
Appendix A Proofs

A.1 Proof of Theorem 2.3

The proof of Theorem 2.3 requires the following preparatory lemma, which we borrow from [6].

Lemma A.1 ([6, Proposition 2.8]). For any γ ∈ R+, D ∈ Sd+\{0} and Σ ∈ Sd++, we have

sup
S�0

〈
D,S

〉
− γ Tr

[
S − 2

(
Σ

1
2SΣ

1
2

) 1
2

]
=

{
γ2
〈
(γId −D)−1,Σ

〉
if γId � D,

+∞ otherwise.

Moreover, if γId � D, the unique optimal solution of the above maximization problem is given by

S? = γ2(γId −D)−1Σ(γId −D)−1.

Proof of Theorem 2.3. The optimal value of the minimax problem (2) satisfies

inf
ψ∈L

sup
Q∈P

EQ [‖x− ψ(y)‖2
]
≥ sup

Q∈P
inf
ψ∈L

EQ [‖x− ψ(y)‖2
]

(A.1a)

= sup
Q∈P

inf
G,g

EQ [‖x−Gy − g‖2] , (A.1b)

where (A.1a) follows from the max-min inequality, and (A.1b) holds because the inner minimization
problem over ψ is solved by the conditional expectation function ψ?(y) = EQ[x|y], which is affine
in y for every fixed Gaussian distribution Q ∈ P , see, e.g., [7, page 522]. Without loss of generality,
one can thus restrict the set of measurable functions L to the set of affine functions parametrized
by a sensitivity matrix G ∈ Rn×m and an intercept vector g ∈ Rn. Recalling the definition of the
Wasserstein ambiguity set P in (3) and encoding each normal distribution Q ∈ P by its mean vector
c ∈ Rd and covariance matrix S ∈ Sd+, we can use Proposition 2.2 to reformulate (A.1b) as

sup inf
G,g

〈
In, Sxx + cxc

>
x

〉
+
〈
G>G,Syy + cyc

>
y

〉
−
〈
G,Sxy + cxc

>
y

〉
−
〈
G>, Syx + cyc

>
x

〉
+ 2
〈
g,Gcy − cx

〉
+ g>g

s. t. c ∈ Rd, cx ∈ Rn, cy ∈ Rm

S ∈ Sd+, Sxx ∈ Sn+, Syy ∈ Sm+ , Sxy = S>yx ∈ Rn×m

c =

[
cx
cy

]
, S =

[
Sxx Sxy
Syx Syy

]
� 0

‖c− µ‖2 + Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.2a)

Solving the inner minimization problem over g analytically and substituting the optimal solution
g? = cx −Gcy back into the objective function shows that (A.2a) is equivalent to

sup inf
G

〈[
In −G
−G> G>G

]
, S

〉
s. t. c ∈ Rd, S ∈ Sd+

‖c− µ‖2 + Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.2b)

The minimization over G may now be interchanged with the maximization over c and S by using
the classical minimax theorem [2, Proposition 5.5.4], which applies because c and S range over
a compact feasible set. The inner maximization problem over c is then solved by c? = µ, which
maximizes the slack of the Wasserstein constraint. Thus, the minimax problem (A.2b) simplifies to

inf
G

sup
S�0

〈[
In −G
−G> G>G

]
, S

〉
s. t. Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.2c)
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Assigning a Lagrange multiplier γ ≥ 0 to the Wasserstein constraint and dualizing the inner maxi-
mization problem yields

inf
G

inf
γ≥0

sup
S�0

〈[
In −G
−G> G>G

]
, S

〉
+ γ

(
ρ2 − Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

])
. (A.2d)

Strong duality holds because S = Σ � 0 represents a Slater point for the primal maximization
problem. Finally, by using Lemma A.1, problem (A.2d) can be reformulated as

inf γ
(
ρ2 − Tr [Σ]

)
+ γ2

〈
(γId − [In, −G]>[In, −G])−1,Σ

〉
s. t. G ∈ Rn×m, γ ∈ R+

γId � [In, −G]>[In, −G].

