A Plots of Privacy Profiles
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(a) Privacy profiles with mechanisms calibrated to
provide the same ¢ at ¢ = 0. Profile expressions
are given in Section 5 (RR), Theorem 3 (Laplace),

and Theorem 4 (Gauss).
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(b) Subsampled Gaussian mechanism. Compari- (c) Subsampled Laplace mechanism. Compari-
son between sampling without replacement (The- son between sampling without replacement (The-
orem 9) and with replacement (Theorem 10, with orem 9) and with replacement (Theorem 10, with
white-box group privacy), both with the same sub- white-box group privacy), both with the same sub-
sampled dataset sizes. sampled dataset sizes.
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(d) Subsampled Laplace mechanism. Impact of (e) Subsampled Laplace mechanism. Impact of
group-privacy effect in sampling with replacement white-box vs. black-box group-privacy in sampling
(white-box group privacy). with replacement.

Figure 1: Plots of privacy profiles. Results illustrate the notion of privacy profile and the different
subsampling bounds derived in the paper.
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B Proofs from Section 3

Proof of Theorem 2. 1t suffices to check that for any z € Z,
[(2) = &' p ()] =npa(2) — (1= Buo(2) + Bri(2))], -
Plugging this identity in the definition of D, we get the desired equality
Do (ullp') = nDa(pa||(1 = B)po + Bre) -
O

Proof of Theorem 3. Suppose x ~x z' and assume without loss of generality that y = f(z) = 0
and 4’ = f(z) = A > 0. Plugging the density of the Laplace distribution in the definition of
a-divergence we get

1 . -
D (Lap(b)||A + Lap(b)) = %/ [ — 2] g
R +

Now we observe that the quantity inside the integral above is positive if and only if |z — A| — |z| > ¢b.
Since ||z + A| — |z|| < A, we see that the divergence is zero for € > A/b. On the other hand, for
e €[0,A/b] wehave {z : |z — A| — |z| > eb} = (=00, (A — &b)/2]. Thus, we have

1 L o _leal 1 A=z es [B-et)/2
% [e b —ee 0 } dzZ% e bdz—% e b dz .
R + —o0 —0o0

Now we can compute both integrals as probabilities under the Laplace distribution:

1 A=z A—¢b
_ - = <
26/_ e" b dz=Pr {Lap(b) < ]

_1_1 eb— A
TP Ty :

—A —¢b
2

e*Pr {Lap(b) <

fe —eb— A
g P 2%

Putting these two quantities together we finally get, fore < A/b:

De- (Lap(®) | A + Lap()) = 1 — exp (; _ ;‘b)

O

Proof of Theorem 6. Let ¢ = %%, L = L%7, ¢ = ©™:%, and L = L%,". Recall that for any
non-negative random variable z one has E[z] = [~ Pr[z > t]dt. We use this to write the moment
generating function of the corresponding privacy loss random variable for s > 0 as follows:

p(s) = /000 Prlest > t]dt

o0
:/ Pr {p(z) >t1/5] dt |
0 q(z)
where z ~ u, and p and ¢ represent the densities of y and v with respect to a fixed base measure.
Next we observe the probability inside the integral above can be decomposed in terms of a divergence
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and a second integral with respect to g¢:

= Eu [Tlp > t1°q]]

- /]I[p(z) > tY°q(2)]p(2)dz

B /H[p(z) > t1/4q(2)] (p(2) —tl/sq(z))dz+t1/s/ﬂ[p(2) > t1/4q(2)]q(z)dz
= [1e) = Pz + 077 [Wp(z) > £/50(a a1z

:amwwwﬂﬁjww>#%umww.

