
Supplementary material for the paper:
Scalable Hyperparameter Transfer Learning

Valerio Perrone, Rodolphe Jenatton, Matthias Seeger, Cédric Archambeau
Amazon

Berlin, Germany
{vperrone, jenatton, matthis, cedrica}@amazon.com

A Derivation of the Learning Criterion

In this section, we derive the learning criterion (negative log marginal likelihood) for Bayesian linear
regression (BLR). Recall that our ABLR model is obtained by allocating one BLR model to each
task t, where the features are shared and are given by a deep neural network.

The marginal likelihood for task t is given by P (yt|z, αt, βt) = N (yt|0, β−1t INt + α−1t ΦtΦ
>
t),

and the learning criterion ρ is its negative log. For now, assume that Nt > D (more data points than
features), and recall that Φt ∈ RNt×D. All parameters of the feature map are collected in z. Up to an
additive constant, we have

ρ
(
z, {αt, βt}>t=1

)
=

T∑
t=1

1

2
(log |Σt|+ y>t Σ−1t yt), Σt := α−1t ΦtΦ

>
t + β−1t INt

. (1)

We reformulate this expression in terms of the Cholesky decomposition of a D ×D matrix. First, let
rt = βt/αt and consider the following identity:

log |I + rΦΦ>| = log |I + rΦ>Φ|.

Then we have that

log |Σt|+Nt log βt = log |INt + rtΦtΦ
>
t | = log |Kt|, Kt := ID + rtΦ

>
t Φt.

Decompose Kt in terms of the Cholesky factor Kt = LtL
>
t and use the Woodbury matrix identity

Σ−1t = βt(INt
− rtΦtK

−1
t Φ>t).

This gives

y>t Σ−1t yt = βt(‖yt‖2 − rt‖et‖2),

being et = L−1t Φ>t yt. Plugging this into equation (1) yields the result:

ρ
(
z, {αt, βt}Tt=1

)
=

T∑
t=1

[
−Nt

2
log βt +

βt
2

(
‖yt‖2 − rt‖et‖2

)
+

D∑
i=1

log([Lt]ii)

]
, rt =

βt
αt
.

As detailed in [1], ρ can succinctly be expressed as an MXNet computation graph, using linear
algebra operators under mxnet.linalg.

If φ∗t = φz(x
∗
t) is the feature vector for a test point, we are interested in the predictive mean and

variance of the noise-free function value f∗t = w>t φ
∗
t : these quantities configure the acquisition

function, used to make decisions on where to next evaluate the latent function. The posterior
distribution of the weight vector wt is Gaussian, with mean and covariance given by

E[wt|Dt] = rtK
−1
t Φ>t yt = rtL

−>
t et, Cov[wt|Dt] = (αtKt)

−1.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

0 25 50 75 100 125 150 175 200
iteration

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

(1
 -

AU
C)

 *
10

0

Random search
ABLR NN
ABLR RKS
ABLR NN transfer
GP
GP transfer (ctx, L1)
GP transfer (ctx, subsample)
BOHAMIANN transfer (ctx)

Figure 1: HPO warm-start in SVM.

0 25 50 75 100 125 150 175 200
iteration

7.0

7.2

7.4

7.6

7.8

8.0

8.2

(1
 -

AU
C)

 *
10

0

ABLR NN
ABLR NN transfer
GP
GP transfer (ctx, L1)
GP transfer (ctx, subsample)

Figure 2: HPO warm-start in XGBoost.

Then,

µt = E[f∗t |Dt] = (φ∗t)
>E[wt|Dt] = rte

>
t L−1t φ∗t ,

σ2
t = Var[f∗t |Dt] = (φ∗t)

>Cov[wt|Dt]φ
∗
t = α−1t ‖L−1t φ∗t ‖2.

While the case Nt > D is more prevalent in practice, we also encounter the situation Nt ≤ D (less
data points than features). Some tasks may have few evaluations only, and we still like to use them. In
particular, the target task of interest in HPO will start with very few initial evaluations. We found that
if Nt ≤ D, the following different expression for ρ should be used both for reasons of computational
efficiency and numerical robustness. First,

Σt = β−1t

(
INt + rtΦtΦ

>
t

)
= β−1t EtE

>
t ,

where Et ∈ RNt×Nt is the Cholesky factor of INt
+ rtΦtΦ

>
t . Plugging this into (1) results in

ρ
(
z, {αt, βt}Tt=1

)
=

T∑
t=1

[
−Nt

2
log βt +

βt
2
‖E−1t yt‖2 +

Nt∑
i=1

log([Et]ii)

]
.

For the predictive mean and variance, we use the Woodbury formula to obtain

K−1t = ID − rtΦ>t E−>t E−1t Φt.

Plugging this into the equation above, some algebra gives

E[wt|Dt] = rtΦ
>
t (EtE

>
t)
−1yt = rtΦ

>
t E−>t E−1t yt.