(A.3)

By construction, the optimal value of (A.3) provides a lower bound on that of the minimax problem (2).
Next, we construct an upper bound by restricting L to the class of affine estimators.

inf
ψ∈L

sup
Q∈P

EQ [‖x− ψ(y)‖2
]
≤ inf
G,g

sup
Q∈P

EQ [‖x−Gy − g‖2] (A.4)

As P is non-convex, we cannot simply use Sion’s minimax theorem to show that the right-hand side
of (A.4) equals (A.1b). Instead, we need a more involved argument. Recalling the definition of P
in (3) and encoding each normal distribution Q ∈ P by its mean vector c ∈ Rd and covariance matrix
S ∈ Sd+, we can use Proposition 2.2 to reformulate the right-hand side of (A.4) as

inf
G,g

sup
〈
In, Sxx + cxc

>
x

〉
+
〈
G>G,Syy + cyc

>
y

〉
−
〈
G,Sxy + cxc

>
y

〉
−
〈
G>, Syx + cyc

>
x

〉
+ 2
〈
g,Gcy − cx

〉
+ g>g

s. t. c ∈ Rd, cx ∈ Rn, cy ∈ Rm

S ∈ Sd+, Sxx ∈ Sn+, Syy ∈ Sm+ , Sxy = S>yx ∈ Rn×m

c =

[
cx
cy

]
, S =

[
Sxx Sxy
Syx Syy

]
� 0

‖c− µ‖2 + Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.5a)

Next, we introduce the set C , {c ∈ Rd : ‖c− µ‖ ≤ ρ} as well as the auxiliary functions

D(G) ,

[
In −G
−G> G>G

]
and b(G, g) ,

[
−g
G>g

]
to reformulate problem (A.5a) as

inf
G,g

sup
c∈C
S�0

〈
D(G), S + c c>

〉
+ 2
〈
b(G, g), c

〉
+ g>g

s. t. ‖c− µ‖2 + Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.5b)

We emphasize that the constraint c ∈ C is redundant in (A.5b) but will facilitate further simplifications
below. Note also that D(G) � 0, and thus the minimax problem (A.5b) involves a cumbersome
convex maximization problem over c. By employing a penalty formulation of the Wasserstein
constraint, the inner maximization problem over c and S in (A.5b) can be re-expressed as

sup
c∈C
S�0

inf
γ≥0

〈
D(G), S + c c>

〉
+ 2
〈
b(G, g), c

〉
+ g>g

+ γ

(
ρ2 − ‖c− µ‖2 + Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

])
.

Here, the minimization over γ and the maximization over S may be interchanged by strong duality,
which holds because S = Σ � 0 constitutes a Slater point for the primal problem, see, e.g., [2,
Proposition 5.3.1]. We note that when ‖c− µ‖ = ρ, the feasible set of S reduces to a singleton, and
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thus strong duality holds trivially. The emerging inner maximization problem over S can then be
solved analytically by using Lemma A.1. In summary, the minimax problem (A.5b) is equivalent to

inf
G,g

sup
c∈C

inf
γ≥0

〈
D(G), c c>

〉
+ 2
〈
b(G, g), c

〉
+ g>g + γ

(
ρ2 − ‖c− µ‖2 − Tr [Σ]

)
+γ2

〈
(γId −D(G))−1,Σ

〉
s. t. γId � D(G).

(A.5c)

Observe now that the optimal value function of the innermost minimization problem over γ in (A.5c)
is convex in g and, thanks to the constraint γId −D(G) � 0, concave in c for every fixed G. By the
classical minimax theorem [2, Proposition 5.5.4], which applies because c ranges over the compact
set C, we may thus interchange the infimum over g with the supremum over c. After replacing D(G)
and b(G, g) with their definitions, it becomes clear that the innermost minimization problem over g
admits the analytical solution g? = µx −Gµy . Thus, problem (A.5c) is equivalent to

inf
G

sup
c∈C

inf
γ≥0

γ
(
ρ2 − ‖c− µ‖2 − Tr [Σ]

)
+ γ2

〈
(γId − [In, −G]>[In, −G])−1,Σ

〉
s. t. γId � [In, −G]>[In, −G].

