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Here we give some justification to the results given in main text: for more details, we refer the reader
to [1].

1 Law of large numbers for Gradient Descent

In most applications, the integrals defining F and K are intractable. However, it is useful to study
the scaling of the representation error as n → ∞ and t → ∞ in the case that the parameters
{Yi(t), Ci(t)}ni=1 evolve on the potential determined by the exact gradient of the loss function. In
this case, 

Ẏ i = Ci∇F (Yi)−
1

n

n∑
j=1

CiCj∇K(Y i,Yj),

Ċi = F (Yi)−
1

n

n∑
j=1

CjK(Yi,Yj)

(1)

for i = 1, . . . , n. This dynamics can be expressed as a gradient flow on the energy function

E(y1, c1 . . . ,yn, cn) = nCf −
n∑
i=1

ciF (yi) +
1

2n

n∑
i,j=1

cicjK(yi,yj), (2)

which is precisely the loss function scaled by n. Due to the absence of noise in the dynamics, the
initial conditions are a subtle consideration. We take each pair {Yi(0), Ci(0)}ni=1 independently from
a density ρin(y, c) that has full support on D × R and is smooth in both its arguments. As shown in
Ref. [2], then we have that ρin > 0 in D × R and

∫
R cρin(·, c)dc ∈ L2(D). We denote the measure

for the infinite set {(Yi(0), Ci(0))}i∈N by Pin. In order to guarantee existence and uniqueness of the
global solution to (1) we also make

Assumption 1.1 The kernel ϕ(·,x) is a continuously differentiable function of y for all x ∈ Ω.

This assumption guarantees that the functions F and K are continuously differentiable in their
arguments, and that the energy E is continuously differentiable and coercive, i.e. for every C ∈ R
the sub-level set

EC = {(y1, c1, . . . ,yn, cn) ∈ (D × R)n : E(y1, c1, . . . ,yn, cn) ≤ C} is bounded. (3)

As a result, the solutions to the GD equations (1) exit and are unique for all times t > 0.
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1.1 Empirical distribution and derivation of the nonlinear Liouville equation

In the main text, we refer to the nonlinear Liouville equation satisfied by the parameter density. The
density is the large n limit of the empirical distribution

ρn(t,y, c) =
1

n

n∑
i=1

δ(c− Ci(t))δ(y − Yi(t)). (4)

We write the neural network representation as

fn(t,x) =
1

n

n∑
i=1

Ci(t)ϕ(x,Yi(t)) =

∫
D×R

cϕ(x,y)ρn(t,y, c)dydc. (5)

To derive the time evolution of ρn, we simply take the time derivative of (4),

∂tρn(t,y, c) = − 1

n

n∑
i=1

δ(c− Ci)∇δ(y − Yi) · Ẏi

− 1

n

n∑
i=1

∂cδ(c− Ci)δ(y − Yi) Ċi

(6)

Pulling the derivatives in front of the sums and using (1) we can write this equation as

∂tρn(t,y, c) = −∇ ·

 1

n

n∑
i=1

δ(c− Ci)δ(y − Yi(t))

c∇F (y)− 1

n

n∑
j=1

cCj∇K(y,Yj)


− ∂c

 1

n

n∑
i=1

δ(c− Ci)δ(y − Yi)

F (y)− 1

n

n∑
j=1

CjK(y,Yj)


(7)

where we used the Dirac delta to replace Yi by y and Ci by c. We can now use the definition of ρn to
replace 1

n

∑n
i=1 δ(c− Ci(t))δ(y − Yi(t)) by ρn(t,y, c). Using the fact that

1

n

n∑
j=1

cCj∇K(y,Yj) =
1

n

n∑
j=1

∫
D×R

cc′∇K(y,y′)δ(c′ − Cj)δ(y′ − Yj)dy
′dc′

=

∫
D×R

cc′∇K(y,y′)ρn(y′, c′)dy′dc′

(8)

and a similar calculation for 1
n

∑n
j=1 CjK(y,Yj), we see that the empirical distribution (4) satisfies

∂tρn = ∇ · (c∇U([ρn],y)ρn) + ∂c (U([ρn],y)ρn) , (9)

where
U([ρ],y) = −F (y) +

∫
D×R

c′K(y,y′)ρ(y′, c′)dy′dc′ (10)

When there is a diffusive term added, the nonlinear Liouville equation (9) is referred to as McKean-
Vlasov equation[3, 4]. When there is noise, it is often referred to as Dean’s equation [5].

1.2 Limit behavior and fluctuations scaling

All limits in this section should be understood in the weak sense—ultimately, we are interested in
fn(t), not ρn(t), and fn(t) is obtained by testing ρn(t) against cϕ(·,y), as in (5).

