
Non-metric Similarity Graphs for
Maximum Inner Product Search

Stanislav Morozov
Yandex,

Lomonosov Moscow State University
stanis-morozov@yandex.ru

Artem Babenko
Yandex,

National Research University
Higher School of Economics

artem.babenko@phystech.edu

Abstract

In this paper we address the problem of Maximum Inner Product Search (MIPS)
that is currently the computational bottleneck in a large number of machine learning
applications. While being similar to the nearest neighbor search (NNS), the MIPS
problem was shown to be more challenging, as the inner product is not a proper
metric function. We propose to solve the MIPS problem with the usage of similarity
graphs, i.e., graphs where each vertex is connected to the vertices that are the most
similar in terms of some similarity function. Originally, the framework of similarity
graphs was proposed for metric spaces and in this paper we naturally extend it to
the non-metric MIPS scenario. We demonstrate that, unlike existing approaches,
similarity graphs do not require any data transformation to reduce MIPS to the
NNS problem and should be used for the original data. Moreover, we explain why
such a reduction is detrimental for similarity graphs. By an extensive comparison
to the existing approaches, we show that the proposed method is a game-changer
in terms of the runtime/accuracy trade-off for the MIPS problem.

1 Introduction

The Maximum Inner Product Search (MIPS) problem has recently received increased attention from
different research communities. The machine learning community has been especially active on this
subject, as MIPS arises in a number of important machine learning tasks such as efficient Bayesian
inference[1, 2], memory networks training[3], dialog agents[4], reinforcement learning[5]. The MIPS
problem formulates as follows. Given the large database of vectors X = {xi ∈ Rd|i = 1, . . . , n}
and a query vector q ∈ Rd, we need to find an index j such that

〈xj , q〉 ≥ 〈xi, q〉 = xTi q, i 6= j (1)

In practice we often need K > 1 vectors that provide the largest inner products and the top-K MIPS
problem is considered.

For large-scale databases the sequential scan with the O(nd) complexity is not feasible, and the
efficient approximate methods are required. The current studies on efficient MIPS can be roughly
divided into two groups. The methods from the first group [6, 7, 8], which are probably the more pop-
ular in the machine learning community, reduce MIPS to the NNS problem. They typically transform
the database and query vectors and then search the neighbors via traditional NNS structures, e.g.,
LSH[7] or partition trees[6]. The second group includes the methods that filter out the unpromising
database vectors based on inner product upper bounds, like the Cauchy-Schwarz inequality[9, 10].

In this work we introduce a new research direction for the MIPS problem. We propose to employ
the similarity graphs framework that was recently shown to provide the exceptional performance for
the nearest neighbor search. In this framework the database is represented as a graph, where each

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

vertex corresponds to a database vector. If two vertices i and j are connected by an edge that means
that the corresponding database vectors xi and xj are close in terms of some metric function. The
neighbor search for a query q is performed via graph exploration: on each search step, the query
moves from the current vertex to one of adjacent vertex, corresponding to a vector, which is the
closest to the query. The search terminates when the query reaches a local minimum. To the best of
our knowledge, we are the first who expands similarity graphs on the MIPS territory with non-metric
similarity function. We summarize the main contributions of this paper below:

1. We provide the theoretical analysis to justify the use of similarity graphs for inner product
similarity function.

2. We demonstrate both theoretically and experimentally that typical MIPS-to-NNS reductions
are detrimental for similarity graphs.

3. We introduce a new large-scale dataset for the MIPS algorithms evaluation to facilitate
research in this direction. The dataset and the C++ implementation of our method are
available online1.

The rest of the paper is organized as follows: in Section 2, we shortly review the existing MIPS
methods and the similarity graphs framework. In Section 3 we advocate the usage of similarity
graphs for MIPS and describe the efficient algorithm as well. In addition, we demonstrate that
one should not reduce MIPS to NNS when using similarity graphs. In Section 4, we compare the
proposed approach to the current state-of-the-art and demonstrate its exceptional advantage over
existing methods. Finally, in Section 5 we conclude the paper and summarize the results.

2 Related work

Now we describe several methods and ideas from the previous research that are essential for descrip-
tion of our method. Hereafter we denote the database by X = {xi ∈ Rd|i = 1, . . . , n} and a query
vector by q ∈ Rd.

