κ)
∑
s′

P (s′ | s, a)||vπ1 − vπ2 ||∞ = γ(1− κ)||vπ1 − vπ2 ||∞,

where we used the definition of T̄πκ and the identity |maxx∈X f(x) − maxx∈X g(x)| ≤
maxx∈X |f(x)− g(x)| in the first relation and the triangle inequality in the second.

Using (20), we have

||Tκvπ1 − Tκvπ2 ||∞ ≤
γ(1− κ)

1− κγ
||vπ1 − vπ2 ||∞

≤ γ(1− κ)

1− κγ
Rmax

(1− γ)2
||π1 − π2||∞.

These results transform to results on qπ and qπκ as follows. Starting with qπ ,

|qπ1 − qπ2 |(s, a) = |r(s, a) + γ
∑
s′

P (s′ | s, a)vπ1 − r(s, a)− γ
∑
s′

P (s′ | s, a)vπ2 |

= γ|
∑
s′

P (s′ | s, a)(vπ1 − vπ2)| ≤ γ||vπ1 − vπ2 ||∞.

By taking the max-norm on both sides we get the result since ||vπ1 − vπ2 ||∞ was shown to be
Lipschitz in π.

Next, for qπκ we have
|qπ1
κ − qπ2

κ |(s, a)

=|γ(1− κ)
∑
s′

P (s′ | s, a)(vπ1(s′)− vπ2(s′)) + κγ
∑
s′

P (s′ | s, a)(Tκv
π1 − Tκvπ2)(s′)|

≤γ(1− κ)||vπ1(s′)− vπ2(s′)||∞ + κγ||Tκvπ1 − Tκvπ2 ||∞.
By taking the max-norm on both sides we get the result since, as shown above, both ||vπ1 − vπ2 ||∞
and ||Tκvπ1 − Tκvπ2 ||∞ are Lipschitz in π. Finally, since the vector space is finite (due to the finite
state and action space), all Lp norms are equivalent. Thus, the Lipschitzness result applies in any Lp
norm as well.
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C.2 Improvement Step

Here, we prove an equivalent lemma to [16, Lemma 5.4] which shows that the mean value of the
process improves. Denote bs ≡ bs(q

π, qπκ , π) as the policy defined in the Algrorithm 1. By using
Lemma 7 and setting κ = 0 we have that

v(1−α)π+αbs − vπ = α(I − γP (1−α)π+αbs)−1(T bsvπ − vπ).

Thus, by taking the limit α→ 0 we have

lim
α→0

(v(1−α)π+αbs − vπ) = α∇πvπ(bs − π)

= α 〈∇πvπ,∆π〉
= α(I − γPπ)−1(T bsvπ − vπ) +O(α2) ≥ 0,

where the last inequality is since T bsvπ − vπ ≥ 0 by construction and (I − γPπ)−1 ≥ 0 component-
wise. We thus get that

1

α
lim
α→0

(v(1−α)π+αbs − vπ) = 〈∇πvπ,∆π〉 ≥ 0.

C.3 Convergence of the Algorithm

We define the same Lyapunov function as defined in [16, Lemma 5.5]. Due to previous section it
is indeed a Lyapunov function since its derivative is negative and the function is bigger than 0 by
construction. The presence of the Lyapunov function leads to the convergence of the policy to the
optimal policy, similarly to [16, Corollary 5.6], which leads to the convergence of qπ to q∗. Lastly,
since Tκv∗ = v∗ [5, Lemma 4] we have that,

qπ
∗

κ (π′) = rπ
′
+ γ(1− κ)Pπ

′
v∗ + κγPπ

′
Tκv

∗

= rπ
′
+ γ(1− κ)Pπ

′
v∗ + κγPπ

′
v∗

= rπ
′
+ γPπ

′
v∗ = q∗(π′).

which concludes the proof.