1.2.1 Zeroth order term—mean field limit

If we formally take the limit as n→∞ of the limiting equation for the distribution, we deduce that
ρn(t) ⇀ ρ0(t) where the arrow denotes weak convergence and ρ0(t) satisfies

∂tρ0 = ∇ · (c∇U([ρ0],y)ρ0) + ∂c (U([ρ0],y)ρ0) , (11)
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This equation differs from the nonlinear Liouville equation (11) only in that it initial condition is
smooth, ρ0(t = 0) = ρin—we show below that the solution to (11) also remains smooth for all t > 0.
Notice that (11) can be written as

∂tρ0 = ∇ ·
(
ρ0∇

δE0
δρ0

)
+ ∂c

(
ρ0∂c

δE0
δρ0

)
(12)

where E0[ρ0] is given by:

E0[ρ0] = Cf −
∫
D×R

cFρ0dydc+ 1
2

∫
(D×R)2

cc′K(y,y′)ρ0ρ
′
0dydcdy

′dc′

= 1
2

∫
Ω

(
f(x)−

∫
D×R

cϕ(x,y)ρ0dydc

)2

dµ(x) ≥ 0

(13)

where we use the shorthands ρ0 = ρ0(t,y, c), ρ′0 = ρ0(t,y′, c′), and similarly below. Note that the
energy functional is quadratic in ρ0 and hence is convex. The energy in (13) is the continuous limit
of (2) scaled by n−1, and (12) is the gradient decent flow on this energy in the Wasserstein metric.
The energy can be expressed in terms of a signed density

G0(y) =

∫
R
cρ0(y, c)dc. (14)

Indeed, (13) can be written as a functional of G0 alone:

E0[ρ0] = Ê0
[∫

Rcρ0(·, c)dc
]

with Ê0[G0] = Cf −
∫
D

FG0dy + 1
2

∫
D2

K(y,y′)G0G
′
0dydy

′.

(15)
The solution to the optimization problem is unique at the level of this signed density. To analyze
the time evolution of the limiting density ρ0, we study the time evolution of the neural network
representation itself,

f0(t,x) =

∫
D×R

cϕ(x,y)ρ0(t,y, c)dydc (16)

Writing (11) as

∂tρ0 = ∇ ·
(
c

∫
Ω

∇yϕ(x,y) (f0(t,x)− f(x)) dµ(x)ρ0

)
+ ∂c

(∫
Ω

ϕ(x,y) (f0(t,x)− f(x)) dµ(x)ρ0

) (17)

we deduce, using (16),

∂tf0(t,x) =

∫
D×R

cϕ(x,y)∂tρ0(t,y, c)dydc

=

∫
D×R

cϕ(x,y)∇ ·
(
c

∫
Ω

∇yϕ(x,y) (f0(t,x)− f(x)) dµ(x)ρ0

)
dydc

+

∫
D×R

cϕ(x,y)∂c

(∫
Ω

ϕ(x,y) (f0(t,x)− f(x)) dµ(x)ρ0

)
dydc.

(18)

We define a symmetric kernel

M([ρ],x,x′) =

∫
D×R

(
c2∇yϕ(x,y) · ∇yϕ(x′,y) + ϕ(x,y)ϕ(x′,y)

)
ρ(y, c)dydc. (19)

And now, after integration by parts in y the first term and in c the second, and interchanging the order
of integration between (y, c) and x on both these terms, the equation for ∂tf0 can be written as

∂tf0(t,x) = −
∫

Ω

M([ρ0(t)],x,x′) (f0(t,x′)− f(x′)) dµ(x′). (20)

We now observe that, given any r ∈ L2(Ω, µ) we have∫
Ω2

r(x)r(x′)M([ρ],x,x′)dµ(x)dµ(x′) =

∫
D×R

(
c2|∇R(y)|2 + |R(y)|2

)
ρ(y, c)dydc (21)
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where
R(y) =

∫
Ω

r(x)ϕ(x,y)dµ(x). (22)

As a result, (21) is non-negative so long as∫
R
ρ(·, c)dc > 0 a.e. in D, (23)

and it can only be zero if R = 0 a.e. in D. By the assumptions we have placed on the kernel, this
requires r = 0 a.e. in Ω, which shows that M([ρ],x,x′) is positive-definite if (23) holds. It is easy to
show that ρ0(t) > 0 for all t > 0: Indeed we can turn (11) for the initial condition ρ0(0) = ρin into

ρ0(t,y, c) = ρin (Y (−t), C(−t)) exp

(∫ t

0

C(s− t)∆U([ρ0(s)],Y (s− t))ds
)

