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1 Relationship between Parametric SOP and Covariance of Multivariate
Generalized Gaussian Distribution

Here, we show our parametric second-order pooling (SOP) shares similar philosophy with estimation
of covariance by assuming features are sampled from a generalized multivariate Gaussian distribution
with zero mean. Firstly, our parametric SOP takes the following form:

Σ(Qj) = XTQjX = (PjX)T (PjX), (1)

where Qj is a learnable matrix, and Qj is a symmetric positive definite matrix, which has a unique
decomposition Qj = PT

j Pj . Given a set of X ∈ RL×d = {x1, . . . ,xL}, their generalized
multivariate Gaussian distribution with zero mean [5] can be represented as

p(xl; Σ̂; δ; ε) =
Γ(d/2)

πd/2Γ(d/2δ)2d/2δ
δ
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exp

(
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2εδ
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−1
xTl )δ

)
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where ε and δ are parameters of scale and shape, respectively; Σ̂ is covariance matrix, and Γ is a
Gamma function. Under maximum likelihood criterion, given δ and ε, covariance matrix Σ̂ can be
estimated by:

arg min
Σ̂

L∑
l=1

(xlΣ̂
−1

xTl )δ +N log |Σ̂|. (3)

As shown in [1, 6], the objective function in Eq. (3) can converge to a stationary point by using
iterative reweighed methods, whose j-th iteration has the following form:
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1

L
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Ld

qjl + (qjl )
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j
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l . (4)

Let fj(xl) = Ld

qjl+(qjl )
1−δ∑

k 6=l(q
j
k)
δ

, we have

Σ̂j = XT ĜjX = (R̂jX)T (R̂jX), (5)

where Ĝj and R̂j are diagonal matrices, and their diagonal elements are {fj(x1)/L, . . . , fj(xL)/L}
and {

√
fj(x1)/L, . . . ,

√
fj(xL)/L}, respectively. Comparing Eq. (1) with Eq. (5), it is evident that,
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in each iteration, our parametric SOP learns a full matrix Pj , while iterative reweighted methods
[1, 6] learn the diagonal R̂j .

According to Eq. (5), iterative reweighted methods can be accomplished by J iterations:

Σ̂ = (R̂T · · · R̂1X)T (R̂T · · · R̂1X), (6)

Correspondingly we can learn a sequence of parameters Qj , {j = 1, . . . , J} for our parametric SOP,
i.e.,

Σ = (PT · · ·P1X)T (PT · · ·P1X). (7)

Since PjX can be conveniently implemented using 1× 1 convolution, our parametric SOP can be
transformed into learning multiple sequential 1× 1 convolution operations following by computation
of SOP. Eqs. (5)and (7) clearly show our parametric SOP and covariance of multivariate generalized
Gaussian distribution share the similar form.

2 Details of Matrix Square Root of Covariance Based on Newton-Schulz
Iteration [2]

Let A0 = Σ and B0 = I, according to Newton-Schulz iteration [2], we have

Aj̃ =
1

2
Aj̃−1(3I−Bj̃−1Aj̃−1); Bj̃ =

1

2
(3I−Bj̃−1Aj̃−1)Bj̃−1, (8)

where AJ̃ and BJ̃ will converge to Σ
1
2 and Σ−

1
2 after J̃ iterations, respectively. However, Eq. (8)

requires norm of (I − Σ), i.e., ‖I − Σ‖ < 1. The recently proposed method [4] introduces pre-
normalization (i.e., Σ̃ = 1

tr(Σ)Σ) and post-compensation operations (i.e., Z =
√

tr(Σ)AJ̃ ) for
Newton-Schulz iteration in Eq. (8), and develop a back-propagation (BP) algorithm based on matrix
back-propagation method [3] for end-to-end learning. Specifically, given the loss function l, BP for
post-compensation can be achieved by
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Let
∂l

∂BJ̃

= 0, for j̃ = J̃ , . . . , 2, BP of Newton-Schulz iteration can be accomplished with
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When j̃ = 1, we have
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Finally, BP of pre-normalization can be computed as
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Eq. (12) is the gradient of loss function l with respect to Σ, which is used to achieve BP for matrix
square root of covariance. Readers can refer to [4] for more details.
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