D Proof of Lemma 4

We first prove a useful lemma that relates the (unnormalized) future distribution, measured in different
κ scales.
Lemma 9. For any policy π and κ, κ′ ∈ [0, 1],

(I − ξκ′Dπ
κ′P

π)−1 =
κ′ − κ
1− κ

I +
1− κ′

1− κ
(I − ξκDπ

κP
π)−1.

Proof. We prove the lemma by using the definition and by some algebraic manipulations.

(I − ξκ′Dπ
κ′P

π)−1 = (I − γ(1− κ′)(I − κγ′Pπ)−1Pπ)−1

= ((I − κγ′Pπ)−1(I − κγ′Pπ − γ(1− κ′)Pπ))−1

= (I − γPπ)−1(I − γκ′Pπ)

= (I − γPπ)−1 − κ′γPπ(I − γPπ)−1

= (I − γPπ)−1 − κ′(I + γPπ(I − γPπ)−1 − I)

= (I − γPπ)−1 − κ′((I − γPπ)−1 − I)

= κ′I + (1− κ′)(I − γPπ)−1

We see that the following relation holds for any κ ∈ [0, 1],

(I − γPπ)−1 =
1

1− κ
((I − ξκDπ

κP
π)−1 − κI).
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Plugging this relation into the previous one we get,

(I − ξκ′Dπ
κ′P

π)−1 = κ′I + (1− κ′)(I − γPπ)−1

= κ′I +
1− κ′

1− κ
((I − ξκDπ

κP
π)−1 − κI)

=
κ′ − κ
1− κ

I +
1− κ′

1− κ
(I − ξκDπ

κP
π)−1.

We are now ready to prove Lemma 4. Assume a constant Cπ
∗

κ (µ, ν) <∞ such that,

dπ
∗

κ,µ = (1− ξ)µ(I − ξDπ∗

κ )−1 < Cπ
∗

κ (µ, ν)ν. (21)

Given that, we shall calculate Cπ
∗

κ′ (µ, ν) where κ′ > κ.

dπ
∗

κ′,µ = (1− ξκ′)µ(I − ξDπ∗

κ′ )−1

= (1− ξκ′)
(
κ′ − κ
1− κ

µ+
1− κ′

1− κ
µ((I − ξκDπ

κP
π)−1)

)
≤ 1− ξκ′

1− κ

(
(κ′ − κ)µ+

1− κ′

1− ξκ
Cπ
∗

κ (µ, ν)ν

)
=

1− ξκ′
1− κ

(κ′ − κ+
1− κ′

1− ξκ
Cπ
∗

κ (µ, ν)) (α∗µ+ (1− α∗)ν)
def
= Cπ

∗

κ′ (µ, ν(α))ν(α),

where we used Lemma 9 in the first line, Equation 21 in the second line, and defined α∗ = (1 +
1−κ′

(1−ξκ)(κ′−κ)C
π∗

κ (µ, ν)))−1 ∈ (0, 1) and Cπ
∗

κ′ (µ, ν(α∗)) = 1−ξκ′
1−κ (κ′ − κ + 1−κ′

1−ξκC
π∗

κ (µ, ν)). By
plugging the expressions of ξκ, ξκ′ we see that,

Cπ
∗

κ′ (µ, ν(α∗))− Cπ
∗

κ (µ, ν) =
1− ξκ′
1− κ

(κ′ − κ+ (
1− κ′

1− ξκ
− 1− κ

1− ξκ′
)Cπ

∗

κ (µ, ν))

=
1− ξκ′
1− κ

(κ′ − κ)(1− Cπ
∗

κ (µ, ν)). (22)

Since Cπ
∗

κ (µ, ν) ≥ 1 and 1−ξκ′
1−κ (κ′ − κ) > 0 we get that Cπ

∗

κ′ (µ, ν(α∗)) − Cπ∗κ (µ, ν) ≤ 0, where
the inequality is strict for Cπ

∗

κ (µ, ν) > 1. Finally, since for µ = ν it holds that ν(α∗) = (1− α∗)ν +
α∗ν = ν for, we get that Cπ

∗

κ (ν, ν) is a decreasing function of κ.