(A.5d)
By invoking the minimax theorem [2, Proposition 5.5.4] once again, the inner infimum over γ can
be interchanged with the supremum over c. As the resulting inner maximization problem over c is
solved by c? = µ, problem (A.5d) is thus equivalent to (A.3). In summary, we have shown that (A.3)
provides both an upper bound on the left-hand side of (A.1) as well as a lower bound on the right-hand
side of (A.1). Thus, the inequality in (A.1) is in fact an equality.

A.2 Proof of Theorem 2.5

The proof of Theorem 2.5 relies on the following lemma, which extends a similar result from [6].
Lemma A.2 (Analytical solution of direction-finding subproblem). For any fixed Σ ∈ Sd++ and
D ∈ Sd+\{0}, the optimization problem

sup
S∈Sd+

〈
S,D

〉
s. t. Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2

is solved by
S? = (γ?)

2
(γ?Id −D)−1Σ(γ?Id −D)−1,

where γ? is the unique solution with γ?Id � D of the algebraic equation

ρ2 −
〈
Σ,
(
Id − γ?(γ?Id −D)−1

)2 〉
= 0.

Moreover, we have S? �
¯
σId, where

¯
σ , λmin(Σ).

Proof of Lemma A.2. The optimality of S? follows immediately from [6, Theorem 5.1]. Moreover,
the spectral norm of (S?)−1 obeys the following estimate.

‖(S?)−1‖ ≤ ‖Id −
1

γ?
D‖ · ‖Σ−1‖ · ‖Id −

1

γ?
D‖ ≤ ‖Σ−1‖ =

¯
σ−1

As the largest eigenvalue of (S?)−1 is bounded by
¯
σ−1, we may conclude that S? �

¯
σId.

Proof of Theorem 2.5. The proof of Theorem 2.3 has shown that the original infinite-dimensional
minimax problem (2) is equivalent to the finite-dimensional minimax problem (A.2c). By Lemma A.2,
the solution of the inner maximization problem in (A.2c) satisfies S? �

¯
σId. Thus, one may

append the redundant constraint S �
¯
σId to this inner problem without sacrificing optimality. By

interchanging the minimization over G with the maximization over S, which is allowed by [2,
Proposition 5.5.4], problem (A.2c) can thus be reformulated as

sup
S�0

inf
G

〈[
In −G
−G> G>G

]
, S

〉
s. t. Tr

[
S + Σ− 2

(
Σ1/2SΣ1/2

)1/2]
≤ ρ2

S �
¯
σId.

(A.6)
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Recall that
¯
σ > 0, which implies that S � 0. Hence, the unconstrained quadratic minimization

problem over G in (A.6) has a unique solution G?, which can be obtained analytically by solving the
problem’s first-order optimality condition. Specifically, we have

2G?Syy − 2Sxy = 0 ⇐⇒ G? = SxyS
−1
yy .

Substituting G? into (A.6) yields the desired maximization problem (5). By construction, this convex
program is equivalent to nature’s decision problem on the right-hand side of (4), and thus it is easy to
see that the least favorable prior is given by Q? = Nd(µ, S?). Next, we solve the Bayesian estimation
problem

inf
ψ∈L

EQ? [
‖x− ψ(y)‖2

]
.

An elementary analytical calculation reveals that this problem is solved by ψ?(y) = S?xy(S?yy)−1(y−
µy) + µx. Moreover, this solution is unique because S? �

¯
σId, which implies that the objective

function is strictly convex. By Theorem 2.3 and [3, Section 5.5.5], we may then conclude that ψ? is
also optimal in (2). This observation completes the proof.

A.3 Proof of Theorem 3.2

The following lemma suggests upper and lower bounds on the (unique) root γ? of the function h(γ)
defined in (8). Note that this root is computed approximately using bisection in Algorithm 1.