2.1 The existing approaches to the MIPS problem

Reduction to NNS. The first group of methods[6, 7, 8] reformulates the MIPS problem as a NNS
problem. Such reformulation becomes possible via mapping the original data to a higher dimensional
space. For example, [7] maps a database vector x to

x̂ = (x,
√

1− ‖x‖2)T (2)

and a query vector q is mapped to
q̂ = (q, 0)T (3)

The transformation from [7] assumes without loss of generality that ‖x‖ ≤ 1 for all x ∈ X and
‖q‖ = 1 for a query vector q. After the mapping the transformed vectors x̂ and q̂ have unit norms and

‖x̂− q̂‖2 = ‖x̂‖2 + ‖q̂‖2 − 2〈x̂, q̂〉 = −2〈x, q〉+ 2 (4)

so the minimization of ‖x̂ − q̂‖ is equivalent to the maximization of 〈x, q〉. Other MIPS-to-NNS
transformations are also possible, as shown in [11] and [12], and the empirical comparison of
different transformations was recently performed in [6]. After transforming the original data, the
MIPS problem becomes equivalent to metric neighbor search and can be solved with standard NNS
techniques, like LSH[7], Randomized Partitioning Tree[6] or clustering[8].

Upper-bounding. Another family of methods use inner product upper bounds to construct a small set
of promising candidates, which are then checked exhaustively. For example, the LEMP framework[9]
filters out the unpromising database vectors based on the Cauchy-Schwarz inequality. Furthermore,
[9] proposes an incremental pruning technique that refines the upper bound by computing the partial
inner product over the first several dimensions. The FEXIPRO method[10] goes further and performs
SVD over the database vectors to make the first dimensions more meaningful. These steps typically
improve the upper bounds, and the incremental pruning becomes more efficient. The very recent

1https://github.com/stanis-morozov/ip-nsw

2

Greedy-MIPS method[13] uses another upper bound 〈q, x〉 =
d∑

i=1

qixi ≤ dmaxi{qixi} to construct

the candidate set efficiently. The efficiency of upper-bound methods is confirmed by experimental
comparison[9, 13] and their source code, available online.

Despite a large number of existing MIPS methods, the problem is far from being solved, especially
given rapidly growing databases in nowadays applications. In this work we propose to solve MIPS
with the similarity graphs framework that does not fall into either of the two groups above.

2.2 NNS via similarity graph exploration

Here we shortly describe the similarity graphs that are currently used for NNS in metric spaces. For a
database X = {xi ∈ Rd|i = 1, . . . , n} the similarity (or knn-)graph is a graph where each vertex
corresponds to one of the database vectors x. The vertices i and j are connected by an edge if xj
belongs to the set of k nearest neigbors of xi, xj ∈ NNk(xi) in terms of some metric similarity
function s(x, y). The usage of knn-graphs for NNS was initially proposed in the seminal work[14].
The approach[14] constructs the database knn-graph and then performs the search by greedy walk
on this graph. First, the search process starts from a random vertex and then on each step a query
moves from the current vertex to its neighbor, which appears to be the closest to a query. The process
terminates when the query reaches a local minimum. The pseudocode of the greedy walk procedure
is presented on Algorithm 1.

Algorithm 1 Greedy walk
1: Input: Similarity Graph Gs, similarity function s(x, y), query q, entry vertex v0
2: Initialize vcurr = v0
3: repeat
4: for vadj adjacent to vcurr in Gs do
5: if s(vadj , q) < s(vcurr, q) then
6: vcurr = vadj
7: until vcurr changes
8: return vcurr

Since [14] gave rise to research on NNS with similarity graphs, a plethora of methods, which elaborate
the idea, were proposed. The current state-of-the-art graph-based NNS implementations[15, 16, 17]
develop additional heuristics that increase the efficiency of both graph construction and search process.
Here we describe in detail the recent Navigable Small World (NSW) approach[15], as it is shown to
provide the state-of-the-art for NNS[18] and its code is available online. Our approach for MIPS will
be based on the NSW algorithm, although the other graph-based NNS methods[16, 17] could also be
used.

