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A Necessity of Linear Dependence of Communication Cost on z for True
Approximation Algorithms

In this section, we show that if one is aiming for a multiplicative approximation for the (k, z)-center,
(k, z)-median, or (k, z)-means problem, then the communication cost is at least Ω(z) bits, even if
there are only 2 machines. We show that deciding whether the optimum (k, z)-center solution has
cost 0 or not requires Ω(z) bits of communication. This holds for any combination of values for n, k
and z such that k + z ≤ n− 1. Let B = 1. The points are all in the real line R. On machine 1, there
are n− z − 2 copies of points from the set {−1,−2, · · · ,−(k − 1)}, where each one of the k − 1

points appears either
⌊
n−z−2
k−1

⌋
or
⌈
n−z−2
k−1

⌉
times. Notice that each point in the set appears at least

once in the set. Meanwhile, machine 1 has a set A of different points in [2(z + 2)], and machine 2
has a set B of different points in [2(z + 2)], and we have |A|+ |B| = z + 2. If A ∩B 6= ∅, then the
cost of the optimum solution is 0. Let e ∈ A ∩B, then we can discard all points except e from A and
B. Then we discarded exactly z points and the remaining set of points are at k− 1 + 1 = k locations.
On the other hand, if A ∩ B = ∅, then the cost of the optimum solution is not 0. Thus deciding
whether the cost is 0 or not requires us to decide if A ∩B = ∅, which is exactly the set disjointness
problem. This requires a communication cost of Ω(z) between machine 1 and machine 21.

B Dealing with Various Issues of the Algorithm for (k, z)-Center

In this section, we show how to handle various issues that our (k, z)-center algorithm might face.

When dmin and dmax are not given. We can remove the assumption that dmin and dmax are given
to us. Let dmin,i and dmax,i be the minimum and maximum non-zero pairwise distances between
points in Pi. The crucial observation is that running aggregating on Pi for L < dmin,i is the same as
running it for L = 0, and running it for L > dmax,i is the same as running it for L = dmax,i. Thus,
machine i only needs to considerL values that are integer powers of 1+ε inside [dmin,i, (1+ε)dmax,i),
or 0, and send results for these L values. Since dmin,i ≥ dmin and dmax,i ≥ lmax, the number of such

L values is at most O
(

log ∆
ε

)
. Also notice that the data points sent from machine i to the coordinator

are all generated from Pi. Thus, the aspect ratio for the union of all points received by the coordinator,
is at most ∆. This can guarantee that the coordinator only needs to use O(log log ∆

ε ) iterations in the
binary search step in Round 4.

When ∆ is super big. There are many ways to handle the case when ∆ is super-large. In many
applications, we know the nature of the dataset and have a reasonable guess on L∗. In other
applications, we may be only interested in the case where L∗ ∈ [A,B]: we are happy with any
clustering of cost less than A and any clustering of cost more than B is meaningless. In these

1This is a well-known result in communication complexity theory, see e.g. [8]
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applications where we have inside information about the dataset, the number of guesses can be much
smaller. Finally, if we allow more rounds in our algorithm, we can use binary search for the whole
algorithm dist-kzc, not just inside Round 4. We only need to run the algorithm for O

(
log log ∆

ε

)
iterations; this will increase the number of rounds to O

(
log log ∆

ε

)
.

Handling the Quadratic Running Time of Round 1 on Machine i. In Round 1 of the algorithm
dist-kzc, each machine i needs to run aggregating on ni = |Pi| points, leading to a running time of
order O(n2

i ). In cases where ni is large, the algorithm might be slow. We can decrease the running
time, at the price of increasing the communication cost and the running time on the coordinator. We
view each i ∈ [m] as a collection of ti ≥ 1 sub-machines, for some integer ti ∈ [1, ni]. Then, we
run dist-kzc on the set of

∑
i∈[m] ti sub-machines, instead of the original set of m machines. The

communication cost of the algorithm dist-kzc increases to O
(
k
∑
i∈[m] ti

ε · log ∆
ε

)
, and the running

time on each machine i decreases to O
(
ni
ti

)2 · ti · log ∆
ε

)
= O

(
n2
i

ti
· log ∆

ε

)
, and the running time

of the algorithm for the coordinator becomes O
((

k
∑
i∈[m] ti

ε

)2

· log log ∆
ε

)
. Each machine i can

choose a ti so that the O
(
n2
i

ti
· log ∆

ε

)
-time algorithm of Round 1 terminates in acceptable amount of

time.