Lemma A.3 (Bisection interval). For any ρ > 0, the solution of the algebraic equation h(γ?) = 0
resides in the interval [γmin, γmax], where

γmin , λ1

(
1 +

√
v>1 Σv1/ρ

)
, γmax , λ1

(
1 +

√
Tr [Σ]/ρ

)
, (A.7)

the scalar λ1 is the largest eigenvalue of D , ∇f(S), and v1 is a corresponding eigenvector.

Proof of Lemma A.3. Let D =
∑d
i=1 λiviv

>
i be the spectral decomposition of D. The function h

can be equivalently rewritten as

ρ2 −
d∑
i=1

(
λi

γ − λi

)2

v>i Σvi,

where the summation admits the following bounds:(
λ1

γ − λ1

)2

v>1 Σv1 ≤
d∑
i=1

(
λi

γ − λi

)2

v>i Σvi ≤
(

λ1
γ − λ1

)2

Tr [Σ] .

Equating the two bounds to ρ2 yields γmin and γmax, respectively.

Proof of Theorem 3.2. The proof of Lemma A.2 implies that L(γ) , γ2(γId−D)−1Σ(γId−D)−1

is feasible in (7b) for every γ with γId � D and h(γ) > 0; see [4, Theorem 2]. Moreover, L(γ?)
is optimal in (7b) if γ?Id � D and h(γ?) = 0. Algorithm 1 uses a bisection procedure to compute
an approximation γ of γ? such that L(γ) is feasible and ε-suboptimal in (7b). The degree of
suboptimality of L(γ) equals

〈
L(γ?)−L(γ), D

〉
. The true optimal value

〈
L(γ?), D

〉
is inaccessible

but can be estimated above by the objective value of γ in the Lagrangian dual of (7b), which can be
expressed as

min
γ: γId�D

γ(ρ2 − Tr [Σ]) + γ2
〈
(γId −D)−1,Σ

〉
,

see also [6, Proposition 2.8]. Thus, the suboptimality of L(γ) is bounded above by〈
L(γ?)− L(γ), D

〉
≤ γ(ρ2 − Tr [Σ]) + γ2

〈
(γId −D)−1,Σ

〉
−
〈
L(γ), D

〉
.

Lemma A.3 ensures that γ? ∈ [γmin, γmax], and therefore it suffices to search over this interval.
Note that the function h is Lipschitz continuous in the bisection interval, and therefore, the bisection
Algorithm 1 will terminate in finite time.
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A.4 Proof of Theorem 3.3

The proof of Theorem 3.3 widely parallels that of [5, Theorem 1]. The key ingredient is to prove that
the curvature constant of the problem’s (negative) objective function −f is bounded.
Definition A.4 (Curvature constant). The curvature constant Cg of the convex function g with respect
to a compact domain S is defined as

Cg ,


sup

X,Y,Z,α

2
α2

(
g(Z)− g(X)−

〈
Z −X,∇g(X)

〉)
s. t. Z = (1− α)X + αY

X, Y ∈ S, α ∈ [0, 1].

In order to bound the curvature constant of −f , we need several preparatory lemmas.
Lemma A.5 ([1, Fact 7.4.9]). For any A ∈ Rn×m, B ∈ Rm×l, C ∈ Rl×k, and D ∈ Rk×n, we have

Tr [ABCD] = vec(A)>(B ⊗D>) vec(C>),

where ‘⊗’ stands for the Kronecker product, while ‘vec(·)’ denotes the vectorization of a matrix.

Lemma A.6 (Bounded feasible set). If S is feasible in (5), then S � σ̄Id, where σ̄ , (ρ+
√

Tr [Σ])2.

Proof of Lemma A.6. We seek an upper bound on the maximum eigenvalue of S uniformly across all
covariance matrices S feasible in (5), that is, we seek an upper bound on the optimal value of

sup
S�0

‖S‖

s. t. Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.8)

Problem (A.8) is a non-convex optimization problem because we maximize a convex function (the
spectral norm of S) over a convex set. An easily computable upper bound is obtained by solving

sup
S�0

〈
S, Id

〉
s. t. Tr

[
S + Σ− 2

(
Σ

1
2SΣ

1
2

) 1
2

]
≤ ρ2.