E Proof of Theorem 5

We first prove two technical lemmas.
Lemma 10. Let π be a policy, κ ∈ [0, 1], γ ∈ (0, 1) and i ∈ N\{0}. Then

(ξDπ
κP

π)i =

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+1(1− κ)iκt−(i−1)(Pπ)t+1,

where, as also given in Definition 4, Dπ
κ = (1− κγ)(I − κγPπ)−1.

Proof. First, for any x ∈ R s.t |x| < 1 and i ∈ N\{0} we have that,

(1− x)−i =

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
xt−(i−1).

Since it holds that ||γκPπ|| = γκ < 1, where || · || is the spectral norm of the matrix, we can use the
same Taylor expansion when replacing x with γκPπ . Thus,

(I − γκPπ)−i =

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
(γκ)t−(i−1)(Pπ)t−(i−1). (23)
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Since Dπ
κ = (1− κγ)(I − κγPπ)−1 and any matrix commutes with any function of itself we have

that,

(ξDπ
κP

π)i = γi(1− κ)i(Dπ
κP

π)i = γi(1− κ)i((I − κγPπ)−1)i(Pπ)i.

By using (23) and packing the terms we conclude the proof.

(ξDπ
κP

π)i = γi(1− κ)i(I − κγPπ)−i(Pπ)i

=

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+1(1− κ)iκt−(i−1)(Pπ)t+1

Lemma 11. Let κ ∈ [0, 1], γ ∈ (0, 1), n ∈ N ∪ {∞} and f : N→ R. Then

∞∑
l=0

n−1∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+l+1κt−(i−1)(1− κ)if(t+ 1 + l)

≤(1− κ)

∞∑
l=0

n−2∑
t=0

γt+l+1f(t+ 1 + l) + g(κ)(1− κ)κ

∞∑
l=0

∞∑
t=n−1

γt+l+1f(t+ 1 + l),

where g(κ) is a bounded function of κ. When n→∞ the second term vanishes.

Proof. We start by exchanging the summation indices i and t. In order to do so, we decouple the
summation to two sums. The range of the indices of the first sum is t ∈ {0, .., n − 2} and i ∈
{1, .., t+1} and the range of the indices of the second sum is t ∈ {n−1, ..,∞} and i ∈ {1, .., n−1}

∞∑
l=0

n−1∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+l+1κt−(i−1)(1− κ)if(t+ 1 + l)

=

∞∑
l=0

n−2∑
t=0

γt+l+1f(t+ 1 + l)

t+1∑
i=1

t!

(i− 1)!(t− (i− 1))!
κt−(i−1)(1− κ)i (24)

+

∞∑
l=0

∞∑
t=n−1

γt+l+1f(t+ 1 + l)

n−1∑
i=1

t!

(i− 1)!(t− (i− 1))!
κt−(i−1)(1− κ)i. (25)

Let us bound the first sum first (24),

∞∑
l=0

n−2∑
t=0

γt+l+1f(t+ 1 + l)

t+1∑
i=1

t!

(i− 1)!(t− (i− 1))!
κt−(i−1)(1− κ)i

=

∞∑
l=0

n−2∑
t=0

γt+l+1f(t+ 1 + l)

t∑
i=0

t!

i!(t− i)!
κt−i(1− κ)i+1

=(1− κ)

∞∑
l=0

n−2∑
t=0

γt+l+1f(t+ 1 + l),

where in the first line we changed the index summation i← i− 1 and in the second line we used the
binomial identity

∑t
i=0

t!
i!(t−i)!κ

t−i(1− κ)i = (1− κ+ κ)t = 1.

In order to bound the second term (25) we define the following function, g̃ : [n− 1,∞)→ R,

g̃(t)
def
=

n−2∑
i=0

t!

i!(t− i)!
κt−i(1− κ)i.

The function g̃(t) is a sum of polynomial terms multiplied by a geometric decaying term, κt. Thus, this
function is bounded from above, i.e, exists t∗ ∈ [n− 1,∞) such that g̃(t) ≤ g̃(t∗), ∀t ∈ [n− 1,∞).
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For such t∗, by construction, we have that
n−1∑
i=1

t!