Note the term D1, (1||1') above is not a divergence when ¢/ < 1. The integral term above can be
re-written as a probability in terms of L as follows:

/]I[P(Z) > t'/°q(2)]q(2)dz = Pr[p(z') > t'/*q(2")]
(z) _ /s
= Pr [S(Z/) > ¢t/ }
= Pr [eii > tl/s} ,

where z’ ~ p’. Thus, integrating with respect to ¢ we get an expression for ¢(s) involving two terms
that we will need to massage further:

#(s) :/ Dtl/s(ﬂ||ﬂ/)dt+/ tY/Pr [efﬁ > tl/s} dt .
0 0

To compute the second integral in the RHS above we perform the change of variables dt’ = t'/*dt,
which comes from taking ¢ = t'+1/5 /(1 + 1/s), or, equivalently, t = ((1 + 1/s)t/)"/(+1/9)_ This
allows us to introduce the moment generating function of L as follows:

e o] . oo ~
/ tY/*Pr [e_L > tl/s} dt = / Pr {e_L > ((1+ 1/5)15’)1/(5“)} dt’

0 0
:/ L AR
0 s+1
- % {ef(sH)i}
s+1
S
= 5(—s—1
Hls@( s—1)

Putting the derivations above together and substituting ¢(—s — 1) for ¢(s) we see that

#lo) = S@@+Amamwmwn

s+1

or equivalently:
P = 5+ 1) [ Dol

Now we observe that some terms in the integral above cannot be bounded using an a-divergence
between p and ¢/, e.g. for t € (0,1) the term D,1,. (p||p’) is not a divergence. Instead, using the

definition of D,1/. (u|p') we can see that these terms are equal to by 1 — /5 4+ t1/5D,_y,. (1| 1),
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where the last term is now a divergence. Thus, we split the integral in the expression for ¢(s) into
two parts and obtain

1 [e%e]
pls) = (s +1) / (1= 4t Dy () )t + (s +1) / Dy (| )dt

1 e’}
— 14 (4 1) [ Dy ()t + D) [ Dol
0 1

Finally, we can obtain the desired equation by performing a series of simple changes of variables
t' =1/t,a =t"* and a = e°:

os) =1+ (s+1) / £72715 Dy (4 )t + (s + 1) / Do (i)t
1 1

= 1st+ 1) [ (@ Do)+ a7 2D ) de

:1+s(5+1)/ (eSEDEE(MH,/)+e*<s+1>€Dea(u'Hu)) de .
0
O

Proof of Theorem 7. The result follows from a few simple observations. The first observation is that
for any coupling 7 € C(v, 1) and y € supp(v’) we have

Z Ty OM,d(y,y) (€) = Z Ty OM,d(y,supp(v')) (€)
Y’ y’

= Z Vy(SM,d(y,SUPp(V’))(E) )
y

where the first inequality follows from d(y,y’) > d(y,supp(v’)) and the fact that daqx(e) is
monotonically increasing with k. Thus the RHS of (6) is always a lower bound for the LHS. Now
let ™ be a dy-compatible coupling. Since the support of 7 only contains pairs (y,y’) such that
d(y,y") = d(y,supp(v')), we see that

Z”y,y"sM,d(y,y/)(E) = Z7Ty-,y’5M7d(y7supp(V'))(5) = Z VyO M d(y,supp(v')) (€) -
y

vy’ vy’

The result follows. O

C Proofs from Section 4

Proof of Theorem 8. Using the tools from Section 3, the analysis is quite straightforward. Given
z,x' € 24 with z ~, 2/, we write w = S)°(x) and w’ = S§)°(z) and note that TV (w,w’) = 7.
Next we define xg = x N 2’ and observe that either xg = x or o = 2’ by the definition of ~,.. Let
wo = Sp°(xo). Then the decompositions of w and w’ induced by their maximal coupling have either
w1 = wg when z = g or w] = wy when 2’ = x(. Noting that applying advanced joined convexity
in the former case leads to an additional cancellation we see that the maximum will be attained when
a’ = . In this case the distribution wy is given by wy (y U{v}) = wo(y). This observation yields an
obvious d~_-compatible coupling between w; and wy = w: first sample y’ from wy and then build
y by adding v to 3. Since every pair of datasets generated by this coupling has distance one with
respect to d~, Theorem 7 yields the bound d ¢ (') < ndrq(e). O