(A.9)

Indeed, note that Tr [S] =
〈
S, Id

〉
≥ ‖S‖, where the inequality holds because S � 0. By Lemma A.2,

which studies a more general problem with an arbitrary linear objective function
〈
S,D

〉
, prob-

lem (A.9) has an analytical solution that is found by solving the following algebraic equation in γ.

ρ2 −
〈
Σ,
(
Id − γ?(γ?Id − Id)−1

)2 〉
= 0 ⇐⇒ ρ2 −

(
1

γ? − 1

)2

Tr [Σ] = 0

In the special case considered here, this equation can be solved in closed form, and there is no need
for a bisection algorithm. Specifically, we have γ? = 1 +

√
Tr [Σ]/ρ, and thus (A.9) is solved by

S? = (γ?)
2

(γ?Id − Id)−1Σ(γ?Id − Id)−1 =

(
γ?

γ? − 1

)2

Σ =
(ρ+

√
Tr [Σ])2

Tr [Σ]
Σ.

Therefore, problem (A.8) is upper bounded by Tr [S?] = (ρ+
√

Tr [Σ])2.

For ease of exposition, we now define the (compact) feasible set of problem (5) as

S ,
{
S ∈ Sd+ : Tr[S + Σ− 2(Σ

1
2SΣ

1
2 )

1
2 ] ≤ ρ2, S �

¯
σId

}
(A.10)

Lemma A.7 (Curvature bound). The curvature constant C−f of the (negative) objective function
−f over the feasible set S satisfies C−f ≤ C , 2σ̄4/

¯
σ3.

Proof of Lemma A.7. We first expand the negative objective function −f at S ∈ Sd+. By Lemma A.5,
for any symmetric perturbation matrix ∆ with a characteristic block structure of the form

∆ =

[
∆xx ∆xy

∆>xy ∆yy

]
∈ Sd,
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the negative objective function −f(S + ∆) can be expressed as

Tr
[
−Sxx −∆xx + (Sxy + ∆xy)(Syy + ∆yy)−1(Syx + ∆>xy)

]
= Tr [−Sxx −∆xx] +

Tr
[
(Sxy + ∆xy)S−1yy (Im −∆yyS

−1
yy + (∆yyS

−1
yy )2 +O(‖∆yy‖3))(Syx + ∆>xy)

]
= Tr

[
−Sxx + SxyS

−1
yy Syx

]
− Tr

[
∆xx −∆xyS

−1
yy Syx + SxyS

−1
yy ∆yyS

−1
yy Syx − SxyS−1yy ∆>xy

]
− Tr

[
∆xyS

−1
yy ∆yyS

−1
yy Syx −∆xyS

−1
yy ∆>xy + SxyS

−1
yy ∆yyS

−1
yy ∆>xy − SxyS−1yy (∆yyS

−1
yy )2Syx

]
+O(‖∆‖3)

= Tr
[
−Sxx + SxyS

−1
yy Syx

]
−
〈
D,∆

〉
+

1

2

[
vec ∆xx

vec ∆xy

vec ∆yy

]>
H

[
vec ∆xx

vec ∆xy

vec ∆yy

]
+O(‖∆‖3),

where

D =

[
In −SxyS−1yy

−S−1yy Syx S−1yy SyxSxyS
−1
yy

]
∈ Sd+ (A.11)

and

H =

0 0 0
0 2S−1yy ⊗ In −2S−1yy ⊗ SxyS−1yy
0 −2S−1yy ⊗ S−1yy Syx 2S−1yy ⊗ S−1yy SyxSxyS−1yy

 ∈ S(n
2+nm+m2)

+ .

Note that the matrix D represents the gradient of f , which plays a crucial role in the Frank-Wolfe
algorithm. Similarly, H can be viewed as a compressed version of the Hessian matrix of −f , where
the redundant rows and columns corresponding to Syx have been eliminated. Thus, the Lipschitz
constant of the gradient∇f can be upper bounded by the largest eigenvalue of H , which is given by

‖H‖ = 2‖S−1yy ⊗D‖ = 2‖S−1yy ‖ · ‖D‖. (A.12)

By a standard Schur complement argument, we then have

S =

[
Sxx Sxy
Syx Syy

]
=

[
In SxyS

−1
yy

0 Im

] [
Sxx − SxyS−1yy Syx 0

0 Syy

] [
In 0

S−1yy Syx Im

]
.