(24)

where (Y (−t), C(−t)) are the solution to the characteristic equations{
Ẏ (t) = −C(t)∇U([ρ0(t)],Y (t)), Y (0) = y

Ċ(t) = −U([ρ0],Y (t)), C(0) = c
(25)

The representation formula (24) is readily verified by taking the time derivative of ρ0(t,Y (t), C(t))
and using the property Y (t,Y (s), C(s)) = Y (t + s) and C(t,Y (s), C(s)) = C(t + s) as well
as (11) and (25). (24) is not explicit, since U(t) depends on ρ0(t) through (23), but it shows that
ρ0(t) > 0 for all times t > 0 if ρin > 0. To show that this property also holds in the limit as t→∞,
we can analyze the characteristic equations (25). These equations are gradient descent in the potential
cU(t,y, [ρ0(t)]): because this potential is homogeneous of degree 1 in c, following [2] one can show
that its flow cannot accumulate in any subset of D×R. As a result, ρ0(t) > 0 for all t > 0 and in the
limit as t→∞, which implies that M([ρ0(t),x,x′) is always positive-definite, and the only stable
fixed point of (20) is f . In other words, since f0(t) is the limit of fn(t) as n→∞, if we control the
size of the fluctuations of ρn(t) around ρ0(t) (which we do in Sec. 2.1), we have established:

Proposition 1.2 (LLN) Let fn(t) = fn(t,x) be given by (5) with {Yi(t), Ci(t)}ni=1 solution of (1)
with initial condition drawn from Pin. Then

lim
n→∞

fn(t) = f0(t) Pin-almost surely (26)

where f0(t) solves (20) and satisfies

lim
t→∞

f0(t) = f a.e. in Ω. (27)

Proposition 1.2 indicates that the rate in time at which ρ0(t) converges towards its fixed point and
f0(t) towards f is independent of n to leading order, since n does not enter (11) or (20). This also
implies that the limits (26) and (27) commute, i.e. we also have limn→∞ limt→∞ fn(t) = f .

Notice that (20) confirms that f0(t) evolves on a quadratic landscape, namely the loss function.
Indeed this equation can be written as

∂tf0(t,x) = −
∫

Ω

M([ρ0(t)],x,x′)Df0(t,x′)`(f, f0(t))dµ(x′) (28)

where Df(x) denotes the gradient with respect to f(x) in the L2(Ω, µ)-norm, i.e. given a functional
F [f ],

∀h : Ω→ R : lim
z→0

d

dz
F [f + zh] = 〈h,DfF [f ]〉L2(Ω,µ) =

∫
Ω

h(x)Df(x)F [f ]dµ(x). (29)

In particular, Df(x) reduces to δ/δf(x) if dµ(x) = dx.)

2 Gradient descent: Central limit theorem

In this section we provide a derivation of the CLT stated in the main text. To do so, we consider the
fluctuations of ρn(t) around ρ0(t). The scale of these fluctuations changes with time and to account
for this effect, we define ρ̃ξ(t) via:

ρn = ρ0 + n−ξ(t)ρ̃ξ(t), (30)
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where the exponent ξ(t) depends on t as specified below. Explicitly, (30) means:

ρ̃ξ(t)(t,y, c) = nξ(t)−1
n∑
i=1

(δ(y − Yi(t))δ(c− Ci(t))− ρ0(t,y, c)) (31)

By the Central Limit Theorem, choosing ξ(0) = 1/2 sets scale of fluctuations around the initial
conditions. Indeed, for any χ : D × R→ R, by the CLT under Pin∫

D×R
χ(y, c)ρ̃ξ(0)(0,y, c)dydc = n−1/2

n∑
i=1

χ̃(Yi(0), Ci(0))→ N(0, Cχ) in law as n→∞

(32)
where N(0, Cχ) denotes a Gaussian random variable with mean zero and variance Cχ, and we
defined

χ̃(y, c) = χ(y, c)−
∫
D×R

χ(y, c)ρin(y, c)dydc, Cχ =

∫
D×R

|χ̃(y, c)|2 ρin(y, c)dydc. (33)

We can write (32) distributionally as

ρ̃ξ(0)(0,y, c) ⇀ N (0, ρin(y, c)δ(y − y′)δ(c− c′)) in law as n→∞ (34)

We derive an equation for ρ̃ξ(t) by subtracting (11) from (9) and using (30):

∂tρ̃ξ(t) = ∇ ·
(
−c∇F ρ̃ξ(t) +

∫
D×R

cc′∇K(y,y′)
(
ρ̃′ξ(t)ρ0 + ρ′0ρ̃ξ(t) + n−ξ(t)ρ̃′ξ(t)ρ̃ξ(t)

)
dy′dc′

)
+ ∂c

(
−F ρ̃ξ(t) +

∫
D×R

c′K(y,y′)
(
ρ̃′ξ(t)ρ0 + ρ′0ρ̃ξ(t) + n−ξ(t)ρ̃′ξ(t)ρ̃ξ

)
dy′dc′

)
+ ξ̇(t) log n ρ̃ξ(t).