(i− 1)!(t− (i− 1))!
κt−(i−1)(1− κ)i = (1− κ)

n−2∑
i=0

t!

i!(t− i))!
κt−i(1− κ)i

≤ (1− κ)

n−2∑
i=0

t∗!

i!(t∗ − i)!
κt
∗−i(1− κ)i

= (1− κ)κt
∗−(n−2)

n−2∑
i=0

t∗!

i!(t∗ − i)!
κ(n−2)−i(1− κ)i

≤ (1− κ)κ

n−2∑
i=0

t∗!

i!(t∗ − i)!
κ(n−2)−i(1− κ)i

where the last line holds since for κ ∈ [0, 1], t∗ ∈ [n − 1,∞) it holds that κt
∗−(n−2) ≤ κ. We

now define g(κ)
def
=
∑n−2
i=0

t∗!
i!(t∗−i)!κ

(n−2)−i(1− κ)i, and observe that it is a bounded function of
κ ∈ [0, 1], since it is a sum of positive powers of κ. Thus, (25) is bounded by

∞∑
l=0

∞∑
t=n−1

γt+l+1f(t+ 1 + l)

n−1∑
i=1

t!

(i− 1)!(t− (i− 1))!
κt−(i−1)(1− κ)i

≤g(κ)(1− κ)κ

∞∑
l=0

∞∑
t=n−1

γt+l+1f(t+ 1 + l)

Finally, for the case n =∞ observe we can repeat the same analysis we did for the first term (24)
without the need to decouple to two sums. Thus, for this case, the bound on the first term, with
n =∞, bounds the expression.

We are now ready to prove Theorem 5. The proof strategy is similar to the line of work in [7, 19, 11]:
Keeping track of the cumulative error and using the definition of c(i) and cπ

∗
(i), we bound the

performance loss in the µ-weighted L1 norm.

Since the policy in each iteration is an approximate κ-greedy policy (see Definition 2), it holds that
νTπkκ vπk−1 ≥ νTκv

πk−1 − δ in each iteration. Let the error vector at the i-th iteration δ̄i satisfy
νδ̄i ≤ δ. Thus,

v∗ − vπk = Tπ
∗

κ v∗ − Tπ
∗

κ vπk−1 + Tπ
∗

κ vπk−1 − vπk

= ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + Tπ

∗

κ vπk−1 − vπk

= ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + Tπ

∗

κ vπk−1 − Tπkκ vπk−1 + Tπkκ vπk−1 − vπk

≤ ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + Tπ

∗

κ vπk−1 −max
π′

Tπ
′

κ vπk−1 + δ̄i + Tπkκ vπk−1 − vπk

≤ ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + δ̄i + Tπkκ vπk−1 − vπk

= ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + δ̄i + ξDπκ

κ Pπk(vπk−1 − vπk), (26)
where we used in the second and last relations that for any policy π, and any value functions v1, v2,
Tπκ v1 − Tπκ v2 = ξDπ

κP
π(v1 − v2). This can be seen by using the definition of Tπκ (see Section 3).

Notice that
vπk−1 − vπk = Tπk−1

κ vπk−1 − vπk

≤ max
π′

Tπ
′

κ vπk−1 − vπk

≤ Tπkκ vπk−1 − vπk + δ̄i

= Tπkκ vπk−1 − Tπkκ vπk + δ̄i

= ξDπk
κ Pπk(vπk−1 − vπk) + δ̄i.
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Hence,

(I − ξDπk
κ Pπk)(vπk−1 − vπk) ≤ δ̄i, i.e.,

vπk−1 − vπk ≤ (I − ξDπk
κ Pπk)−1δ̄i. (27)

The last equation holds due to [14, Lemma 4.2], combined with the fact that
(I − ξDπk

κ Pπk)−1 =
∑∞
i=0 ξD

πk
κ Pπk ≥ 0, element-wise.

