
Recurrent World Models Facilitate Policy Evolution

David Ha
Google Brain
Tokyo, Japan

hadavid@google.com

Jürgen Schmidhuber
NNAISENSE

The Swiss AI Lab, IDSIA (USI & SUPSI)
juergen@idsia.ch

Abstract

A generative recurrent neural network is quickly trained in an unsupervised manner
to model popular reinforcement learning environments through compressed spatio-
temporal representations. The world model’s extracted features are fed into compact
and simple policies trained by evolution, achieving state of the art results in various
environments. We also train our agent entirely inside of an environment generated
by its own internal world model, and transfer this policy back into the actual
environment. Interactive version of paper: https://worldmodels.github.io

1 Introduction

Humans develop a mental model of the world based on what they are able to perceive with their
limited senses, learning abstract representations of both spatial and temporal aspects of sensory inputs.
For instance, we are able to observe a scene and remember an abstract description thereof [7, 67]. Our
decisions and actions are influenced by our internal predictive model. For example, what we perceive
at any given moment seems to be governed by our predictions of the future [59, 52]. One way of
understanding the predictive model inside our brains is that it might not simply be about predicting
the future in general, but predicting future sensory data given our current motor actions [38, 48]. We
are able to instinctively act on this predictive model and perform fast reflexive behaviours when we
face danger [55], without the need to consciously plan out a course of action [52].

For many reinforcement learning (RL) problems [37, 96, 106], an artificial RL agent may also benefit
from a predictive model (M) of the future [104, 95] (model-based RL). The backpropagation algorithm
[50, 39, 103] can be used to train a large M in form of a neural network (NN). In partially observable
environments, we can implement M through a recurrent neural network (RNN) [74, 75, 78, 49] to
allow for better predictions based on memories of previous observation sequences.

Figure 1: We build probabilistic generative models of OpenAI Gym [5] environments. These models
can mimic the actual environments (left). We test trained policies in the actual environments (right).

In fact, our M will be a large RNN that learns to predict the future given the past in an unsupervised
manner. M’s internal representations of memories of past observations and actions are perceived and
exploited by another NN called the controller (C) which learns through RL to perform some task
without a teacher. A small and simple C limits C’s credit assignment problem to a comparatively
small search space, without sacrificing the capacity and expressiveness of the large and complex M.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://worldmodels.github.io


We combine several key concepts from a series of papers from 1990–2015 on RNN-based world
models and controllers [74, 75, 78, 76, 83] with more recent tools from probabilistic modelling, and
present a simplified approach to test some of those key concepts in modern RL environments [5].
Experiments show that our approach can be used to solve a challenging race car navigation from
pixels task that previously has not been solved using more traditional methods.

Most existing model-based RL approaches learn a model of the RL environment, but still train on the
actual environment. Here, we also explore fully replacing an actual RL environment with a generated
one, training our agent’s controller C only inside of the environment generated by its own internal
world model M, and transfer this policy back into the actual environment.

To overcome the problem of an agent exploiting imperfections of the generated environments,
we adjust a temperatureparameter of M to control the amount of uncertainty of the generated
environments. We train C inside of a noisier and more uncertain version of its generated environment,
and demonstrate that this approach helps prevent C from taking advantage of the imperfections of M.
We will also discuss other related works in the model-based RL literature that share similar ideas of
learning a dynamics model and training an agent using this model.

2 Agent Model

Our simple model is inspired by our own cognitive system. Our agent has a visual sensory component
V that compresses what it sees into a small representative code. It also has a memory component M
that makes predictions about future codes based on historical information. Finally, our agent has a
decision-making component C that decides what actions to take based only on the representations
created by its vision and memory components.

Figure 2: Flow diagram showing how V, M, and C interacts with the environment (left).
Pseudocode for how our agent model is used in the OpenAI Gym [5] environment (right).

Let the agent’s life span be defined as a sequence of time steps, t = 1 ; 2; : : : ; tdone. Let Nz , Na , Nh
be positive integer constants. The environment provides our agent with a high dimensional input
observation at each time step t . This input is usually a 2D image frame that is part of a video sequence.
The role of V is to learn an abstract, compressed representation of each observed input at each time
step. Here, we use a Variational Autoencoder (VAE) [42, 71] as V to compress an image observed
at time step t into a latent vector zt 2 RN z , with Nz being a hyperparameter. While V’s role is
to compress what the agent sees at each time step, we also want to compress what happens over
time. The RNN M serves as a predictive model of future zt vectors that V is expected to produce.
Since many complex environments are stochastic in nature, we train our RNN to output a probability
density function p(zt ) instead of a deterministic prediction of zt .

The agent takes an action at 2 RN a at time t , where Na is the dimension of the action space. In
our approach, we approximate p(zt ) as a mixture of Gaussian distribution, and train M to output the
probability distribution of the next latent vector zt +1 given the current and past information made
available to it. More specifically, the RNN, with Nh hidden units, will model P(zt +1 j at ; zt ; ht ),
where ht 2 RN h is the hidden state of the RNN at time step t . During sampling, we can adjust a
real-valued temperatureparameter � to control model uncertainty, as done in previous work [28]. We
will find that adjusting � to be useful for training our controller later on. This approach is known as a
Mixture Density Network [3] combined with an RNN (MDN-RNN) [24], and has been applied in the
past for sequence generation problems such as generating handwriting [24, 6] and sketches [28].

2
























