
Supplementary Materials
A Additional Figures

O
rig

in
al

 tr
aj

ec
to

rie
s

No noise

La
te

nt
 re

pr
es

en
ta

tio
n

Noise (sampling) Noise (outliers)

Figure S1: Results of the Sequence-Sequence Autoencoder. Here, we generate a synthetic dataset
consisting of 5 copies of 5 trajectories. We then add sampling noise (middle column) or outliers
(right column) to the trajectories. We measure the Euclidean distance between the trajectories in the
original space (top row) and in the latent space learned by the autoencoder (bottom row). Results
suggest that the autoencoder is partially able to recover the structure of the original trajectories.

𝑡7
𝐴

𝑡6
𝐴

𝑡5
𝐴

𝑡4
𝐴

𝑡3
𝐴

𝑡2
𝐴

𝑡1
𝐴

∅: 𝑡0
𝐴

∅: 𝑡0
𝐵 𝑡1

𝐵 𝑡2
𝐵 𝑡3

𝐵 𝑡4
𝐵 𝑡5

𝐵 𝑡6
𝐵 𝑡7

𝐵

𝑐 𝑡𝑖
𝐴, 𝑡𝑗−1

𝐵 → 𝑡𝑖
𝐴, 𝑡𝑗

𝐵

𝑐 𝑡𝑖−1
𝐴 , 𝑡𝑗

𝐵 → 𝑡𝑖
𝐴, 𝑡𝑗

𝐵

𝑐 𝑡𝑖−1
𝐴 , 𝑡𝑗−1

𝐵 → 𝑡𝑖
𝐴, 𝑡𝑗

𝐵

𝐶 𝑃 = ෍

𝑝𝑖∈𝑃

𝑐(𝑝𝑖) , 𝑑 𝑡𝐴, 𝑡𝐵 = min
𝑃

𝐶(𝑃)

a warping path 𝑃 consists of steps [𝑝1, 𝑝2, … 𝑝𝑁],
each with an associated cost 𝑐(𝑝𝑖). Steps can be

of three types:

Figure S2: Illustration of Warping Distances. Warping distances are defined based on an optimiza-
tion over warping paths illustrated above.

12

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

Figure S3: Illustration of Libras Dataset. These trajectories that are used in Section 4 are shown
here. Each color represents a different class (although these labels are not available to the autowarp
algorithm).

0 20 40 60 80
Training batch

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

La
te

nt
 b

et
a

C
V

Figure S4: The Effect of Training on the Latent betaCV. Here, we plot the latent betaCV of the
distance learned by Autowarp as a function of the number of batches of examples seen during training.
We find that the latent betaCV does decrease showing that the quality of the autoencoder does have a
measurable effect on the final learned Autowarp distance.

13

50 0 50

40

20

0

20

40

60
Original Trajectories

5.0 2.5 0.0 2.5 5.0

8

6

4

2

0

2

4

Latent (1-layer AE)

5 0 5 10

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Latent (3-layer AE)

5 0 5
6

4

2

0

2

4

6
Warping Distance

Figure S5: Effect of Increasing Autoencoder Complexity. Here, we extend Fig. 1 by including a
more complex, 3-layer sequence-to-sequence autoencoder to investigate whether the more powerful
autoencoder is capable of learning the latent representation on its own. We do not discern any visible
differences by using the more complex autoencoder (shown in the 3rd panel from the left). The
complete Autowarp algorithm (shown on the right, is able to determine the similarity between related
trajectories).

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

1 0
1

0

1

Figure S6: Illustration of ASL Dataset. These trajectories that are used in Section 5 are shown
here. Each color represents a different class (although these labels are not available to the autowarp
algorithm).

14

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 h (Latent BetaCV)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 t (Trajectories BetaCV)

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 (True BetaCV)

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 h (Latent BetaCV)

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 t (Trajectories BetaCV)

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 (True BetaCV)

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 h (Latent BetaCV)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 t (Trajectories BetaCV)

0.27

0.30

0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 (True BetaCV)

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 h (Latent BetaCV)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 t (Trajectories BetaCV)

0.48

0.51

0.54

0.57

0.60

0.63

0.66

0.69

0.72

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 (True BetaCV)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

(d)

Figure S7: Plots of BetaCV. Here, we show the plots of latent betaCV (left), true betaCV (middle),
and a control in the form of betaCV computed on the original trajectory (right). Each row represents
a different noise source. From top to bottom: the first row is the addition outliers, the second row is
the addition of Gaussian noise, the third row is sampling noise, and the fourth is a combination of
Gaussian noise and outliers.