Algorithm 2 NSW graph construction
1: Input: Database X , similarity function s(x, y), maximum vertex degree M
2: Initialize graph Gs = ∅
3: for x in X do
4: S = {M vertices from Gs, s.t. the corresponding vectors y give the largest values of s(x, y)}
5: Add x to the graph Gs and connect it by the directed edges with vertices in S
6: return Gs

The key to the practical success of NSW lies in the efficiency of both knn-graph construction and
neighbor search. NSW constructs the knn-graph by adding vertices in the graph sequentially one by
one. On each step NSW adds the next vertex v, corresponding to a database vector x to the current
graph. v is connected by directed edges to M vertices, corresponding to the closest database vectors
that are already added to the graph. The construction algorithm is presented in Algorithm 2. The
primary parameter of the NSW is the maximum vertex degree M , which determines the balance
between the search efficiency and the probability that search stops in the suboptimal local minima.
When searching via Greedy walk, NSW maintains a priority queue of a size L with the knn-graph
vertices, which neighbors should be visited by the search process. With L=1 the search in NSW is
equivalent to Algorithm 1, while with L > 1 it can be considered as a variant of Beam Search[19],

3

which makes the search process less greedy. In practice, varying L allows to balance between the
runtime and search accuracy in NSW.

Prior work on non-metric similarity search on graphs. After the publication, we became aware of
a body of previous work that explored the use of proximity graphs with general non-metric similarity
functions[20, 21, 22, 23, 24]. In these works, the MIPS problem is investigated as a special case and
the effectiveness of proximity graph based methods to the MIPS problem has been confirmed.

3 Similarity graphs for MIPS

Now we extend the similarity graphs framework to applications with a non-metric similarity function
s(x, y). Assume that we have a database X = {xi ∈ Rd|i = 1, . . . , n} and aim to solve the problem

argmax
xi∈X

s(q, xi), q ∈ Rd (5)

3.1 Exact solution

First, let us construct a graph Gs such that the greedy walk procedure (Algorithm 1), provides the
exact answer to the problem (5). [14] has shown that for Euclidean distance s(x, y) = −‖x − y‖,
the minimal Gs with this property is the Delaunay graph of X . Now we generalize this result for a
broader range of similarity functions.

Definition. The s-Voronoi cell Rk, associated with the element xk ∈ X , is a set

Rk = {x ∈ Rd|s(x, xk) > s(x, xj) ∀j 6= k} (6)

The diagrams of s-Voronoi cells for s(x, y) = −‖x−y‖ and s(x, y) = 〈x, y〉 are shown on Figure 1.

s(x, y) = −‖x− y‖ s(x, y) = 〈x, y〉

Figure 1: s-Voronoi diagram examples on the plane

Note, that in the case of inner product s-Voronoi cells for some points are empty. It implies that these
points can not be answers in MIPS.

Now we can define a s-Delaunay graph for a similarity function s(x, y).

Definition. The s-Delaunay graph for the database X and the similarity function s(x, y) is a graph
Gs(V,E) where the set of vertices V corresponds to the set X and two vertices i and j are connected
by an edge if the correspoding s-Voronoi cells Ri and Rj are adjacent in Rd.

Theorem 1. Suppose that the similarity function s(x, y) is such that for every finite database X the
corresponding s-Voronoi cells are path-connected sets. Then the greedy walk (Algorithm 1) stops
at the exact solution for problem (5) if the similarity graph Gs contains the s-Delaunay graph as a
subgraph.

4

Proof. Assume that the greedy walk with a query q stops at the point x i.e. s(x, q) > s(y, q) for
all y ∈ N(x), where N(x) is a set of vertices that are adjacent to x. Suppose that there is a point
z /∈ N(x) such that s(z, q) > s(x, q). It means that the point q does not belong to the s-Voronoi cell
Rx corresponding to the point x. Note, that if we remove all the points from Gs except x ∪N(x), a
set of points covered by Rx does not change as all adjacent s-Voronoi regions correspond to vertices
from N(x) and they are not removed. Hence, the query q still does not belong to Rx. Since the
s-Voronoi cells cover the whole space, the point q belongs to some Rx′ , x′ ∈ N(x). This means that
s(x′, q) > s(x, q).This contradiction proves the theorem.