Proof of Theorem 9. The analysis proceeds along the lines of the previous proof. First we note
that for any z,2’ € 24 with z ~, 2/, the total variation distance between w = S"°(z) and
w' =8 (2’) is given by n = TV(w,w’) = m/n. Applying advanced joint convexity (Theorem 2)
with the decompositions w = (1 — n)wg + nwy and w’ = (1 — N)wy + Hw] given by the maximal
coupling, the analysis of D,_. (wM ||w' M) reduces to bounding the divergences D (wq M |JwoM)
and D.: (w1 M||w{M). In this case both quantities can be bounded by Jr(¢) by constructing
appropriate d~_-compatible couplings and combining (5) with Theorem 7.
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We construct the couplings as follows. Suppose v, v" € U are the elements where x and 2’ differ:
xzy =2 +1landz), =z, +1. Let zgp = xNz’. Then we have wy = S}¥°(x(). Furthermore, writing
W1 =8 (xo) we have wy(y) = &1(y N o) and wi (y) = @1(y N xo). Using these definitions we
build a coupling 7 1 between w; and w] through the following generative process: sample y, from
&1 and then let y = yo U {v} and ¢’ U {v'}. Similarly, we build a coupling 7 ¢ between w; and wy
as follows: sample yo from @w;, sample u uniformly from ¢ \ o, and then let y = yo U {v} and
y" = yo U {u}. It is obvious from these constructions that 71 ; and 7 1 are both d~_-compatible.
Plugging these observations together, we get o (¢') < (m/n)da(e). O
Proof of Theorem 10. To bound the privacy profile of the subsampled mechanism MSm on 2U with
respect to ~ we start by noting that taking x, 2’ € 2%, x ~ a/, the total variation distance between
w=38"(x)and w’ = S (x')is given by n = TV(w,w’) =1 — (1 — 1/n)™. To define appropriate
mixture components for applying the advanced joint composition property we write v and v’ for
the elements where = and 2’ differ and xg = = N 2’ for the common part between both datasets.
Then we have wy = S)Y'(xg). Furthermore, w; is the distribution obtained from sampling § from
w1 =8, (x) and building y by adding one occurrence of v to 3. Similarly, sampling ¢’ from w/
corresponds to adding v’ to a multiset sampled from S, (z').

Now we construct appropriate distance-compatible couplings. First we let 711 € P(NY x NY ) be
the distribution given by sampling y from w; as above and outputting the pair (y,y’) obtained by
replacing each v in y by ¢’. It is immediate from this construction that 7y 1 is a d~,-compatible
coupling between w and w. Furthermore, using the notation from Theorem 7 and the construction
of the maximal coupling, we see that for £ > 1:

(1) = C) = (=m0 () _ Prsuly =4 _ L (m) (1)‘“ (1 - 1)’"’“ |

n n n\ k n n

where we used wy(Y}) = 0 since wy is supported on multisets that do not include v. Therefore, the
distributions p1 = w1 M and p}j = wj M satisfy

WD (i) < 3 (7;) (i)k (1 - i)m_k Samnle) - )

k=1
On the other hand, we can build a d~ ,-compatible coupling between w; and wy by first sampling y
from wy and then replacing each occurrence of v by an element picked uniformly at random from x.
Again, this shows that D, (111]|pt0) is upper bounded by the right hand side of (7).

Therefore, we conclude that

dmr(e') < 1:2::1 (Zl) (i)k (1 - i)m_k Samr(e) -

Proof of Theorem 11. Suppose = ~, z’ with |z| = n and |2’| = n — 1. This is the worst-case
direction for the neighbouring relation like in the proof of Theorem 8. Let w = SY(x) and
w = 8¥(z'). We have n = TV(w,w’) = 1 — (1 — 1/n)™, and the factorization induced by
the maximal coupling has wy = w} = w’ and wy is given by first sampling § from S}, () and
then producing y by adding to § a copy of the element v where x and 2’ differ. This definition
of wy suggests the following coupling between w; and wy: first sample y from wy, then produce
y’ by replacing each copy of v with a element from z’ sampled independently and uniformly. By
construction we see that this coupling is d~ -compatible, so we can apply Theorem 7. Using the
same argument as in the proof of Theorem 10 we see that nw: (Vi) = (') (1/n)*(1 — 1/n)™*.
Thus, we finally get

Dot (M7 () | M7 (")) = Dee (w1 M [lwo M)

<0y wi(Yi)dak(e)
k=1

SR ey

16

O



O

Theorem 14. Let M : 2¥ — P(Z) be a mechanism with privacy profile 5 g with respect to ~.