15

B Autowarp Algorithm

Algorithm 1 Batched Autowarp

Inputs: Set of trajectories T = (t1, . . . tT), threshold percentile p, learning rate r, batch size S
Use a sequence-to-sequence autoencoder trained to minimize the reconstruction loss of the trajec-
tories to learn a latent representation hi for each trajectory ti.
Compute the pairwise Euclidean distance matrix between each pair of latent representations
Compute the threshold distance δ defined as the pth percentile of the distribution of distances
Initialize the parameters α, γ, ε (e.g. randomly between 0 and 1)
while parameters have not converged do

Sample S pairs of trajectories with distance in the latent space < δ (denote the set of pairs as
Pc), and S pairs of trajectories from all possible pairs (denote the set of pairs as Pall).
Define d to be the warping distance parametrized by α, γ, ε
Compute the β̂ as follows: β̂ =

∑
ti,tj∈Pc

d(ti, tj)/
∑

ti,tj∈Pall
d(ti, tj)

Compute analytical gradients and update parameters:

α← α− r · dβ̂/dα, γ ← γ − r · dβ̂/dγ, ε← ε− r · dβ̂/dε

end while
Return: final betaCV β̂, and the optimal parameters α, γ, ε

C Proofs

C.1 Proof of Proposition 1

Proposition 1 (Robustness of Latent BetaCV). Let d be a trajectory distance defined over a set of
trajectories T of cardinality T . Let β(d) be the betaCV computed on the set of trajectories using the
true cluster labels {C(i)}. Let β̂(d) be the betaCV computed on the set of trajectories using noisy
cluster labels {C̃(i)}, which are generated by independently randomly reassigning each C(i) with
probability p. For a constant K that depends on the distribution of the trajectories, the probability
that the latent betaCV changes by more than x beyond the expected Kp is bounded by:

Pr(|β − β̂| > Kp+ x) ≤ e−2Tx
2/K2

(5)

Proof. The mild distributional assumption mentioned in the proposition is to ensure that no cluster
of trajectories is too small or far away from the other clusters. More specifically, let dmax be the
largest distance between any two trajectories, and let d̄ be the average distance between all pairs
of trajectories. We will define C1

def
= dmax/d̄. Furthermore, let C2 be defined as the number of

trajectories in the largest cluster divided by the number of trajectories in the smallest cluster.

We will proceed with this proof in two steps: first, we will bound the probability that |β̂ −E[β̂]| > x.
Then, we will compute |β − E[β̂]|. Then, by the triangle inequality, the desired result will follow.

Consider the effect of single trajectory ti changing clusters from its original cluster to a new cluster.
What effect does this have on the β̂? At most, this will increase the distance between ti and
other trajectories with the same label by dmax. By considering the number of such trajectories and
normalizing the average distance between all pairs of trajectories, we see that the change in β̂ is
bounded to be less than C1C2/T .

Since have assumed that the probability that each of the T cluster labels is independently reassigned,
We apply McDiarmid’s inequality to bound |β̂−E[β̂]|. A straightforward application of McDiarmid’s
inequality shows that

Pr(|β̂ − E[β̂]| > x) ≤ e
−2Tx2

C2
1C2

2

16

Now, consider the difference |β − E[β̂]|. As mentioned before, if a single trajectory ti changes
clusters from its original cluster to a new cluster, the effect is bounded by C1C2/n. It is easy to see if
subsequent trajectories change cluster assignment, the change in β̂ will be of a smaller magnitude, as
subsequent trajectories will face no larger of a penalty for switching cluster assignments (and in fact,
may face a smaller one if they switch to a cluster that also has trajectories from the same original
cluster).

Thus, we see that the |β −E[β̂]| ≤ C1C2

T (pT) = C1C2p. Let us define K def
= C1C2. Then applying

the Triangle Inequality gives us:

Pr(|β − β̂| > Kp+ x) ≤ 4e−2Tx
2/K2

as desired.

C.2 Proof of Proposition 2

Proposition 2 (Differentiability of Latent BetaCV). Let D be a family of warping distances that
share a cost function c(·), parametrized by θ. If c(·) is differentiable w.r.t. θ, then the latent betaCV
computed on a set of trajectories is also differentiable w.r.t. θ almost everywhere.

Proof. We will prove this theorem in the following way: first, we will show that any warping distance
can be computed using dynamic programming using a finite sequence of only two kinds of operations:
summations and minimums; then, we will show that these operations preserve differentiability except
at most on a set of points of measure 0. Once, we have shown this, it is trivial to show that the latent
betaCV, which is simply a summation and a quotient of such distances, is also differentiable almost
everywhere.

Lemma 1. Let d ∈ D be a warping distance with a particular cost function c(·). Then, d(tA, tB), the
distance between trajectories tA and tB , can be computed recursively with dynamic programming.

