
Appendix A: derivation for the marginal distribution in eq. 6

First, we show a general derivation for the marginal distribution over F. First, we concatenate
{eyt}Tt=1 vertically to get a big vector ŷ 2 R(TDN)⇥1 resulting in the following distribution

ŷ|ef ⇠ N (h⌦ ef , IT ⌦�) (16)

where h is a T ⇥ 1 vector of ones. We can replace h with a (TDN) ⇥ (DN) matrix H such that
Hef = h⌦ ef . The marginal distribution of ŷ can be written as

p(ŷ|K) =

Z
N (ŷ|Hef , IT ⌦�)N (ef |0, IN ⌦K)def

=
1

Z

Z
exp

✓
�1

2
(ŷ �Hef)>(IT ⌦�)�1(ŷ �Hef)� 1

2
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◆
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=
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✓
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2
ŷ
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= N (ŷ|0, IT ⌦�+H(IN ⌦K)H>) (17)

The new covariance IT⌦�+H(IN⌦K)H> is a (TDN)⇥(TDN) matrix which is computationally
not invertible in practice. However the heavy inversion can be resolved by applying matrix inversion
lemma and the property of Kronecker product when calculating the log-likelihood.

Here, we provide another way of marginalizing out F which consists of multiple multivariate normal
distributions with smaller scale covariance matrices. Instead of vectorizing eY matrix into ŷ and
dealing with one multivariate normal with a big covariance matrix, we work on the integration with
the Gaussian distribution for data in eq. 5. The marginal distribution can be written as

p(ey1, ..., eyT |K) =

Z
N (ef |0, IN ⌦K)

TY

t=1

N (eyt|ef ,�)def (18)

Given a set of data observations {eyt}Tt=1, we can write the probability density function of N (eyt|ef ,�)

as N (ef |eyt,�) which is just an exponential function of a negative quadratic function. According to
the property of the product of Gaussian densities, let Nx(m,⌃) denote a density of x, then

Nx(m1,⌃1)Nx(m2,⌃2) = ccNx(mc,⌃c), cc = Nm1(m2,⌃1 +⌃2),

mc = (⌃�1
1 +⌃

�1
2 )�1(⌃�1

1 m1 +⌃
�1
2 m2), ⌃c = (⌃�1

1 +⌃
�1
2 )�1

. (19)

We can apply the property to the integration in eq. 18 in a chain style from N (ef |ey1,�) all the way
to N (ef |0, IN ⌦K):
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Therefore, we can write eq. 18 as

p(ey1, ..., eyT |K) =

Z
Nef (ey1,�)Nef (ey2,�)...Nef (eyT ,�)Nef (0, IN ⌦K)def =
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Its log likelihood is

log p(ey1, ey2, ..., eyT ) =
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Thus the marginal distribution is

p(ey1, ..., eyT |K) = N
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Appendix B: black box variational inference

The log marginal likelihood for eq. 7 can be lower bounded by introducing any distribution over
latent variable which has support where true posterior p(X|Y,�, ✓) does, and then appealing to
Jensen’s inequality (due to the concavity of the logarithm function):

log p(Y|�, ✓) = log

Z
p(Y|X,�, ✓)p(X)dX �

Z
q(X|�) log p(Y|X,�, ✓)p(X)

q(X|�) dX (24)

where q(X|�) is the variational approximating distribution for the true posterior controlled by some
free variational parameters �. We assume q(X|�) to be a standard normal distribution. In E-step, we
optimize the Evidence Lower BOund (ELBO),

L(�) �
= Eq(X|�) [log p(Y|X,�, ✓) + log p(X)� log q(X|�)] (25)

A standard gradient descent method can be used to maximize the ELBO over the variational parameter
with analytic computation of the expectation. However, the expectation of the first term in eq. 25
doesn’t have a closed-form solution. Therefore, we will employ the Black Box Variational Inference
(BBVI) [20] to maximize the ELBO with stochastic optimization. The BBVI algorithm requires the
computation of noisy unbiased gradients of the ELBO with Monte Carlo samples from the variational
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distribution,

r�L(�) ⇡
1

l

lX

i=1

r� log q(Xl|�)(log p(Y|Xl,�, ✓) + log p(Xl)� log q(Xl|�)), where Xl ⇠ q(X|�). (26)

This gradient involves calculating the log likelihood of p(Y|X,�, ✓) with (DN)⇥(DN) covariance
matrices, which is the computational bottleneck of the evaluation. However, we can efficiently
evaluate it with the nice property of Kronecker product.

Appendix C: inverting the covariance matrix

The key problem is to invert the covariance matrix C = T IN ⌦K+⌃N ⌦⌃D.

Let ⌃D = UD⇤DU
>
D and ⌃N = UN⇤NU

>
N be the eigen-decompositions of ⌃D and ⌃N . The

covariance matrix C can be factorized as
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The complexity of inverting the first and the third terms in eq. 27 is O(D3 +N
3). The bottleneck

is now inverting the second term in eq. 27. We define new notations eK = ⇤
� 1

2
D U

>
DKUD⇤

� 1
2

D and
eC = T⇤

�1
N ⌦ eK+ IN ⌦ ID.

The problem is reduced to inverting the matrix eC. Therefore the second step is to exploit the
compatibility of a Kronecker product plus a constant diagonal term with eigenvalue decomposition.
Let T⇤�1

N = UT⇤TU
>
T and eK = UK⇤KU

>
K be the eigen-decompositions of T⇤�1

N and eK. Thus,
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�
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Finally, combining eq. 27 and eq. 28 together to get
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⇣
UN⇤
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Appendix D: more 2D latent representations for 22 odors

fu
nc
tio
na
l

lo
ca
l

t-SNE MDS

-150

100

-100 100

-150

100

-100 100
-15

15

-10 10

-20

10

-10 20

Figure 5: We analyzed the same
dataset with t-SNE and MDS, and
present the results obtained in the
figures. Note that neither method
is able to identify the class struc-
ture of the functional or local
odor set (compared to Fig. 3 in
the main paper).
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