C Distributed Algorithms (k, z)-Median/Means

In this section, we give our distributed algorithm for the (k, z)-median/means problems in Euclidean
metrics. Let m, k, z, ε, n, P ⊆ RD and {Pi}i∈[m] be as defined in the problem setting. Let δ > 0 be
the confidence parameter; i.e, our algorithm needs to succeed with probability 1− δ. Also, we define
a parameter ` ∈ {1, 2} to indicate whether the problem we are considering is (k, z)-median (` = 1)
or (k, z)-means (` = 2).

Recall that dmin and dmax are respectively the minimum and maximum non-zero pairwise distance
between points in P . It is not hard to see that the optimum solution to the instance has cost either 0
or at least d`min/`. For a technical reason, we can redefine d(p, q) as follows for every p, q ∈ RD:

d(p, q) =

{
0 if ‖p− q‖2 = 0

min
{

max{‖p− q‖, εdmin/(2n)}, 2dmax

}
otherwise

.

That is, we truncate distances below at εdmin/(2n), and above at 2dmax. It is easy to see that the
problem w.r.t the new metric is equivalent to the original one up to a multiplicative factor of 1 + ε. In
the new instance, we have either d(p, q) = 0 or d(p, q) ∈ [εdmin/(2n), 2dmax].

Given an integer z′ ∈ [0, n) and a set C of k centers, we define

costz′(C) := min
P ′⊆P :|P ′|=n−z′

∑
p∈P ′

d`(p, C)

to be the cost of the solution C to the (k, z)-median/mean instance defined by P, d and z′. In the
above definition, we remove z′ outliers and consider the cost incurred by the n − z′ non-outliers.
Notice the set P ′ that minimizes the cost is the set of n− z′ points in P that are closest to C.

For some technical reason, we need to allow z′ to take real values in [0, n). In this case, we define

costz′(C) := min
w′∈[0,1]P :w′(P )=n−z′

∑
p∈P

w′pd
`(p, C).

Given a set C of k centers, the optimum w′ can be obtained in a greedy manner: assign 1 to the
n−dz′e points in P that are closest to C, assign dz′e− z′ to the point in P that is the n−dz′e+ 1-th
closest to C, and assign 0 to the remaining points.

C.1 The (k, z)-Median/Means Problem Reformulated

In this section, we reformulate the (k, z)-median/means problems in a way that will be useful for
our algorithm design. Given a threshold L ≥ 0, we define dL(p, q) = min{d(p, q), L} for every two
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points p, q ∈ RD. In other words, dL is the metric d with distances truncated at L. The following
crucial lemma gives the reformulations of k-median/means problems:
Lemma C.1. For any real number z′ ∈ [0, n), and any set C of k centers, we have

costz′(C) = sup
L≥0

(∑
p∈P

d`L(p, C)− z′L`
)
. (1)

Moreover, the superior is achieved when L is the (n − bz′c)-th smallest number in the multi-set
{d(p, C) : p ∈ P}.

Proof. Let L̄ be the (n−bz′c)-th smallest number in the multi-set {d(p, C) : p ∈ P}. Then it can be
seen that costz′(C) =

∑
p∈P d

`
L̄

(p, C)− z′L̄`. Indeed, costz′(C) is the sum of the n− z′ smallest
numbers in S := {d`(p, C) : p ∈ P}. (When n− z′ is not an integer, then we take a fraction of the
last number.) To compute the quantity on the right side, we truncate the numbers in S at L̄`, and then
take the sum of the truncated numbers minus z′L̄`. Since L̄` is the (n− bz′c)-th smallest number in
S, this quantity is exactly costz′(C).