Therefore,

µt = E[f∗t |Dt] = (φ∗t)
>E[wt|Dt] = rt(E

−1
t yt)

>E−1t Φtφ
∗
t ,

σ2
t = Var[f∗t |Dt] = (φ∗t)

>Cov[wt|Dt]φ
∗
t = α−1t

(
‖yt‖2 − rt‖E−1t Φtφ

∗
t ‖2
)
.

We implement both variants (Nt > D and Nt ≤ D), and for each t, use the variant which applies.

B Additional experiments and OpenML set-up

In the OpenML [2] experiments we considered the optimization of the hyperparameters of the
following.

• Support vector machine (SVM, flow_id 5891),

• Extreme gradient boosting (XGBoost, flow_id 6767).

2

0 50 100 150 200

iteration

1

2

3

4

5

6

m
e
a
n
 r

a
n
k

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

GP

GP transfer (ctx, L1)

Figure 3: Rankings, SVM.

0 50 100 150 200

iteration

1

2

3

4

5

6

m
e
a
n
 r

a
n
k

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

GP

GP transfer (ctx, L1)

Figure 4: Rankings, XGBOOST.

0 10 20 30 40 50

iteration

100

101

102

cu
rr

e
n
t

lo
g
 m

in
im

u
m

Random search

ABLR NN

ABLR RKS

ABLR NN transfer

ABLR NN transfer (ctx)

GP

GP transfer (ctx)

Figure 5: ABLR vs. baselines, quadratic func-
tions (log scale)

0 10 20 30 40 50

iteration

100

101

102

cu
rr

e
n
t

lo
g
 m

in
im

u
m

DNGO

DNGO transfer (ctx)

BOHAMIANN

BOHAMIANN transfer (ctx)

ABLR NN

ABLR NN transfer

ABLR NN transfer (ctx)

Figure 6: Comparison of NN-based methods,
quadratic functions (log scale).

B.1 Support vector machine

The SVM tuning task consisted of the following 4 hyperparameters:

• cost (float, min: 0.000986, max: 998.492437),
• degree (int, min: 2.0, max: 5.0),
• gamma (float, min: 0.000988, max: 913.373845),
• kernel (string, [linear, polynomial, radial, sigmoid]).

This tuning task exhibits conditional relationships with respect to the choice of the kernel.1

For this flow_id, we considered the 30 most evaluated data sets whose task_ids are: 10101,
145878, 146064, 14951, 34536, 34537, 3485, 3492, 3493, 3494, 37, 3889, 3891, 3899, 3902, 3903,
3913, 3918, 3950, 6566, 9889, 9914, 9946, 9952, 9967, 9971, 9976, 9978, 9980, 9983.

B.2 XGBoost

The XGBoost tuning task consisted of 10 hyperparameters:

• alpha (float, min: 0.000985, max: 1009.209690),
• booster (string, [’gbtree’, ’gblinear’]),
• colsample_bylevel (float, min: 0.046776, max: 0.998424),
• colsample_bytree (float, min: 0.062528, max: 0.999640),
• eta (float, min: 0.000979, max: 0.995686),

1For details, we refer the interested readers to the API from
www.rdocumentation.org/packages/e1071/versions/1.6-8/topics/svm

3

0 50 100 150 200

iteration

7.0

7.5

8.0

8.5

9.0

9.5

10.0

(1
 -

 A
U

C
)

*
1

0
0

ABLR transfer

ABLR transfer (ctx)

ABLR transfer (embeddings)

Figure 7: Data embeddings, SVM.

0 50 100 150 200

iteration

8.5

9.0

9.5

10.0

10.5

11.0

(1
 -

 A
U

C
)

*
1

0
0

ABLR transfer

ABLR transfer (ctx)

ABLR transfer (embeddings)

Figure 8: Data embeddings, XGBoost.

0 50 100 150 200

iteration

1.5

2.0

2.5

3.0

3.5

m
e
a
n
 r

a
n
k

ABLR transfer

ABLR transfer (ctx)

ABLR transfer (embeddings)

Figure 9: Embedding rankings, SVM.

0 50 100 150 200

iteration

1.4

1.6

1.8

2.0

2.2

2.4

2.6

m
e
a
n
 r

a
n
k

ABLR transfer

ABLR transfer (ctx)

ABLR transfer (embeddings)

Figure 10: Embedding rankings, XGBoost.

• lambda (float, min: 0.000978, max: 999.020893)
• max_depth (int, min: 1, max: 15),
• min_child_weight (float, min: 1.012169, max: 127.041806),
• nrounds (int, min: 3, max: 5000),
• subsample (float, min: 0.100215, max: 0.999830).

This tuning task exhibits conditional relationships with respect to the choice of the booster.2

For this flow_id, we considered the 30 most evaluated data sets whose task_ids are: 10093,
10101, 125923, 145847, 145857, 145862, 145872, 145878, 145953, 145972, 145976, 145979,
146064, 14951, 31, 3485, 3492, 3493, 37, 3896, 3903, 3913, 3917, 3918, 3, 49, 9914, 9946, 9952,
9967.

B.3 Further details and experiments

For the OpenML experiments in the supplement we used a surrogate modeling approach [3] based
on nearest neighbor. The results were averaged in a leave-one-dataset-out scheme, i.e., the model
hyperparameters were optimized on each of the 30 available task_ids using each time the evaluations
from the remaining task_ids to warm start the optimization.