Proof. We prove this by construction. Let D(i, j) be defined in the following recursive manner:
D(0, 0) = 0, and

D(i, j) = min

 D(i− 1, j) + c(tAi−1, t
B
j , t

A
n , t

B
m) n >= 1

D(i, j − 1) + c(tAn , t
B
m−1, t

A
n , t

B
m), m >= 1

D(i− 1, j − 1) + c(tAn−1, t
B
m−1, t

A
n , t

B
m) n,m >= 1

We will show that D(n,m), where n is the length of tA and m is the length of tB , is the minimal
cost evaluated across all warping paths that begin at (tA0 , t

B
0) and end at (tAn , t

B
m). By the definition

of a warping distance, it follows that d(tA, tB) = D(n,m).

It is obvious that if both trajectories are of zero length, then D(0, 0) = d(tA, tB) = 0 as desired. For
clarity, let us consider the base cases n = 0,m > 0 and n > 0,m = 0. For the former, clearly, there
is only one warping path from (tA0 , t

B
0) to (tA0 , t

B
m). The cost evaluated over this path is:

0 + c((tA0 , t
B
0), (tA0 , t

B
1)) + . . .+ c((tA0 , t

B
m−2), (tA0 , t

B
m−1)) + c((tA0 , t

B
m−1), (tA0 , t

B
m)))

= D(0,m− 1) + c((tA0 , t
B
m−1), (tA0 , t

B
m))

as desired. The expression for the base cases m = 0, n > 0 is similarly derived.

Now, consider m > 0, n > 0, and let p∗ = [p1 . . . pL] be an optimal warping path for (An, Bm), i.e.
one with a minimal cost. Note that pL−1 must be one of

{(tAn−1, tBm), (tAn , t
B
m−1), (tAn−1, t

B
m−1)}

and furthermore, we claim that it must be that an optimal path to pL−1, denote it as q∗, be exactly
[p1 . . . pL−1]. Otherwise, we could replace p1 . . . pL−1 in p∗ with q∗ and get a lower-cost optimal
path, because addition is monotonically increasing. As a result, this means that we can compute the
optimal warping path to (tAn , t

B
m), we need to only consider the optimal paths that go through the

three pairs listed above, and choose the one with the smallest total cost. This is what the recursive

17

equation computes, showing that D(n,m) is the minimal cost evaluated across all warping paths that
begin at (tA0 , t

B
0) and end at (tAn , t

B
m).

Now, we return to the proof of the proposition. Using Lemma 1, we see that the distance between two
trajectories can be computed using a finite sequence of only two kinds of operations: summations and
minimums. This also shows that the distance between two trajectories can be computed in O(mn)
time. We now turn to Lemma 2, which will show that these operations preserve differentiability at all
except a countable number of points.

Lemma 2. Let f and g be two continuous functions from Rk → R that are differentiable almost
everywhere. Then min(f, g) and f + g are also differentiable almost everywhere.

Proof. Let E1 be the set of points that f is not differentiable on, and let E2 be the set of points
that g is not differentiable on. Let E be the set of points that min(f, g) is not differentiable on.
Now, consider a point θ such that f(θ) 6= g(θ). Without loss of generality, we can consider that
f(θ) > g(θ). Then, by continuity, f > g in a neighborhood around θ, and so min(f, g) = g, and the
derivative of min(f, g) is simply g′.

On the other hand, if f(θ) = g(θ), consider the derivatives df/dθi and dg/dθi. If the derivatives are
all identical, then clearly the gradient of the minimum exists at θ: it is simply the gradient of f or
g. If any of the derivatives, say dg/dθj is unequal, then the gradient of min(f, g) will not exist at
θ, but then without loss of generality, we can say that df/dθj > dg/dθj . In that case, there exists a
neighborhood around theta in the direction of +θj where f > g (and so the derivative of min(f, g)
there is simply g′), and similarly, the neighborhood in the direction of −θj where f < g (so the
derivative of min(f, g) there is simply f ′). Thus, we see that θ is an isolated point, and the set E of
all such θ is of measure 0.

The differentiability of f + g is much easier to consider: the set of all points where f + g is
not differentiable is at most the union of E1 and E2, each are of which measure 0, so the result
follows.

It can be seen by repeatedly applying Lemma 2 that the computation of a warping distance between
trajectories is differentiable. Now note that the betaCV is defined simply as the quotient of a sum of
distances. We have already shown that the sum of differentiable functions is differentiable. The same
can be shown for the quotient of functions, as long as the divisor is non-zero. Because the warping
distance is greater than 0 as long as the trajectories are distinct, the desired result follows for any set
of distinct trajectories. Finally, let us note that if there are T trajectories of length N in our dataset,
the total runtime to compute the betaCV is O(N2T 2).

18