It remains to prove that
∑
p∈P d

`
L(p, C)− z′L` attains its maximum value at L = L̄. First consider

any L < L̄, and define P ′ =
{
p ∈ P |L < d(p, C) < L̄

}
, and P ′′ =

{
p ∈ P : d(p, C) ≥ L̄

}
. By

the definition of L̄, we have |P ′′| ≥ bz′c+ 1 > z′. Then, we have∑
p∈P

d`L̄(p, C)− z′L̄`
−

∑
p∈P

d`L(p, C)− z′L`


=
∑
p∈P ′

(d`(p, C)− L`) + |P ′′|(L̄` − L`)− z′(L̄` − L`) ≥
∑
p∈P ′

(d`(p, C)− L`) ≥ 0.

Now consider any L > L̄ and define P ′ =
{
p ∈ P : L̄ < d(p, C) < L

}
and P ′′ =

{p ∈ P : d(p, C) ≥ L}. By the definition of L̄, we have |P ′ ∪ P ′′| =
∣∣{p ∈ P : d(p, C) > L̄

}∣∣ ≤
bz′c ≤ z′. Then, we have∑

p∈P
dL̄`(p, C)− z′L̄`

−
∑
p∈P

d`L(p, C)− z′L`


= −
∑
p∈P ′

(d`(p, C)− L̄`)− |P ′′|(L` − L̄`) + z′(L` − L̄`)

≥ −|P ′|(L` − L̄`)− |P ′′|(L` − L̄`) + z′(L` − L̄`) ≥ 0.

This finishes the proof of the lemma.

With the above lemma, the (k, z)-median/means problem becomes finding a set of k centers C ⊆ RD
so as to minimize supL≥0 (

∑
p∈P d

`
L(p, C)−zL`). To get a handle on the problem, we first discretize

the value space for L. Formally, we only allow L to take values in

L := {0} ∪
({

(1 + ε)t : t ∈ Z
}
∩ (εdmin/(2(1 + ε)n), 2dmax]

)
.

Then, we have |L| = O
(

log(∆n/ε)
ε

)
. We define cost′z′(C) as in (1), except that we only consider L

values in L. That is, for every z′ ∈ [0, n) and a set C of k centers, we define

cost′z′(C) := sup
L∈L

∑
p∈P

d`L(p, C)− z′L`
 . (2)

For a fixed z′ and C, we have cost′z′(C) ≤ costz′(C), since the supreme is taken over a subset of L
values in the definition of cost′z′(C). Now we show the other direction of the inequality:
Lemma C.2. For every set C of k centers, and any z′ ∈ [0, n], we have

cost(1+ε)`z′(C) ≤ (1 + ε)`cost′z′(C). (3)
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Proof. By Lemma C.1, we have that cost(1+ε)`z′(C) = supL≥0

(∑
p∈P d

`
L(p, C)− (1 + ε)`z′L`

)
.

Let L̄ be the L ∈ R that achieves the maximum value. Thus, cost(1+ε)`z′(C) =
∑
p∈P d

`
L̄

(p, C)−
(1 + ε)`z′L̄`. By Lemma C.1 and the new definition of the metric d, we have L̄ = 0 or L̄ ∈
[εdmin/(2n), 2dmax]. Thus there is always a L′ ∈ L such that L̄ ∈ [L′, (1 + ε)L′).

cost(1+ε)`z′(C) =
∑
p∈P

d`L̄(p, C)− (1 + ε)`z′L̄`

≤ (1 + ε)`
∑
p∈P

d`L′(p, C)− (1 + ε)`z′L′` ≤ (1 + ε)`cost′z′(C).

The first inequality is by L′ ≤ L̄ < (1 + ε)L′ and the second inequality is by the definition of
cost′z′(C) and the fact that L′ ∈ L.

The lemma allows us to focus on the new objective function cost′z̃(C) for some suitably defined z̃.