Plugging (27) into (26), we have that

v∗ − vπk ≤ ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + δ̄i + ξDπk

κ Pπk(I − ξDπk
κ Pπk)−1δ̄i

= ξDπ∗

κ Pπ
∗
(v∗ − vπk−1) + (I − ξDπk

κ Pπk)−1δ̄i,

where the second relation holds since for matrix X s.t. ‖X‖ < 1, I +X(I −X)−1 = (I −X)−1.

We thus get that the errors accumulate as follows.

v∗ − vπk ≤
k−1∑
i=0

(ξDπ∗

κ Pπ
∗
)i(I − ξDπk−i

κ Pπk−i)−1δ̄i + (ξDπ∗

κ Pπ
∗
)k(v∗ − vπ0).

We continue by multiplying both sides with µ and get

µ(v∗ − vπk) ≤
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − ξDπk−i

κ Pπk−i)−1δ̄i + ξk
Rmax

1− γ
. (28)

Using Lemma 9 with κ = 0 and renaming κ′ to κ, we have that

(I − ξDπk−i
κ Pπk−i)−1 = (1− κ)(I − γPπk−i)−1 + κI.

Plugging this relation into (28) gives

µ(v∗ − vπk) ≤
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i((1− κ)(I − γPπk−i)−1 + κI)δ̄i + ξk

Rmax

1− γ

≤ (1− κ)

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i + κ

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i + ξk

Rmax

1− γ
.

(29)

The following two lemmas provide bounds for the first two terms above. The bounds are composed
of the concentrability coefficients (see Definition 3 and Definition 4).

Lemma 12. Let κ ∈ [0, 1]. For any sequence of policies {πk−i}k−1
i=0 , optimal policy π∗, and error

vector which satisfy νδ̄i ≤ δ,

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i ≤

(
(1− κ)C(2)(µ, ν)

(1− γ)2
+
κC(1)(µ, ν)

1− γ

)
δ (30)

and

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I−γPπk−i)−1δ̄i

≤
(
k

(1− κ)C(1)(µ, ν)

1− γ
+
κC(1)(µ, ν)

1− γ
+
g(κ)(1− κ)κγkC(2,k)(µ, ν)

(1− γ)2

)
δ.

(31)
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Proof. We start with proving (30). Let π′ be an arbitrary policy. For i > k − 1, we define πk−i = π′

and vectors δ̄i s.t. νδ̄i ≤ δ .
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i ≤

∞∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i

= µ(I − γPπk)−1δ̄0 +

∞∑
i=1

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i.

(32)

For the first term in (32) we have that

µ(I − γPπk)−1δ̄0 =

∞∑
l=0

γlµ(Pπk)lδ̄0 ≤
∞∑
l=0

γlc(l)νδ̄0 ≤
∞∑
l=0

γlc(l)δ =
C(1)(µ, ν)

1− γ
δ, (33)

where for the second relation we used the definition of the sequence {c(i)}∞i=0 (see Definition 3) and
in the third relation we used νδ̄0 ≤ δ (see Definition 2).

Next, we bound the second term in (32).
∞∑
i=1

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i

=

∞∑
l=0

∞∑
i=1

γlµ(ξDπ∗

κ Pπ
∗
)i(Pπk−i)lδ̄i (34)

=

∞∑
l=0

∞∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γl+t+1κt−(i−1)(1− κ)iµ(Pπ

∗
)t+1(Pπk−i)lδ̄i

≤
∞∑
l=0

∞∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γl+t+1κt−(i−1)(1− κ)ic(t+ 1 + l)δ

≤(1− κ)

∞∑
l=0

∞∑
t=0

γl+t+1c(t+ 1 + l)δ (35)

=(1− κ)

∞∑
l=0

∞∑
t=1

γl+tc(t+ l)δ

=(1− κ)

( ∞∑
l=0

∞∑
t=1

γl+tc(t+ l) +

∞∑
l=0

γlc(l)−
∞∑
l=0

γlc(l)