(35)
In order to take the limit as n→∞ of this equation, we need to consider carefully the behavior of
the the factors in (35) that contain n explicitly, that is, n−ξ(t)ρ̃ξ(t)ρ̃′ξ(t) and ξ̇(t) log n ρ̃ξ(t). Consider
the latter first. If we set

ξ̇(t) log n = o(1) (36)
the last term at the right hand side of (35) is higher order. Note that (36) means that we can vary ξ(t),
but only slowly. For the factor n−ξ(t)ρ̃ξ(t)ρ̃′ξ(t), a direct calculation shows that, for any p ∈ N and
ξ ∈ R,

Ein

(
n−ξ

∫
(D×R)2

χ(y, c)χ(y′, c′)ρ̃ξρ̃
′
ξdydcdy

′dc′

)p
= O

(
n(ξ−1)p

)
(37)

where Ein denotes expectation with respect to Pin—for example, if p = 1, this expectation is n(ξ−1)Cχ
where Cχ is given in (33). The expectation calculation implies that Pin-almost surely as n → ∞,
n−ξρ̃n(0)ρ̃′n(0) ⇀ 0 at t = 0 if ξ < 1. We can now argue that this statement also holds at times
t > 0 if (36) holds. To this end we write (35) compactly as

∂tρ̃ξ(t) = Lρ̃ξ(t) +Rξ(t) + ξ̇(t) log n ρ̃ξ(t) (38)

where Lρ̃n contains the terms at the right hand side of (35) that are linear in ρ̃ξ(t), and Rξ(t) contains
the terms involving n−ξ(t)ρ̃ξ(t)ρ̃′ξ(t). In order to control the Rξ(t) term, we can write an equation for
n−ξ(t)ρ̃ξ(t)ρ̃

′
ξ(t): this equation is of the form (38) with an additional linear term involving L′ (same as

L but acting on (y′, c′)), the source term Rξ(t) replaced by one involving n−2ξ(t)ρ̃ξ(t)ρ̃
′
ξ(t)ρ̃

′′
ξ(t), and

the last term in (38) replaced by 2ξ̇(t) log n ρ̃ξ(t)ρ̃
′
ξ(t): a calculation similar to the one that gives (37)

indicates that at t = 0 this source term is higher order than the rest and goes to zero Pin-almost surely
as n→∞. The same is true for 2ξ̇(t) log n ρ̃ξ(t)ρ̃

′
ξ(t) if (36) holds. We can then derive equations for

n−2ξ(t)ρ̃ξ(t)ρ̃
′
ξ(t)ρ̃

′′
ξ(t) and so on, and each time reach the same conclusion: they involve a linear part

made of operators L, L′, etc. and a remainder that is higher order.

This argument implies that, as long as (36) holds and ξ(t) < 1 at all times, ρ̃ξ(t) has a limit as n→∞.
If we take this limit at any fixed time, then (36) implies that ξ(t) = ξ(0) = 1

2 as n→∞, that is, we
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have remained on the original scale set by Pin. On that scale, we have ρ̃1/2(t) ⇀ ρ1/2(t) as n→∞,
where ρ1/2(t) solves

∂tρ1/2 = ∇ ·
(
−c∇Fρ1/2 +

∫
D×R

cc′∇K(y,y′)
(
ρ′1/2ρ0 + ρ′0ρ1/2

)
dy′dc′

)
+ ∂c

(
−Fρ1/2 +

∫
D×R

c′K(y,y′)
(
ρ′1/2ρ0 + ρ′0ρ1/2

)
dy′dc′

) (39)

this equation should be solved with the Gaussian initial conditions read from (34):

ρ1/2(0,y, c) = N (0, ρin(y, c)δ(y − y′)δ(c− c′)) . (40)

Note that since the mean of ρ1/2 is zero initially and (39) is linear, this mean remains zero for all
times, and we can focus in the evolution of its covariance. Denoting this covariance by

