A Technical proofs

A.1 Proof of Lemma 4.1.

Proof. Before we proceed with the main proof, we first introduce the following lemma in [7].

Lemma A.l. Let 21, ...,z be independent and identically drawn from distribution N (0, 1) and
X = (x1,...,27) " be a random vector. Suppose a function f : R” — R is Lipschitz, i.e., for any
v1,v2 € RY, there exists L such that | f(vy) — f(v2)| < L|lv1 — v2||2, then we have that
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P{IF(0) ~ BS(0)] > 1} < 20 (- )

for all ¢t > 0.

We then proceed with the proof of Lemma 4. 1 For any fixed v € R? with ||v||2 = 1, define

W=f(Z

vl mat ic/ﬂQZ)-A‘Q,

where Z € RP™*! and mat(-) is a reshape operator that reshape a pm-dimensional vector to a
p x m dimensional matrix. When Z ~ N (0, I,,,,), it is straightforward to see that the distribution

of mat (¥ 125 ) is the same as X and hence W2 has the same distribution with v T Hv. We then

col
verify that the function f, is Lipschitz with L = \/—%n where py is defined in assumption (SC). For
any vector Z1, Z5, we have
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Using Lemma A.1, we have that
t?m
IP’{|W7EW| >t} §26xp<—%) (A2)

Since W > 0 and hence EW > 0, we have
2
[(Ew2)2 —Ew] < [(EW?)'/2 + EW] - [(BW?)1/2 — EW] = Var(W).
Moreover, from (A.2) we have

Var(W) = B{ (W-EW)} = /Oo p{(W-EW)* > 2 }d(t?) < /OOo 2 exp (_%)d(g) _ %

0
and hence
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EW?)!/? —EW < =2, A3
EW?) 2 (a3)
According to (A.3), we know that W — EW| < t implies |W — (EW?)'/2| < t 4 2p2/\/m, which

gives
2

t
]P’(|W CEWDV| >t 2p3/\/%) < ]P(|W _EW| > t) < 2exp ( - 2—2‘) (Ad)
Po
for any fixed v € R? with [|v||s = 1. For large enough m, taking ¢ = 4 ¢,n;,, and apply union bound
on 1/4-covering of S™~! = {v € R™ | |lv|]|a = 1} we completes the proof. The proof for upper
bound is similar. O
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A.2 Proof of Lemma 4.3.
Proof. Before we proceed with the main proof, we first introduce the following lemma in [14].
Lemma A.2 (Lemma 1.2 in [14]). Given a Gaussian random vector Y ~ N (0, S) with Y € R™* L

for all ¢ > 2/,/m we have

[ ons m(t— %) m
]P’LH’HYH2 — trS’ > 4t||S||2} < 2exp (— 2) + 2exp ( — ?) (A.5)

We then proceed with the proof of Lemma 4.3. Denote ¢; = =; — M* Zkeq zp ~ N(0,%;) and
denote Q = [q1, ..., gm] € RP*™, we have ELQQT = G and

w2 (- Ta)- Tl = 0 X =

1 kec; kec;

m
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For any fixed v € RP with [|v||2 = 1, we have
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Each R; for j = 1,2, 3 is a deviation term and can be bounded similarly. For R3, define the random
vector Y € R™ with component Y; = UTEJ-. Using Lemma A.2 and together with assumption EC,
we obtain

]P’[|R3\ > 4tamax} < 2exp < - W) + 2exp ( - %) (A.8)

Similarly, for R, and Ry we have

]P’[\R2| >4tnmax} < 26Xp(— M) —I—Zexp(— %) (A.9)

and

m(t— %)
IP’{|R1| > 4t(omax + nmax)} < 2exp < — ) + 2exp ( — (A.10)
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Combine these three bounds, for fixed v € R? with ||v]|2 = 1, we have

m(t 2

_*/%)> +6exp<— %) (A.11)

1 -
P[—‘UTQXU’ > 8t(0max + nmax)} < 6exp ( —
m 2

Setting ¢ = 41/p/m and taking the union bound on 1/4-covering of S™~! = {v € R™ | |Jv|2 = 1}
completes the proof. O
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A.3 Proof of Lemma 4.4.

Proof. Since M (%) is the unconstrained minimizer of £(M), we have £L(M () < £(M*). Since
L(+) is strongly convex, we have

02 L(M@) = LOM*) 2 (VLM), MO = M*) + 22| MO — 27|}
We then have

2 2
MO — M| <~ (VEQM), M©) = M) < = [VLO) 5 - [M© = M|,
iz 3

and hence

N 2 . 2,/PA
IMO — e < 2 v e < 2P
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For large enough m, this error bound can be small and Lemma 2 in [28] gives

2 | MO — M| - 20pA?
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(A.12)

A.4 Proof of Theorem 4.5.

Proof. According to Lemma 4.3 and Lemma 4.4, the initialization M (©) satisfies || M (9) —M*||p < C
aslong as m > 4Cyp?/ mi. Furthermore, Lemma 4.1 shows that the objective function £(-) is strongly
convex and smooth. Therefore we apply Lemma 3 in [28] and obtain

2
22 (V(t“), V*) < (1 - ,MmingM) 2 (V(t), V*) +- KL+ Ky 2 (A.13)
5 KL Ky
where fimin = %::: —and oas = || M*|2. Define the contraction value
2
B=1-n- S Hminy < 1, (A.14)
we can iteratively apply (A.13) foreach ¢t = 1,2, ..., T and obtain
42 (V(T)7V*) < B2 (V(O)J/*) R KL+ Fp € (A.15)
1-8 KLk

which shows linear convergence up to statistical error. For large enough 7', the final error is given by
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Together with (4.6) we see that this gives exactly the same rate as the convex relaxation method (4.3).
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