Now we show that s(x, y) = 〈x, y〉 satisfies the assumptions of the Theorem.
Lemma 1. Suppose X is a finite database and the similarity function s(x, y) is linear, then the
s-Voronoi cells are convex.

Proof. Consider a s-Voronoi cell Rx, corresponding to a point x ∈ X . Let us take two arbitrary
vectors u and v from the s-Voronoi cell Rx. It means that

s(x, u) > s(w, u) ∀w ∈ X \ {x} (7)

s(x, v) > s(w, v) ∀w ∈ X \ {x} (8)
Hence, due to linearity

s(x, tu+ (1− t)v) > s(w, tu+ (1− t)v), t ∈ [0, 1] (9)

Therefore, vector tu+ (1− t)v ∈ Rx for every t ∈ [0, 1].

Corollary 1. If the graph G(V,E) contains the s-Delaunay graph for the similarity function
s(x, y) = 〈x, y〉 then greedy walk always gives the exact true answer for MIPS.

Proof. Due to Lemma 1 all s-Voronoi cells for s(x, y) = 〈x, y〉 are convex, therefore, path-connected.

3.2 s-Delaunay graph approximation for MIPS

In practice, the computation and usage of the exact s-Delaunay graph in high-dimensional spaces
are infeasible due to the exponentially growing number of edges[25]. Instead, we approximate
the s-Delaunay graph as was previously proposed for Euclidean distance case in [16, 17, 15]. In
particular, we adopt the approximation proposed in [15] by simply extending Algorithm 2 to inner
product similarity function s(x, y) = 〈x, y〉. As in [15] we also restrict the vertex degree to a constant
M , which determines the s-Delaunay graph approximation quality. We refer to the proposed MIPS
method as ip-NSW. The search process in ip-NSW remains the same as in [15] except that the inner
product similarity function guides the similarity graph exploration.

Let us provide some intuition behind the proposed s-Delaunay graph approximation. In fact, each
vertex x is connected to M vertices that provide the highest inner product values〈x, ·〉. The heuristic
geometrical argument in favor of such approximation is that for s(x, y) = 〈x, y〉 s-Voronoi cells are
polyhedral angles, and the «direction vectors» of adjacent s-Voronoi cells are likely to have large
inner product values. While missing the strict mathematical justification, the proposed approach
provides the brilliant performance, as confirmed in the experimental section.

3.3 Similarity graphs after reduction to NNS

The natural question is: Why should we develop an additional theory for non-metric similarity graphs?
Maybe, one should just reduce the MIPS problem to NNS[6, 7, 8] and apply the state-of-the-art graph
implementation for Euclidean similarity. In fact, such a solution is detrimental for runtime-accuracy
trade-off, as will be demonstrated in the experimental section. In this section, we provide the intuitive
explanation of the inferior performance using the example of transformation form [7]:

x̂ = (x,
√
1− ‖x‖2)T ; q̂ = (q, 0)T = (q,

√
1− ‖q‖2)T (10)

assuming that ‖x‖ ≤ 1 for all x ∈ X and ‖q‖ = 1. Other transformations could be considered
in the similar way. Now we construct the Euclidean similarity graph for the transformed database

5

X̂ = {(x,
√
1− ‖x‖2)T |x ∈ X} via Algorithm 2. In terms of the original databaseX , the Euclidean

distance between the transformed elements equals

‖x̂− ŷ‖2 = −2〈x, y〉+ 2− 2
√
1− ‖x‖2

√
1− ‖y‖2 (11)

Note, that the Euclidean similarity graph, constructed for the transformed database X̂ , is equiv-
alent to a graph, constructed for the original X with the similarity function s(x, y) = 〈x, y〉 +√
1− ‖x‖2

√
1− ‖y‖2 or equivalently

s(x, y) = ‖x‖‖y‖ cosα+
√
1− ‖x‖2

√
1− ‖y‖2, (12)

where α is the angle between x and y. The first term in this sum encourages large norms, while the
second term penalizes large norms. In high-dimensional spaces the typical values of cosα tend to
be small even for close vectors, which results in the dominance of the second term. Thus, when a
new vertex is added to a graph, it prefers to be connected to the vertices, corresponding to vectors
with smaller norms. Thus, the edges in the Euclidean graph, constructed for the transformed data,
typically lead in the direction of norm decreasing, which is counterproductive to MIPS, which prefers
the vectors of larger norms. On the other hand, the non-metric similarity graph, constructed with
s(x, y) = 〈x, y〉, is more probable to contain edges, directed towards increasing of norms. To verify
this explanation, we measure the rate of edges that lead to vectors of larger norms for ip-NSW and
the Euclidean NSW on the transformed data. The numbers for three datasets, presented in Table 2,
fully confirm our intuition.