ω1/2(t,y, c,y′, c′) = Einρ1/2(t,y, c)ρ1/2(t,y′, c′), (41)

from (39) it satisfies

∂tω1/2 = ∇ ·
(
−c∇Fω1/2 +

∫
D×R

cc′′∇K(y,y′′)
(
ω1/2ρ0 + ω1/2ρ

′′
0

)
dy′′dc′′

)
+ ∂c

(
−Fω1/2 +

∫
D×R

c′K(y,y′′)
(
ω1/2ρ0 + ω1/2ρ

′′
0

)
dy′′dc′′

)
+∇′ ·

(
−c′∇′F ′ω1/2 +

∫
D×R

c′c′′∇K(y,y′′)
(
ω1/2ρ

′
0 + ω1/2ρ

′′
0

)
dy′′dc′′

)
+ ∂c′

(
−F ′ω1/2 +

∫
D×R

c′′K(y′,y′′)
(
ω1/2ρ

′
0 + ω1/2ρ

′′
0

)
dy′′dc′′

)
(42)

where we use the shorthand ω1/2ρ0 = ω1/2(t,y′, c′,y′′, c′′)ρ0(t,y, c), ω1/2ρ
′
0 =

ω1/2(t,y′′, c′′,y, c)ρ0(t,y′, c′), and ω1/2ρ
′′
0 = ω1/2(t,y, c,y′, c′)ρ0(t,y′′, c′′). The initial con-

dition for (42) is
ω1/2(0,y, c,y′, c′) = ρin(y, c)δ(y − y′)δ(c− c′). (43)

The existence of the weak limit of ρ̃1/2 even with ξ(t) = ξ(0) = 1
2 is enough to confirm that

ρn(t) ⇀ ρ0(t) as n→∞, where ρ0(t) solves (11). It also gives the scaling of fluctuations around
that limit at finite time: as n→∞, we have

n1/2 (ρn(t,y, c)− ρ0(t,y, c)) ⇀ ρ1/2(t,y, c), in law (44)

where ρ1/2(t) is the zero-mean Gaussian process whose covariance ω1/2(t) solves (42). It is useful
to formulate this Central Limit Theorem in terms of fn(t):

Proposition 2.1 (CLT) Let fn(t) = fn(t,x) be given by (5) with {Yi(t), Ci(t)}ni=1 solution of (1)
with initial condition drawn from Pin. Then as n→∞:

n1/2 (fn(t)− f0(t))→ f1/2(t), in law (45)

where f1/2(t) is the zero-mean Gaussian process whose covariance is given by

Einf1/2(t,x)f1/2(t,x′) =

∫
(D×R)2

cc′ϕ(x,y)ϕ(x,y)ω1/2(t,y, c,y′, c′)dydcdy′dc′ (46)

3 Gradient descent: asymptotic error

It is useful to consider different values of ξ(t) in (30) to get a better handle on the size of the
fluctuations at long times. This is needed because, as shown below, the solution to (42) converges
to zero as t → ∞, i.e. the fluctuation disappear on this scale. To analyze on which scale these
fluctuations settle as t→∞, we set

ξ(t) = ξ̄(t/an) with lim
n→∞

an/ log n =∞, ξ̄(0) = 1
2 , ξ̄(s) < 1 ∀s > 0 (47)
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so that ξ̇(t) = ξ̄′(t/an)/an and satisfies (36). If we then set the time to be an, we can conclude that
ρ̃ξ(an)(an) ⇀ ρξ̄, where ξ̄ = ξ̄(1) and ρξ̄ solves

0 = ∇ ·
(
−c∇Fρξ̄ +

∫
D×R

cc′∇K(y,y′)
(
ρ′ξ̄ρ0 + ρ′0ρξ̄

)
dy′dc′

)
+ ∂c

(
−Fρξ̄ +

∫
D×R

c′K(y,y′)
(
ρ′ξ̄ρ0 + ρ′0ρξ̄

)
dy′dc′

) (48)

where ρ0 in this equation is understood as limn→∞ ρ0(an) = limt→∞ ρ0(t), a limit for which we
have already shown existence. Since (48) is linear and homogeneous in ρξ̄, either zero is the stable
fixed point of this equation, and it means that the size of the fluctuations are bounded from above by
O(n−ξ̄) asymptotically: ρ̃ξ̄(an) ⇀ 0; or zero is an unstable fixed point of (48), and these fluctuations
go to infinity even on the scale O(n−1/2).