A way to warm start GPs consists of collecting observations from the related tasks and augmenting
them with contextual information. While speeding up the optimization, this approach does not
scale well with the number of available evaluations. We explored different ways to circumvent this
and achieve transfer learning with GPs in the large-scale OpenML experiments. In particular, we
focused on two subsampling logics, namely GP transfer (ctx, L1) and GP transfer (ctx,
subsample). The former warm starts the BO with 300 points from the closest task, computed in
terms of the L1 distance of the meta-data [4], while the latter uses 10 points for each of the 29 related

2For details, we refer the interested readers to the API from
www.rdocumentation.org/packages/xgboost/versions/0.6-4

4

tasks (for a total of 290 points). Recall that this subsampling schemes are necessary to guarantee a
feasible computational time for GPs. The results in Figures 1 and 2 indicate that the two approaches
both outperform plain GP and achieve similar performance. At the same time, ABLR with transfer
tends to converge to a better optimum, showing the benefits of the multi-loss structure and the
advantages of scaling up to a larger number of observations for warm start.

We also compared against BOHAMIANN transfer (ctx) in the large-scale SVM experiment (Fig-
ure 1). As for the GP, we consider a version of this model where inputs are augmented with contextual
vectors to achieve transfer across tasks. Due to its computational burden, we were able to run
BOHAMIANN for 50 iterations and 3 independent replications of the leave-one-dataset-out scheme.
While transferring knowledge across tasks proves to be beneficial for both BOHAMIANN and ABLR,
the former suffers from a significantly larger computational overhead and relies on the availability of
meta-data.

To better account for the heterogeneity across tasks, we also considered the mean ranking as an
alternative metric. Specifically, we computed the relative ranking of the models for each target task
separately, after which we averaged the rankings over all tasks. The results are given in Figures 3
and 4, where the shaded areas represent one standard error around the mean ranking. Warm-starting
the BO helps converge faster and to a better optimum, with transfer ABLR tending to outperform all
alternative approaches.

Finally, we provide log-scale plots of the quadratic function optimization results presented in the
main text, where ABLR is compared against a set of baselines. More precisely, the y-axis shows
log(y + 4) instead of y, the best minimum found up to each iteration. Figures 5 and 6 confirm the
benefits of ABLR transfer, which converges considerably faster and to a better optimum compared to
alternative approaches.

B.4 Learning Task Embeddings

Instead of feeding context vectors ct to the shared NN, we can use ABLR to learn task embeddings.
This is of interest in a scenario where different ML methods are applied to a common (or at least
overlapping) set of data sets. To this end, we use the NN form φz(x, ct), together with ct = Eδt.
Here, E = [et] ∈ Rk×T is a matrix of T embedding vectors, and δt ∈ {0, 1}T is the one-hot vector
for task t ∈ {1, . . . , T} (similar to the setting of [5]). The embedding matrix E becomes part of the
overall parameter vector z, trained by empirical Bayes. In some preliminary experiments, we use
ABLR NN to transfer across two dimensions. We consider a Random Forest model (RF, flow_id
6794) and operate in two stages. First, for each of the three methods (RF, SVM, XGBoost) we learn
NN features and task embeddings together over their respective T = 30 data sets. Second, we fix
the task embeddings learned for one method and use them for another. In this second phase, we fix
E, but retrain the NN parameters. In our experiments, we fix the number k of contextual features
to four (thus matching the dimension of the four OpenML meta-features used). The 30 data sets
we transfer between for each method are not the same, but have substantial overlap. SVM used the
embeddings learned for XGBoost (15 data sets in common), and XGBoost used the embeddings
learned for RF. The pairing was chosen to maximize the number of data sets in common. Results for
this two-stage experiment are given in Figures 7 and 8. The learned embeddings are competitive with
the context vectors provided from human-crafted OpenML meta-features, but more work would be
needed to establish the usefulness of learned or hand-designed context vectors. We also applied the
ranking metric to explore the usefulness of the task embeddings learned by ABLR (Figures 9 and 10),
confirming that ABLR can infer task embeddings that perform similarly or better than human-crafted
meta-data.

References
[1] Matthias Seeger, Asmus Hetzel, Zhenwen Dai, and Neil D Lawrence. Auto-differentiating linear algebra.

Technical report, preprint arXiv:1710.08717, 2017.

[2] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

[3] K Eggensperger, F Hutter, HH Hoos, and K Leyton-brown. Efficient benchmarking of hyperparameter
optimizers via surrogates background: Hyperparameter optimization. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pages 1114–1120, 2012.

5

[4] Matthias Feurer, T Springenberg, and Frank Hutter. Initializing Bayesian hyperparameter optimization via
meta-learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[5] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with
robust Bayesian neural networks. In Advances in Neural Information Processing Systems (NIPS), pages
4134–4142, 2016.

6

	Derivation of the Learning Criterion
	Additional experiments and OpenML set-up
	Support vector machine
	XGBoost
	Further details and experiments
	Learning Task Embeddings