C.2 Distributed Algorithm for the Reformulated Problem via ε-Coresets

An important notion that has been used to design efficient algorithms for k-median/means in Euclidean
space is the ε-coreset. Roughly speaking, it is a weighted set of points that approximates the given set
P well. Formally,

Definition C.3. A weighted set (Q,w) of points is an ε-coreset for P ′ w.r.t. distance d′, if for every
set C ⊆ RD of k centers, we have∑

q∈Q
wqd

′`(q, C)

/∑
p∈P ′

d′`(p, C)

 ∈ [1− ε, 1 + ε].

The following theorem from [2] gives a distributed algorithm to construct ε-coresets for the points P
and a truncated metric dL:

Theorem C.4. [2] Given δ > 0, ε > 0, L ≥ 0, there is an 2-round distributed algorithm
that outputs an ε-coreset (Q,w) of P w.r.t distance dL, with probability at least 1 − δ. The
size of the coreset is at most Φ, where Φ = O

(
1
ε2 (kD + log 1

δ ) +mk
)

for k-median, and
Φ = O

(
1
ε4 (kD + log 1

δ ) +mk log mk
δ

)
for k-means. The communication complexity of the al-

gorithm is O(DΦ).

The correspondent theorem in [2] only considers the original Euclidean metric ‖ · − · ‖2. In our
definition of dL, we truncated distances below at ε · dmin/(2n), and then above at L. But it is easy to
extend their theorem so that it works for the truncated metrics, since all we need is that the metric has
O(D) “pseudo-dimension” (defined in [2]). Truncating the metric only change the pseudo-dimension
by an additive constant. From now on, let Φ be the upper bound on the size of the ε-coreset in
Theorem C.4.

With Theorem C.4 in hand, it is straightforward to give our algorithm for (k, z)-median/means. For
all L ∈ L, we run in parallel the 2-round distributed algorithm in Theorem C.4 with δ scaled down
by a factor of |L| to obtain a ε-coreset (QL, wL). The communication cost of the algorithm is then
ΦD · log(n∆/ε)

ε .

Let z̃ = (1+ε)2z
1−ε . We would like to find a set C̃ of k points that minimizes

supL∈L

(
1

1−ε
∑
q∈QL wqd

`
L(q, C̃)− z̃L`

)
. However, it is not even clear whether the optimum

C̃ can be represented using finite number of bits or not. Instead, the coordinator will output a set
C̃ ⊆ RD of k centers such that for every set C∗ ⊆ RD of k centers, we have

sup
L∈L

 1

1− ε
∑
q∈QL

wqd
`
L(q, C̃)− z̃L`

 ≤ sup
L∈L

1 + ε

1− ε
∑
q∈QL

wqd
`
L(q, C∗)− z̃L`

 . (4)
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The extra (1 + ε) factor on the right-side allows us to partition the Euclidean space into finite number

of cells. This can be done by partitioning the space into O
(

log(∆n/ε)
ε

)|L|Φ
cells so that all points

in a cell have similar respective distances to all points in
⋃
L∈LQL. So, we can choose an arbitrary

representative point from each cell, and then enumerate all sets C̃ of k representatives and output the
one with the minimum supL∈L

(
1

1−ε
∑
q∈QL wqd

`
L(q, C̃)− z̃L`

)
. The running time of the algorithm

can be bounded by exp
(

Φ, k, |L|, D, log
(

log(n∆/ε)
ε

))
= exp

(
poly

(
1
ε , k,D,m, log 1

δ , log ∆
))

.