4 Experiments

In this section we present the experimental evaluation of non-metric similarity graphs for the top-K
MIPS problem. All the experiments were performed on Intel Xeon E5-2650 machine in a single
thread mode. For evaluation, we used the commonly used Recall measure that is defined as a rate of
successfully found neighbors, averaged over a set of queries. We performed the experiments with
K = 1 and K = 10.

Datasets. We summarize the information on the benchmark datasets in Table 1. The Netflix,
MovieLens and Yahoo!Music datasets are the established benchmarks for the MIPS problem. Music-
100 is a new dataset that we introduce to the community2. This dataset was obtained by IALS-
factorization[26] of the user-item ranking matrix, with dimensionality 100. The matrix contains the
ratings from 3,897,789 users on one million popular songs from proprietary music recommendation
service. To the best of our knowledge, there is no publicly available dataset of such a large scale
and high dimensionality. Normal-64 dataset was generated as a sample from a standard normal
distribution with the dimension 64. For all the datasets, the groundtruth neighbors were computed by
sequential scan. The recall values were averaged over 10, 000 randomly sampled queries.

Table 1: The datasets used in the evaluation.

DATASET |X| |Q| DIM

NETFLIX 17,770 480,189 200
MOVIELENS 33,670 247,753 150
YAHOO! MUSIC 624,961 1,000,990 50
MUSIC-100 1,000,000 3,897,789 100
NORMAL-64 1,048,576 20,000 64

4.1 Non-metric graphs or reduction to NNS?

Here we experimentally investigate the optimal way to use the similarity graphs for the MIPS
problem. We argue that the straightforward solution by reduction to NNS and then using the standard
Euclidean similarity graph is suboptimal. To confirm this claim, we compare the performance of
the non-metric similarity graph (denoted by ip-NSW) to the performance of Euclidean similarity
graph combined with transformation from[7] (denoted by NSW+reduction). The runtime-accuracy

2https://github.com/stanis-morozov/ip-nsw

6

https://github.com/stanis-morozov/ip-nsw

plots on three datasets are presented on Figure 2. The plots confirm the advantage of non-metric
similarity graphs, especially in the high recall regime. For instance, ip-NSW reaches the recall
level 0.9 five times faster on Music-100. We believe that the reason for the inferior performance of
the NSW+reduction approach is the edge distribution bias, described in Section 3.3. Overall, we
conclude that similarity graphs do not require any MIPS-to-NNS transformation that makes them
favorable over other similarity search frameworks. In the subsequent experiments, we evaluate only
the ip-NSW approach as our main contribution.

Table 2: The rate of similarity graph edges that lead to vector of larger norms for ip-NSW and
NSW+reduction. This rate is much higher in the non-metric similarity graph in ip-NSW, which
results in higher MIPS performance.

DATASET NSW+REDUCTION IP-NSW

MUSIC-100 0.349335 0.75347
YAHOO! MUSIC 0.398541 0.92353
NORMAL-64 0.362722 0.703605

Music-100

0.70 0.75 0.80 0.85 0.90 0.95 1.000.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Ti
m

e
(m

s)

ip-NSW
NSW+reduction

Yahoo! Music

0.70 0.75 0.80 0.85 0.90 0.95 1.000.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ip-NSW
NSW+reduction

Normal-64

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ip-NSW
NSW+reduction

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Ti
m

e
(m

s)

ip-NSW
NSW+reduction

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ip-NSW
NSW+reduction

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ip-NSW
NSW+reduction

Figure 2: The performance of non-metric ip-NSW and the Euclidean NSW for transformed data
on three million-scala datasets. The combination of metric similarity graphs with MIPS-to-NNS
reduction results in inferior performance.