)
δ

=(1− κ)

( ∞∑
l=0

∞∑
t=0

γl+tc(t+ l)−
∞∑
l=0

γlc(l)

)
δ = (1− κ)

(
C(2)(µ, ν)

(1− γ)2
− C(1)(µ, ν)

1− γ

)
δ. (36)

For the first relation we used the Taylor expansion (I − γPπk−i)−1 =
∑∞
l=0 γ

l (Pπk−i)
l
, for the

second we used Lemma 10, for the third we used the definition of the sequence {c(i)}∞i=0 and
νδ̄i ≤ δ, for the fourth we applied Lemma 11 with n = ∞ and f(·) = c(·), and for the fifth we
shifted the summation index t← t+ 1.

We bound (32) by summing the bounds in (33) and (36) to obtain the first statement of the lemma,
(30).

To prove the second statement, (31), we again split expression of interest, similarly to (32).
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i ≤ µ(I − γPπk)−1δ̄0 +

k−1∑
i=1

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i.

(37)
As in (33), the first term in (37) is bounded by

µ(I − γPπk)−1δ̄0 ≤
C(1)(µ, ν)

1− γ
δ. (38)

21



Next, we bound the second term in (37).

k−1∑
i=1

µ(ξDπ∗

κ Pπ
∗
)i(I − γPπk−i)−1δ̄i

=

∞∑
l=0

k−1∑
i=1

γlµ(ξDπ∗

κ Pπ
∗
)i(Pπk−i)lδ̄i

≤(1− κ)

∞∑
l=0

k−2∑
t=0

γt+1+lc(t+ 1 + l)δ + g(κ)(1− κ)κ

∞∑
l=0

∞∑
t=k−1

γt+1+lc(t+ 1 + l)δ

=(1− κ)

k−2∑
t=0

∞∑
l=0

γt+1+lc(t+ 1 + l)δ + g(κ)(1− κ)κγk
∞∑
l=0

∞∑
t=0

γt+lc(t+ l + k)δ

≤(k − 1)
(1− κ)C(1)(µ, ν)

1− γ
δ +

g(κ)(1− κ)κγkC(2,k)(µ, ν)

(1− γ)2
δ. (39)

In the first relation we used the Taylor expansion of (I−γPπk−i). For the second relation we perform
the same steps as from (34) to (35), where this time we used Lemma 11 with finite n = k.

Summing the terms in (38) and (39), we obtain the second statement of the lemma, (31).

Lemma 13. Let κ ∈ [0, 1]. For any sequence of policies {πk−i}k−1
i=0 , optimal policy π∗, and error

vectors which satisfy νδ̄i ≤ δ, ,
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i ≤

1− κγ
1− γ

Cπ
∗(1)

κ (µ, ν)δ (40)

and
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i ≤ k

1− κγ
1− γ

Cπ
∗

κ (µ, ν)δ. (41)

Proof. We begin proving the first statement. For i > k − 1, we define vectors δ̄i s.t. νδ̄i ≤ δ. Thus,

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i ≤ µδ̄0 +

∞∑
i=1

µ(ξDπ∗

κ Pπ
∗
)iδ̄i. (42)

For the first term in (42),

µδ̄0 ≤ c(0)νδ̄0 ≤ c(0)δ, (43)

where we used Definition 3 and then Definition 2.

For the second term in (42), we have
∞∑
i=1

µ(ξDπ∗

κ Pπ
∗
)iδ̄i

=

∞∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+1(1− κ)iκt−(i−1)µ(Pπ

∗
)t+1δ̄i

≤
∞∑
i=1

∞∑
t=i−1

t!