C.3 Analysis of the algorithm

We now show that the algorithm gives a (1 +O(ε), 1 +O(ε))-approximation algorithm to the (k, z)-
median/means problem. With probability at least 1 − δ, for every L, the weighted set (QL, wL)
is an ε-corset for P w.r.t metric dL. Let C∗ be the optimal set of centers for the original (k, z)-
median/means problem. Then, for every z′ ∈ [0, n], we have

cost′z̃(C̃)

= sup
L∈L

∑
p∈P

d`L(p, C̃)− z̃L`
 ≤ sup

L∈L

 1

1− ε
∑
q∈QL

wqd
`
L(q, C̃)− z̃L`


≤ sup

L∈L

1 + ε

1− ε
∑
q∈QL

wqd
`
L(q, C∗)− z̃L`

 ≤ sup
L∈L

 (1 + ε)2

1− ε
∑
p∈P

d`L(p, C∗)− z̃L`


=
(1 + ε)2

1− ε sup
L∈L

∑
p∈P

d`L(p, C∗)− zL`
 =

(1 + ε)2

1− ε cost′z(C
∗).

The first and the third inequalities are by the definition of ε-coreset, while the second inequality is by
(4). Then with Lemma C.2, we know that

cost (1+ε)`+2

1−ε z
(C̃) = cost(1+ε)`z̃(C̃) ≤ (1 + ε)`cost′z̃(C̃)

≤ (1 + ε)`+2

1− ε cost′z(C
∗) ≤ (1 + ε)`+2

1− ε costz(C
∗).

So, C̃ is a
(

(1+ε)`+2

1−ε , (1+ε)`+2

1−ε

)
= (1 +O(ε), 1 +O(ε))-approximate solution. We can scale down

the input ε by a constant factor to obtain a (1 + ε, 1 + ε)-approximation.

As we mentioned, the running time of the algorithm for the central coordinator is exponential in
1
ε , k,D,m, log 1

δ and log ∆. For each machine i, the running time in the algorithm of [2] is dominated
by the time to compute an O(1)-approximation for the k-median/k-means problem for Pi, which is
polynomial in ni and D.

D Complete Experiment Results

D.1 k-Center Clustering with Outliers

We evaluate the performance of our (k, z)-center algorithm (Algorithm 3) on several real-world
datasets, which are summarized in Table 1. In the experiments we compare dist-kzc with many other
k-center methods, including two centralized methods (greedy [9] and kzc [3] and four distributed
methods (random-random, random-kzc, MKCWM [12], and GLZ [6]). The greedy method has a
2-approximation ratio in the no-outlier scenario, but doesn’t take outliers into account. The random-
random and random-kzc methods serves as two baselines: random-random randomly sample
k+z points on each machine, then further randomly choose k points from the totalm(k+z) sampled
points as final cluster centers; random-kzc is similar to random-random, except that it chooses the
final k centers by the kzc method. The MKCWM and GLZ are the state-of-art distributed k-center
algorithms that handle outliers. For each parameter setting the experiment is repeated for 5 runs and
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the average result is reported. Note the three distributed baseline methods random-random, random-
kzc, and MKCWM all have the same communication cost md(k + z), while GLZ’s communication
cost is Õ(mk +m/ε). All methods are implemented in Python and the experiments are conducted
on a 2-core 2.7 GHz Intel Core i5 laptop.

Name Size: n Dimension: B

spambase2 4,601 57
parkinsons3 5,875 16

pendigits2 10,992 16
letter2 20,000 16

skin2 245,057 3
covertype2 581,012 10

gas2 928,991 10
power2 2,049,280 7

Table 1: Clustering datasets used for evaluation

The experiments consist of two parts: In the first part we compare our algorithms with the two
centralized methods. This part is conducted only for the 4 smaller datasets (spambase, parkinsons,
pendigits, and letter), on which centralized methods can finish in an acceptable time. In the second part
we compare our algorithms with other distributed methods on the 4 larger datasets (skin, covertype,
gas, and power).

Distributed v.s. Centralized: Figure 1 and Figure 2 show the results on the four smaller datasets.
Figure 1 demonstrates how the objective value and communication cost change with z when k is fixed
to 20. Our algorithm dist-kzc always achieve comparable objective with other distributed baselines.
On datasets spambase and parkinsons, the objective value even matches the best centralized method
(kzc). When it comes to communication cost, dist-kzc shows a clear advantage over random-random,
random-kzc, and MKCWM, which matches our theoretical results.