4.2 Comparison to the state-of-the-art

As our main experiment, we extensively compare the proposed ip-NSW method to the existing
approaches. We compared the following algorithms:

Naive-MKL The sequential scan implementation that uses the Intel MKL library3 for efficient
vector-matrix multiplication.

LSH+reduction[7] We used the implementation available in [13]. We tuned the parameter B in a
range {20, 40, 80, 160} and the parameter R in a range {5, 8, 11, 14, 17, 20}.

Clustering+reduction[8] We used our own reimplementation and use
√
N clusters of size

√
N ,

where N is the size of the database. When searching, the number of considered clusters was
varied from 1 to 50.

FEXIPRO[10] We used the author’s implementation of the FEXIPRO framework4 with the algo-
rithm FEXIPRO-SIR and the parameters scalingV alue = 127 and SIGMA = 0.8 since it
was recommended in [10] as the best combination. Note, that FEXIPRO is an exact method.

3https://software.intel.com/mkl
4https://github.com/stanford-futuredata/FEXIPRO-orig

7

https://software.intel.com/mkl
https://github.com/stanford-futuredata/FEXIPRO-orig

LEMP[9] We used the author’s implementation of the LEMP framework5 with the algorithm LEMP-
HYB-REL. We varied parameters R from 0.1 to 0.9 with step 0.1 and ε from 0.2 to 0.6 with
step 0.05 to achieve the runtime-accuracy plots.

Greedy-MIPS[13] We used the author’s implementation6 with a budget parameter tuned for the
each dataset.

ip-NSW is the proposed algorithm based on the non-metric similarity graph, described in Section 3.2.

While Netflix and MovieLens are the established datasets in previous works, we do not consider them
as interesting benchmarks these days. They both contain only several thousand vectors and the exact
Naive-MKL is efficient enough on them. E.g. Naive-MKL works only 0.56 ms on Netflix and 1.42
ms on MovieLens, which is fast enough for most of applications. Thus, we perform the extensive
comparison on three million-scale datasets only. The Figure 3 presents the runtime-accuracy plots
for the compared approaches. The timings for Naive-MKL and FEXIPRO are presented under the
corresponding plots. Overall, the proposed ip-NSW method outperforms the existing approaches by
a substantial margin. For example, ip-NSW reaches 0.9 recall level ten times faster that the fastest
baseline. Note, that the for top-10 MIPS the advantage of ip-NSW is even more impressive on all
datasets. To justify that the speedup improvements are due to the proposed algorithm and not because
of implementation differences (such as libraries, cache locallity, register level optimizations and so
on) we also compare number of inner products needed to achieve certain recall levels for different
methods. The plots for three datasets and top-10 MIPS are presented on Figure 4.

Music-100

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(m

s)

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 56.071
Naive-MKL — 74.239

Yahoo! Music

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 0.895
Naive-MKL — 19.551

Normal-64

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 76.922
Naive-MKL — 36.377

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(m

s)

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 76.506
Naive-MKL — 74.760

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 2.673
Naive-MKL — 19.649

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

2

4

6

8

10

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

FEXIPRO — 77.227
Naive-MKL — 37.129

Figure 3: The runtime-recall plots on three datasets for top-1 MIPS (top) and top-10 MIPS (bottom).
The timings for the exact FEXIPRO and Naive-MKL methods are presented under the corresponding
plots.

Additional memory consumption. The performance advantage of the similarity graphs comes at
a price of additional memory to maintain the graph structure. In our experiments we use M = 32
edges per vertex, which results in 32× n× sizeof(int) bytes for edge lists. Note, that the size of
the database equals d× n× sizeof(float) bytes, hence for high-dimensional datasets d� 32 the
additional memory consumption is negligible.

5https://github.com/uma-pi1/LEMP
6https://github.com/rofuyu/exp-gmips-nips17

8

https://github.com/uma-pi1/LEMP
https://github.com/rofuyu/exp-gmips-nips17

Music-100

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Nu
m

be
r o

f i
nn

er
 p

ro
du

ct
s

1e4

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

Yahoo! Music

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 1e4

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

Normal-64

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

1

2

3

4

5 1e4

ip-NSW
Greedy-MIPS
Clustering+red.
LEMP
LSH+reduction

Figure 4: The number of inner products computations needed to achieve certain recall levels on three
datasets for top-10 MIPS.