Then the privacy profile with respect of ~ of the subsampled mechanism M’ = M7 : U - P(2)
on datasets of size n satisfies the following:

dmr(e) < vBom(e) + (1 = B) (i: Yeoam(er) + %) ;

k=1

where &' = log(1+~(ef —1)), 8 = e /e, e, = £ + log(ﬁ(% —1)), and i, = (Zj)'yk_l(l —
rr

Proof of Theorem 14. Suppose x,z' € 2% are sets of size n related by the substitution relation ~.
Letw = §p°(z) and w’ = Sp°(z’) and note that TV (w,w’) = 7. Letzg = x N2’ and v = x \ zo,
v' = 2’ \ z. In this case the factorization induced by the maximal coupling is obtained by taking
wo = S°(w0), wi(y U {v}) = wo(y), and wi(y U {v'}) = wo(y). From this factorization we see it
is easy to construct a coupling 71 ; between w; and wj that is d~_-compatible. Therefore we have
Dee (w1 M||wi M) < dpq(e).

Since we have already identified that no d~,-compatible coupling between w; and wy can exist,
we shall further decompose these distributions “by hand”. Let v, = S}'°(z¢) and note that vy,
corresponds to the distribution wy conditioned on |y| = k. Similarly, we define 7y, as the distribution
corresponding to sampling § from S;*°, (x¢) and outputting the set y obtained by adding v to §. Then
Dy, equals the distribution of wy conditioned on |y| = k. Now we write v, = Pry..,[ly| = k] =
("D = )R and Ay, = Prye, [yl = k] = (R77)7* 11 — v)"*. With these notations
we can write the decompositions wg = Zz;é YV and wy = 22:1 Y& V. Further, we observe that
the construction of 7, and v, shows there exist d~_-compatible couplings between these pairs of
distributions when 1 < k < n — 1, leading to D, (7 M ||vx M) < drq(e). To exploit this fact we
first write

n—1 n—1
Des (w1 M [[woM) = Des (Z DM + o M| yoroM + ) va)
k=1 k=1

Now we use that a-divergences can be applied to arbitrary non-negative measures, which are not
necessarily probability measures, using the same definition we have used so far. Under this relaxation,
given non-negative measures v;, v}, i = 1,2, on a measure space Z we have D, (11 + vo|v] +
vy) < Do(1|[v]) 4+ Da(vellvy), Dalavi||bve) = aDapjq(villve) for a > 0 and b > 0, and
D, (11]|0) = v1(Z). Using these properties on the decomposition above we see that

n—1

Des (i MllwoM) <>~ FgDeer (7 M |0 M) + 7,
k=1
n—1
< Akbpaler) +
k=1

where e = (7 /Fr)e® = (v/(1 —7))(n/k —1)e. O
D Proofs from Section 5

Proof of Lemma 12. We start by observing that for any z € X the distribution 4 = Mf,p(x) must
be a mixture ;. = (1 — )y + Ov; for some 6 € [0, 1]. This follows from the fact that there are only
two possibilities v and 14 for M, ,,(y) depending on whether v ¢ y or v € y. Similarly, taking
z o~y o’ weget ' = M3 (') with i/ = (1—6")v 4611 for some 8’ € [0, 1]. Assuming (without
loss of generality) 6 > 6’, we use the advanced joint convexity property of D,, to get
Deer (ullp') = 0Des (|| (1 = 6 /0)wo + (6 /6)11)
< O(1 = 0'/0)Dez (11]lv0) = (0 — 0")y(€) < Ohp(e)
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where ¢’ = log(1 + 6(e° — 1)) and 8 = ¢’ /e°, and the inequality follows from joint convexity.
Now note the inequalities above are in fact equalities when 8’ = 0, which is equivalent to the
fact v ¢ 2’ because S is a natural subsampling mechanism. Thus, observing that the function

0 s B3, (log(1 + (e — 1)/6)) is monotonically increasing, we get

sup Door (M3, (@)[IMS () = sup 0y (log(1 + (¢ —1)/6))

r~xx! r~xa vgx!

by (log(1+ (¢ = 1)/m) = nihy(e) -
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