To see that the first scenario holds, write (48) as

0 = ∇ ·
(∫

D×R
cc′∇K(y,y′)ρ′ξ̄ρ0dy

′dc′
)

+ ∂c

(∫
D×R

c′K(y,y′)ρ′ξ̄ρ0dy
′dc′
)

(49)

Proceeding as we did to derive (20) we can write an equation for

fξ̄(x) =

∫
D×R

cϕ(x,y)ρξ̄(y, c)dydc (50)

which is
0 = −

∫
Ω

M([ρ0],x,x′)fξ̄(x
′)dµ(x′) (51)

where M([ρ0],x,x′) is the kernel defined in (19) evaluated on ρ = ρ0 = limt→∞ ρ0(t). Since this
kernel is positive-definite at all times t > 0 and in the limit as t→∞, and the only fixed point of (51)
is zero so that

fξ̄ = 0. (52)
This also implies that ρξ̄ = 0 is a stable fixed point of (49). Summarizing, we have established:

Proposition 3.1 (Asymptotic error) Let fn(t) = fn(t,x) be given by (5) with {Yi(t), Ci(t)}ni=1
solution of (1) with initial condition drawn from Pin. Then for any an > 0 such that an/ log n→∞
as n→∞, we have

lim
n→∞

nξ̄ (fn(an)− f) = 0 almost surely for any ξ̄ < 1 (53)

The fluctuations at scale O(n−1/2) of fn(t) around f0(t) that were present initially decrease in
amplitude as time progresses, and become O(n−1) as t→∞, a type of self-healing.

4 Stochastic Gradient Descent: Law of large numbers

The SGD dynamics is
Y P
i (t+ ∆t) = Y P

i (t) + CPi (t)∇FP (t,Y P
i (t))∆t− 1

n

n∑
j=1

CPi (t)CPj (t)∇KP (t,Y P
i (t),Y P

j (t))∆t

CPi (t+ ∆t) = Ci(t) + FP (t,Y P
i (t))∆t− 1

n

n∑
j=1

CPj (t)KP (t,Y P
i (t),Y P

j (t))∆t

(54)
where ∆t > 0 is the time-step and

FP (t,y) =
1

P

P∑
p=1

f(Xp(t))ϕ(Xp(t),y), KP (t,y,y′) =
1

P

P∑
p=1

ϕ(Xp(t),y)ϕ(Xp(t),y
′)

(55)
in which {Xp(t)}Pp=1 are P iid variables which are redrawn from µ independently at every time
step t.
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4.1 Limiting stochastic differential equation (SDE)

First, we denote the set of all particles as

z = (z1, . . . ,zn) = (y1, c1, . . . ,yn, cn) ∈ (D × R)n, zi = (yi, ci) ∈ D × R i = 1, . . . , n
(56)

where

fn(z) =
1

n

n∑
i=1

ciϕ(·,yi), fn(x, z) =
1

n

n∑
i=1

ciϕ(x,yi). (57)

Using this notation, (54) is just

Z(t+ ∆t) = Z(t)−∆t∇zEP (Z(t)) (58)

where EP (z) is the approximation of the loss function obtained with a batch of P independent
samples {Xp(t)}Pp=1 drawn from µ and scaled by n:

EP (z) =
n

2P

P∑
p=1

|f(Xp)− fn(Xp, z)|2 (59)

The estimator is unbiased and EP (z) has expectation n`(f, fn(z)). Explicitly,

∇zEP (z) =
n

P

P∑
p=1

(fn(Xp, z)− f(Xp))∇zfn(Xp, z). (60)

To characterize the noise of the SDE, we need to compute the covariance

E (∇z(EP (z)− n`(f, fn(z))))⊗ (∇z(EP (z′)− n`(f, fn(z′))) =
1

P
R(z) (61)

with

R(z) = n2

∫
Ω

|f(x)− fn(x, z)|2∇zfn(x, z)⊗∇zfn(x, z)dµ(x)

− n2∇z`(f, fn(z))⊗∇z`(f, fn(z))

(62)

We can write this covariance in block tensor notation

Ri,j(z) =

(
cicjA2([f − fn],yi,yj) ciA1([f − fn],yi,yj)
cjA1([f − fn],yj ,yi) A0([f − fn],yi,yj)

)
(63)

where

A0([f ],y,y′) =

∫
Ω

|f(x)|2ϕ(x,y)ϕ(x,y′)dµ(x)

−
∫

Ω

f(x)ϕ(x,y)dµ(x)

∫
Ω

f(x)ϕ(x,y′)dµ(x)

A1([f ],y,y′) =

∫
Ω

|f(x)|2∇yϕ(x,y)ϕ(x,y′)dµ(x)

−
∫

Ω

f(x)∇yϕ(x,y)dµ(x)

∫
Ω

f(x)ϕ(x,y′)dµ(x)

A2([f ],y,y′) =

∫
Ω

|f(x)|2∇yϕ(x,y)⊗∇y′ϕ(x,y′)dµ(x)

−
∫

Ω

f(x)∇yϕ(x,y)dµ(x)⊗
∫

Ω

f(x)∇y′ϕ(x,y′)dµ(x)

(64)

where A0 ∈ R, A1 ∈ Rn, and A2 ∈ Rn × Rn.