(i− 1)!(t− (i− 1))!
γt+1(1− κ)iκt−(i−1)cπ

∗
(t+ 1)δ

≤(1− κ)

∞∑
t=0

γt+1cπ∗(t+ 1)δ

=(1− κ)

∞∑
t=0

γtcπ∗(t)δ − (1− κ)c(0)δ =
(1− κ)Cπ

∗(1)(µ, ν)

1− γ
δ − (1− κ)c(0)δ. (44)
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For the first relation we apply Lemma 10, for the second we use the definition of {cπ∗(i)}∞i=0 and
use νδ̄i ≤ δ. For the third relation we apply Lemma 11 with n =∞, f(·) = cπ

∗
(·) and drop the l

summation.

Summing the terms in (43) and (44), we get
k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i ≤

1

1− γ

(
(1− κ)Cπ

∗(1)(µ, ν) + (1− γ)κc(0)
)
δ =

1− κγ
1− γ

Cπ
∗(1)

κ (µ, ν)δ,

where we identify Cπ
∗(1)

κ (µ, ν) to be the same expression as in Definition 4.

For the second statement of the lemma, (41), we use the identity (ξDπ∗

κ Pπ
∗
)i ≤ (I − ξDπ∗

κ Pπ
∗
)−1:

k−1∑
i=0

µ(ξDπ∗

κ Pπ
∗
)iδ̄i ≤

k−1∑
i=0

µ(I − ξDπ∗

κ Pπ
∗
)−1δ̄i

≤
k−1∑
i=0

Cπ
∗

κ (µ, ν)

1− ξ
νδ̄i ≤ k

Cπ
∗

κ (µ, ν)

1− ξ
δ = k

1− κγ
1− γ

Cπ
∗

κ (µ, ν)δ,

where the second relation holds due to the definition of Cπ
∗

κ (µ, ν).

So far, the proof went as follows. First, we expressed the cumulative error in (29) as the sum of three
terms. Bounding the first and second terms is done with Lemmas 12 and 13, respectively. Each of
those two lemmas gives bounds of two forms. These two forms correspond to the two statements in
Theorem 5. We now apply the bounds so as to obtain the first statement. Specifically, plugging (30)
and (40) into (29) gives the first statement in Theorem 5.

To obtain the second statement of Theorem 5, we apply the second form of the bounds in Lemmas 12
and 13. Specifically, we plug (31) and (41) into (29). This gives
µ(v∗ − vπk)

≤
(
k
κCπ

∗

κ (µ, ν)

1− ξ
+ k

(1− κ)2C(1)(µ, ν)

1− γ
+

(1− κ)κC(1)(µ, ν)

1− γ
+
g(κ)(1− κ)2κγkC(2,k)(µ, ν)

(1− γ)2

)
δ

+ ξk
Rmax

1− γ
.

We now carefully choose the iteration number k to make the last term smaller than δ:

k∗ =

⌈
log Rmax

δ(1−γ)

1− ξ

⌉
=

⌈
(1− κγ) log Rmax

δ(1−γ)

1− γ

⌉
. (45)

By doing so we see that ξk
∗ Rmax

1−γ < δ and obtain the second statement of the result.

F Proof of Theorem 6

Here, we merely follow the arguments of [19, Appendix A], while using the operators Tπκ instead of
Tπ and the approximate operator defined in Definition 2. As in Section E, we define the component-
wise error at the i-th iteration, δ̄i, which satisfies νδ̄i ≤ δ. We have that for all k,

v∗ − vσκ,k = Tπ
∗

κ v∗ − Tπ
∗

κ vσk−1 + Tπ
∗

κ vσk−1 − Tπkκ vσk−1

≤ ξDπ∗

κ Pπ
∗
(v∗ − vσk−1) + δ̄k.

Thus, by induction on k, we obtain:

v∗ − vσκ,k ≤
k−1∑
i=0

(ξDπ∗

κ Pπ
∗
)iδ̄i + (ξDπ∗

κ Pπ
∗
)k(v∗ − vπ0)

≤
k−1∑
i=0

(ξDπ∗

κ Pπ
∗
)iδ̄i + ξk

Rmax

1− γ

We can directly bound this term by applying Lemma 13. The two statements in that lemma lead to
the two statements in Theorem 6. Again, for the second statement, we set k as in (45).
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