Figure 2 depicts the performance with respect to different value of k when z is fixed to 256. dist-kzc
still achieves similar (or better) objective values among all distributed methods. But we can see
that when k increases, the communication cost of dist-kzc (ε = 0.1) approaches those of other
distributed methods. Recall that the communication cost of dist-kzc is Õ(mk/ε) which can be similar
to O(m(k + z)) when z and k/ε are in the same order. If we choose a large value of ε = 0.99, the
communication cost of dist-kzc becomes much stable, while the objective value is only slightly worse.
This suggests that in practice we can choose a relatively large ε to obtain small communication cost.

We want to remind the readers that the approximation ratio of dist-kzc holds for removing (1 + ε)z
outliers, while in the experiments the objective is computed by removing only z outliers. This
indicates that dist-kzc may have better performance than what is predicted theoretically.

Large scale: This part contains experiment results on the four large datasets: skin, covertype, gas,
and power. The GLZ method needs solving many local (k, z′)-center instances, which is too slow to
finish on these large datasets. Hence here we use its variant provided by [6], denoted as GLZ-z. GLZ-
z works similar as GLZ, but avoids solving (k, z′)-center locally on each machine by transmitting
Õ(mk + z) data to the coordinator. So GLZ-z has a higher communication cost than GLZ, but it’s
still much better than MKCWM which has a O(m(k + z)) communication cost.

Similar to the previous part, Figure 3 and Figure 4 show results for varying z and k. Our method still
achieves comparable objective value with the best distributed baselines. The communication cost of
our algorithm is always much smaller than MKCWM, and matches that of GLZ-z. This advantage is
more obvious with bigger z, but here to make all the baselines terminate in acceptable times we only
use z ∼ √n.

2 The UCI data repository [10]
3[13]
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Figure 1: Centralized vs. Distributed, with varying z and fixed k = 20,m = 5.
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Figure 2: Centralized vs. Distributed, with varying k and fixed z = 256,m = 5.
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Figure 3: Large scale, with varying z
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Figure 4: Large scale, with varying k

D.2 k-Means Clustering with Outliers

The centralized solver: We test our distributed k-means algorithm proposed in section C. As we
described, the algorithm requires solving a min-max clustering problem on the coordinator. Formally,
given a set of datasets Q1, . . . , QM , each equipped with its own metric d1, . . . , dM , the goal is to
find a center set C minimizing the maximum cost over all M datasets:

min
C:|C|=k

max
i∈[M ]

∑
p∈Qi

dli(p,Qi) (5)

where l = 1, 2 corresponding to the k-median or k-means objective respectively.

Although we don’t know any practical algorithm for such min-max clustering problem, there exists
some results addressing a simpler form of the min-max k-median problem: Suppose there’re only
N possible locations for selecting the center set F (i.e., C ⊂ V for some |V | = N ), and every
dataset Qi has the same metric d, then Anthony et al. [1] shows that a simple reverse-greedy method
achieves O(logN + logM)-approximation for the min-max k-median problem in this special case.
We adapt their method to solve our min-max k-means problem in the experiment. For completeness,
the algorithm is listed below:

Algorithm D.1 reverse-greedy (k, {(Qi, di)}Mi=1, B)[1]

1: C1 ← ⋃M
i=1Qi, w

1
i ←− 1 for all i ∈ [M ];

2: for t← 1 to N − k do
3: For every v ∈ F t and i ∈ [M ], let δti(v)←∑

p∈Qi(d
2
i (p, C

t \ {v})− d2
i (p, C

t))

4: Ĉt ← {v ∈ Ct|∀i ∈ [M ], δti(v) ≤ B/2}
5: vt ← arg minv∈Ĉt

∑M
i=1 w

t
i · δti(v)

6: For all i ∈ [M ], let wt+1
i ← wti

(
1 + 1

B

)δti(vt)
7: return CN−k+1

Roughly speaking, the algorithm starts with C being the set of all points, and iteratively remove
points in C until it shrinks to size k. In each iteration the algorithm removes from C the point that
incurs the least weighted total cost increase. However, because our problem is more general than that
in [1], we don’t know whether their approximation guarantee for Algorithm D.1 still holds here.