The discrete SGD equation (54) resembles an Euler-Maruyama integration scheme, but the noise
scales as ∆t rather than

√
∆t. The corresponding SDE, which is equivalent to SGD up to discretiza-

tion errors, is
dZ = n∇z`(f, fn(Z))dt+

√
θdB (65)

8



where θ = ∆t/P and dB is a white-noise process with quadratic variation

〈dB, dB〉 = R(Z)dt. (66)

In the parameter variables, (65) reads
dY i = Ci∇F (Yi)dt−

1

n

n∑
j=1

CiCj∇K(Y i,Yj)dt+
√
θdBi,

dCi = F (Yi)dt−
1

n

n∑
j=1

CjK(Yi,Yj)dt+
√
θdB′i

(67)

where {dBi, dB
′
i}ni=1 are a white-noise processes with quadratic variation

〈dBi, dBj〉 = CiCjA2([f − fn],Yi,Yj)dt,

〈dBi, dB
′
j〉 = CiA1([f − fn],Yi,Yj)dt,

〈dB′i, dB′j〉 = A0([f − fn],Yi,Yj)dt.

(68)

4.2 Dean’s equation for particles with correlated noise

We analyze (67) instead of the discrete version (54), noting that the continuous limit is never
achieved in practice due to the finite step sizes. Applying Itô’s formula to (4) when {Yi(t), Ci(t)}ni=1
satisfy (67), we see

dρn(t,y, c) = − 1

n

n∑
i=1

δ(c− Ci)∇δ(y − Yi) · dYi

− 1

n

n∑
i=1

∂cδ(c− Ci)δ(y − Yi)dCi

+
θ

2n

n∑
i=1

δ(c− Ci)∇∇δ(y − Yi) : CiCiA2([f − fn],Yi,Yi)dt

+
θ

n

n∑
i=1

∂2
c δ(c− Ci)∇δ(y − Yi) · CiA1([f − fn],Yi,Yi)dt

+
θ

2n

n∑
i=1

∂2
c δ(c− Ci)δ(y − Yi)A0([f − fn],Yi,Yi)dt

(69)

We use (4) to write dYi and dCi, the drift terms that emerge can be treated as we did to derive (9).
The noise term in (69) is

− 1

n

n∑
i=1

δ(c− Ci)∇δ(y − Yi) · dBi −
1

n

n∑
i=1

∂cδ(c− Ci)δ(y − Yi)dBi (70)

and its quadratic variation is

∇∇′ : (ρn(t,y, c)ρn(t,y′, c′)cc′A2([fn(t)− f ],y,y′)) dt

+ ∂c∂c′ (ρn(t,y, c)ρn(t,y′, c′)A0([fn(t)− f ],y,y′)) dt

+ ∂c∇′ · (ρn(t,y, c)ρn(t,y′, c′)c′A1([fn(t)− f ],y′,y)) dt

+ ∂c′∇ · (ρn(t,y, c)ρn(t,y′, c′)cA1([fn(t)− f ],y,y′)) dt.

(71)

With this calculation we obtain Dean’s equation for the empirical distribution of the stochastic
gradient descent process

∂tρn = ∇ · (c∇U([ρn],y)ρn) + ∂c (U([ρn],y)ρn)

+ 1
2θ∇∇ :

(
ρnc

2A2([fn(t)− f ],y,y)
)

+ 1
2θ∂

2
c (ρnA0([fn(t)− f ],y,y))

+ θ∂c∇ · (ρncA1([fn(t)− f ],y,y))

+
√
θ η̇n(t,y, c)

(72)

9



where fn(t) is given by (5), i.e. fn(t,x) =
∫
D×R cϕ(x,y)ρ0(t,y, c)dydc, and we defined the

white-noise process η̇n(t,y, c) with quadratic variation in (71). The terms proportional to θ we refer
to as D([ρ],y,y) in the main text.

The deterministic part of (72) is the same as the equation for ρ0 derived from GD. However, we have
freedom as to the choice of θ so we can ensure that the noise terms occur at higher order, meaning
that we recover the LLN. Specifically, we let

θ = an−2α for some a > 0 and α > 0 (73)

This scaling can be achieved e.g. by choosing P = O(n2α), i.e. by increasing the batch size with n.