Next, define the set

V ,
{
z = [x>, y>]> ∈ Rd : S−1yy Syx x+ y = 0

}
,

and note that any z ∈ V satisfies [
In 0

S−1yy Syx Im

]
z =

[
x
0

]
.

Thus, by the definition of the smallest eigenvalue, we have

λmin(S) = min
z 6=0

z>Sz

z>z
≤ min

z 6=0
z∈V

z>Sz

z>z
≤ λmin(Sxx−SxyS−1yy Syx) =⇒ Sxx−SxyS−1yy Syx � ¯

σIn.

Moreover, by the Cauchy interlacing theorem [1, Theorem 8.4.5], Lemma A.6, and basic properties
of the spectral norm, we have

‖S−1yy ‖ ≤ ‖S−1‖ ≤
1

¯
σ
, ‖Sxx‖ ≤ σ̄ and ‖Syy‖ ≤ σ̄.

Using the above inequalities, one can show that

1

σ̄
Im � S−1yy =⇒ SxySyx � σ̄SxyS−1yy Syx

and
σ̄In � Sxx � Sxx − SxyS−1yy Syx � ¯

σIn =⇒ SxyS
−1
yy Syx � (σ̄ −

¯
σ) In.
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Setting B = [In,−SxyS−1yy ], the above inequalities imply that

‖D‖ = ‖B>B‖ = ‖BB>‖ = ‖In + SxyS
−2
yy Syx‖ = 1 + ‖SxyS−2yy Syx‖

= 1 + ‖S−1yy SyxSxyS−1yy ‖
≤ 1 + ‖S−1yy ‖2 · ‖SyxSxy‖

≤ 1 +
σ̄(σ̄ −

¯
σ)

¯
σ2

≤ σ̄2

¯
σ2
.

By combining the last estimate with (A.12), we then find that the Lipschitz constant of∇f satisfies

Lip(∇f) = ‖H‖ ≤ 2σ̄2

¯
σ3

.

The diameter of the feasible set S with respect to the Frobenius norm satisfies

diam(S) = sup
S1,S2∈S

‖S1 − S2‖F ≤ sup
S1,S2∈S

Tr [S1 − S2] ≤ sup
S∈S

Tr [S] ≤ σ̄,

where the first inequality holds due to [1, Equation (9.2.16)], and the last inequality follows from the
proof of Lemma A.6. Therefore, by [5, Lemma 7], the curvature constant C−f admits the estimate

C−f ≤ (diam(S))2Lip(∇f) ≤ 2σ̄4

¯
σ3

.

This observation completes the proof.

Proof of Theorem 3.3. By Lemma A.7, the curvature constant C−f is bounded, and thus one can
directly apply [5, Theorem 1] to find the convergence rate.

Appendix B Sequential versus Static Estimation

We have resolved the filtering problem underlying Figure 4(c) as a single (static) estimation problem
in the spirit of Section 2, where the entire observation history Yt , (y1, . . . , y1) is interpreted as a
single observation used to predict xt. To our surprise, we found that the sequential filtering approach
advocated in Section 4 outperforms this alternative static approach even if an oracle reveals the
optimal radius of the ambiguity set (for t = 100, e.g., the static estimation error is 37.5 dB, while the
sequential estimation error is only 24.5 dB). In fact, for the static estimation problem the optimal
radius of the Wasserstein ball is ρ = 0 whenever t ≥ 5, that is, robustification does not improve
performance. In contrast, in the sequential filtering approach robustification always helps. A possible
explanation for this observation is that in the static approach our lack of information about the system
uncertainty propagates through the dynamics. As such, it renders robust estimation ineffective when
applied globally to the entire observation history at once. In contrast, in the sequential approach the
robustification at each stage appears to limit such an uncertainty propagation.
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