Algorithms: We compare our implementation with some other algorithms for the k-means/(k, z)-
means problem, including two centralized ones and two distributed ones: k-means [11], the classical
Lloyd’s algorithm; k-means−− [4], like k-means, but uses some heuristics to handle outliers;
BEL [2], the distributed k-means algorithm based on coreset; and CAZ [5], a recently proposed

8



distributed (k, z)-means algorithm. The BEL and CAZ algorithms both belong to the two-level
clustering framework[7]: first construct a local summary on each machine and aggregate them on
the coordinator, then the coordinator conduct a centralized clustering over the aggregated summaries
to get the final result. But the main focus of BEL and CAZ is how to construct local summary,
and they don’t specify the actual coordinator solver used. In the experiment we use k-means and
k-means−− as the centralized solver for BEL and CAZ respectively. All methods are implemented
in Python and the experiments are conducted on a 2-core 2.7 GHz Intel Core i5 laptop.

Datasets: The experiment is conducted on one synthesized dataset and three real-world datasets.
The real-world datasets are spambase, parkinsons, and pendigits (see Table 1). Unlike the k-center
case, the outliers in the original dataset are unable to significantly affect the objective value. Thus to
make the algorithm’s effect clearer, we manually add 500 outlier points to each of the three dataset.
The synthesized dataset is sampled from a mixture of Gaussian model, of which the parameters are
also randomly generated; specifically, we sample 10000 points in total from 4 different Gaussian
distributions in R5, and manually add another 500 outliers to the dataset.

Parameter setting: For each dataset, we fix k and vary z. On the three real-world datasets, k is set
to be 10 and z varies from 25 to 211; on the synthesized dataset, k is set to be 4 and z ranges from
26 to 210. The number of machines are fixed to 5 for all 4 datasets. Throughout the experiment,
we use ε = 0.3 as the error parameter for our algorithm. We measure how the objective value and
communication cost (for distributed methods only) changes with z. But different from the setting in
Section D.1, here we compute the cost of our method by removing (1 + ε)z outliers to match our
theory result. (In this sense, the comparison is “more fair” for us than in Section D.1)

Another issue in applying our (k, z)-means algorithm is the choice of appropriate coreset size. Unlike
the result for our (k, z)-center algorithm, we only have an asymptotic estimation for the coreset size,
which is not so instructive in practice. Therefore, in the experiment we hand-pick the coreset size by
some heuristics: when the value of the error parameter ε is given, we can compute the total number
of different threshold distance that will be tried (i.e., |L|). Then we choose the coreset size to be
max

{
10k, n

10m|L|

}
. So each coreset contains at least 10k samples, and when n� km|L|, we allow

the total size to be as large as n/10.
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Figure 5: Comparison of the our distributed (k, z)-means implementation with other dis-
tributed/centralized methods. The first row is objective value, and the second is communication
cost.

Experiment results: Figure 5 shows the experiment result: we can see that our algorithm performs
surprisingly well in terms of objective value, often achieving the lowest cost among all the methods.
The effect of outliers is most clearly revealed on the synthesized data, where BEL and k-means
perform significantly worse than others. In particular, although we remove εz more outliers when
calculating the cost for our method, it’s still much better than BEL even if compared at different z:
consider our method’s cost at z = (1 + ε)27 = 1.3 · 27 with BEL’s at z = 28.
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The communication cost of our method doesn’t change with z, since the way we decide the coreset
size makes it fixed. BEL’s communication cost is also not affected by z, as it doesn’t deal with
outliers. In contrast, CAZ’s communication is in the order of O(mk log n+ z), which is reflected in
the figure as it grows linearly in z. Although our centralized solver uses some heuristics and thus
doesn’t have provable guarantees, the experiment results suggest that our coresets construction indeed
preserves the outliers information while being independent of z.
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