If α ∈ (0, 1) the fluctuations due to the noise in (72) eventually dominate the O(n−1) fluctuations
asymptotically. In this case, we have

∂tρα = ∇ ·
(
−c∇Fρα +

∫
D×R

cc′∇K(y,y′) (ρ′αρ0 + ρ′0ρα) dy′dc′
)

+ ∂c

(
−Fρα +

∫
D×R

c′K(y,y′) (ρ′αρ0 + ρ′0ρα) dy′dc′
)

+
√
a η̇0(t,y, c)

(74)

in which η̇0(t,y, c) is a white-noise process with quadratic variation as in (71) but with ρn replaced
by ρ0 and fn replaced by f0.

Alternatively, if α ≥ 1, then the fluctuations due to the noise in (72) are negligible compared to the
intrinsic flucutations, and we return to the setting of GD.

We hence take α ∈ (0, 1), and write both (74) as

∂tρα = ∇ ·
(
c

∫
Ω

∇yϕ(x,y) (f0(t,x)− f(x)) dµ(x) ρα

)
+ ∂c

(∫
Ω

ϕ(x,y) (f0(t,x)− f(x)) dµ(x) ρα

)
+∇ ·

(
c

∫
Ω

∇yϕ(x,y)fα(t,x)dµ(x) ρ0

)
+ ∂c

(∫
Ω

ϕ(x,y)fα(t,x)dµ(x) ρ0

)
+
√
a η̇0(t,y, c)

(75)

where we defined

fα(t,x) =

∫
D×R

cϕ(x,y)ρα(t,y, c)dydc. (76)

This equation is structurally similar to (48) except that it also contains a noise term. By proceeding
similarly as we did to derive (51) we get the following equation for fα(t,x):

∂tfα = −
∫

Ω

M([ρ0(t)],x,x′)fα(t,x′)dµ(x′)

−
∫

Ω

M([ρα(t)],x,x′) (f0(t,x′)− f(x′)) dµ(x′) +
√
aη̇(t,x)

(77)

where M([ρ],x,x′) is given in (19), and the quadratic variation of η̇(t,x) is precisely that of∫
D×R

cϕ(x,y)η̇0(t,y, c)dydc (78)

and given by

〈dη(t,x), dη(t,x′)〉 =

∫
Ω

N([ρ0(t)],x,x′, x̄, x̄) |f0(t, x̄)− f(x̄)|2 dµ(x̄)dt

−
∫

Ω2

N([ρ0(t)],x,x′, x̄, x̄′) (f0(t, x̄)− f(x̄)) (f0(t, x̄′)− f(x̄′)) dµ(x̄)dµ(x̄′)dt

(79)
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in which

N([ρ],x,x′, x̄, x̄′) =

∫
(D×R2)

ρ(y, c)ρ(y′, c′)
(
c2∇yϕ(x,y) · ∇yϕ(x̄,y) + ϕ(x,y)ϕ(x̄,y)

)
×
(
c′

2∇y′ϕ(x′,y′) · ∇y′ϕ(x̄′,y′) + ϕ(x′,y′)ϕ(x̄′,y′)
)
dydcdy′dc′

(80)

The SDE (77) has the property that it self-quenches as t→∞, because

lim
t→∞

Ak([f0(t)− f ],y,y′) = 0, k = 0, 1, 2. (81)

and we know that f0(t)→ f and from (81) we see that η̇(t)→ 0 as well. Therefore, at long times
(77) reduces to

∂tfα = −
∫

Ω

M([ρ0(t)],x,x′)fα(t,x′)dµ(x′) (82)

Since M([ρ0(t)],x,x′) is positive-definite the only (stable) fixed point of this equation is zero and
fα(t)→ 0 as t→∞. Importantly, we need to choose large enough times that the fluctuations from
the initial data have decayed. In this case, the LLN Proposition 1.2 still holds if we use the solution
of (77) in (5), up to discretization errors.

5 Stochastic Gradient Descent: Asymptotic error

The considerations above also allow us to state:

Proposition 5.1 (Asymptotic error for SGD) Let fn(t) = fn(t,x) be as in (5) with
{Yi(t), Ci(t)}ni=1 solution to (67) with θ = an−2α, a > 0 α ∈ (0, 1). Then for any an > 0
such that an/ log n→∞ as n→∞, we have

lim
n→∞

nα (fn(an)− f) = 0 almost surely (83)

In this statement, the almost sure convergence is with respect to Pin as well as the statistics of the
noise terms in (67). In terms of the loss function, we have

`(f, fn(an)) = 1
2‖f −f0(an)‖2−n−α 〈f − f0(an), fα(an)〉+ 1

2n
−2α‖fα(an)‖2 +o(n−α) (84)

and as a result we have

Proposition 5.2 Under the same conditions as those in Proposition 5.1, the loss function satisfies

lim
n→∞

nα`(f, fn(an)) = 0 almost surely. (85)
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