5 Conclusion

In this work, we have proposed and evaluated a new framework for inner product similarity search.
We extend the framework of similarity graphs to the non-metric similarity search problems and
demonstrate that the practically important case of inner product could be perfectly solved by these
graphs. We also investigate the optimal way to use this framework for MIPS and demonstrate that the
popular MIPS-to-NNS reductions are harmful to similarity graphs. The optimized implementation
of the proposed method will be available upon publication to support the further research in this
direction.

References
[1] Stephen Mussmann and Stefano Ermon. Learning and inference via maximum inner product

search. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 2587–2596, 2016.

[2] Stephen Mussmann, Daniel Levy, and Stefano Ermon. Fast amortized inference and learning
in log-linear models with randomly perturbed nearest neighbor search. In Proceedings of the
Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia,
August 11-15, 2017, 2017.

[3] Sarath Chandar, Sungjin Ahn, Hugo Larochelle, Pascal Vincent, Gerald Tesauro, and Yoshua
Bengio. Hierarchical memory networks. CoRR, abs/1605.07427, 2016.

[4] Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion
for smart reply. CoRR, abs/1705.00652, 2017.

[5] Kwang-Sung Jun, Aniruddha Bhargava, Robert D. Nowak, and Rebecca Willett. Scalable
generalized linear bandits: Online computation and hashing. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 98–108, 2017.

[6] O. Keivani, K. Sinha, and P. Ram. Improved maximum inner product search with better
theoretical guarantees. In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2927–2934, May 2017.

[7] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product
search. In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages 1926–1934. JMLR.org, 2015.

[8] Alex Auvolat and Pascal Vincent. Clustering is efficient for approximate maximum inner
product search. CoRR, abs/1507.05910, 2015.

[9] Christina Teflioudi and Rainer Gemulla. Exact and approximate maximum inner product search
with lemp. ACM Trans. Database Syst., 42(1):5:1–5:49, December 2016.

9

[10] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. Fexipro: Fast and exact inner
product retrieval in recommender systems. In SIGMOD Conference, 2017.

[11] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum
inner product search (mips). In Advances in Neural Information Processing Systems, pages
2321–2329, 2014.

[12] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein,
Nir Nice, and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean
transformation for inner-product spaces. October 2014.

[13] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S. Dhillon. A greedy approach for budgeted
maximum inner product search. In NIPS, 2017.

[14] Gonzalo Navarro. Searching in metric spaces by spatial approximation. The VLDB Journal,
11(1):28–46, Aug 2002.

[15] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016.

[16] Cong Fu and Deng Cai. Efanna : An extremely fast approximate nearest neighbor search
algorithm based on knn graph. CoRR, abs/1609.07228, 2016.

[17] B. Harwood and T. Drummond. Fanng: Fast approximate nearest neighbour graphs. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5713–5722, June
2016.

[18] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie Zhang, and Xuemin Lin. Approximate
nearest neighbor search on high dimensional data - experiments, analyses, and improvement
(v1.0). CoRR, abs/1610.02455, 2016.

[19] Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. 1987.

[20] Leonid Boytsov, David Novak, Yury Malkov, and Eric Nyberg. Off the beaten path: Let’s
replace term-based retrieval with k-nn search. In CIKM, 2016.

[21] Bilegsaikhan Naidan, Leonid Boytsov, and Eric Nyberg. Permutation search methods are
efficient, yet faster search is possible. VLDB, 2015.

[22] Leonid Boytsov. Efficient and accurate non-metric k-nn search with applications to text
matching. Technical report, 2017.

[23] Alexander Ponomarenko, Nikita Avrelin, Bilegsaikhan Naidan, and Leonid Boytsov. Compara-
tive analysis of data structures for approximate nearest neighbor search. Data Analytics, pages
125–130, 2014.

[24] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th international conference on World wide
web, pages 577–586. ACM, 2011.

[25] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cambridge University
Press, New York, NY, USA, 1998.

[26] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008
Eighth IEEE International Conference on Data Mining, pages 263–272, Dec 2008.

10

