
A Proof of the Main Theoretical Results

In this section, we provide the proofs of our main theories in Section 4.

A.1 Proof of Lemma 4.1

We first prove our key lemma on One-epoch-SNVRG. In order to prove Lemma 4.1, we need the
following supporting lemma:

Lemma A.1. Let T =
QK

l=1 Tl. If the step size and batch size parameters in Algorithm 1 satisfy
M � 6L and Bl � 6K�l+1(

QK
s=l Ts)2, then the output of Algorithm 1 satisfies

EkrF (xout)k22  C

✓
M

T
· E
⇥
F (x0)� F (xT )

⇤
+

2�
2

B
· 1(B < n)

◆
, (A.1)

where C = 100 is a constant.

Proof of Lemma 4.1. Note that B = 22K

, we can easily check that the choice of M, {Tl}, {Bl} in
Lemma 4.1 satisfies the assumption of Lemma A.1. Moreover, we have

T =
KY

l=1

Tl = B
1/2

. (A.2)

We now submit (A.2) into (A.1), which immediately implies (4.1).

Next we compute how many stochastic gradient computations we need in total after we run One-
epoch-SNVRG once. According to the update of reference gradients in Algorithm 1, we only update
g(0)

t once at the beginning of Algorithm 1 (Line 4), which needs B stochastic gradient computations.
For g(l)

t , we only need to update it when 0 = (t mod
QK

j=l+1 Tj), and thus we need to sample
g(l)

t for T/
QK

j=l+1 Tj =
Ql

j=1 Tj times. We need 2Bl stochastic gradient computations for each
sampling procedure (Line 24 in Algorithm 1). We use T to represent the total number of stochastic
gradient computations, then based on above arguments we have

T = B + 2
KX

l=1

Bl ·
lY

j=1

Tj . (A.3)

Now we calculate T under the parameter choice of Lemma 4.1. Note that we can easily verify the
following results:

lY

j=1

Tj = 22l�1

= B
2l

2K+1 , B1 ·
1Y

j=1

Tj = 2⇥ 6K
B, Bl ·

lY

j=1

Tj = 6K�l+1
B. (A.4)

Submit (A.4) into (A.3) yields the following results:

T = B + 2

✓
2⇥ 6K
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KX
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6K�l+1
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◆

< B + 6⇥ 6K
B

= B + 6⇥ 6log log B
B

< B + 6B log3
B. (A.5)

Therefore, the total gradient complexity T is bounded as follows.

T  B + 6B log3
B  7B log3

B. (A.6)
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A.2 Proof of Theorem 4.2

Now we prove our main theorem which spells out the gradient complexity of SNVRG.

Proof of Theorem 4.2. By (4.1) we have
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where C = 600. Taking summation for (A.7) over s from 1 to S, we have
SX

s=1
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Dividing both sides of (A.8) by S, we immediately obtain
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where (A.9) holds because F (zS) � F
⇤ and by the definition �F = F (z0) � F

⇤. By the choice
of parameters in Theorem 4.2, we have B = n ^ (2C�

2
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2), S = 1 _ (2CL�F /(B1/2
✏
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Submitting (A.11) into (A.10), we have EkrF (yout)k22  2C✏
2
/(2C) = ✏

2. By Lemma 4.1, we
have that each One-epoch-SNVRG takes less than 7B log3

B stochastic gradient computations. Since
we have total S epochs, so the total gradient complexity of Algorithm 2 is less than

S · 7B log3
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which leads to the conclusion.

A.3 Proof of Theorem 4.4

We then prove the main theorem on gradient complexity of SNVRG under gradient dominance
condition (Algorithm 3).

Proof of Theorem 4.4. Following the proof of Theorem 4.2, we obtain a similar inequality with
(A.9):
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Since F is a ⌧ -gradient dominated function, we have EkrF (zu+1)k22 � 1/⌧ · E[F (zu+1)� F
⇤] by

Definition 2.6. Plugging this inequality into (A.13) yields
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where the second inequality holds due to the choice of parameters B = n ^ (4C1⌧�
2
/✏) and

S = 1 _ (2C1⌧L/B
1/2) for Algorithm 3 in Theorem 4.4. By (A.14) we can derive
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which immediately implies
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Plugging the number of epochs U = log(2�F /✏) into (A.15), we obtain E
⇥
F (zU )� F

⇤⇤  ✏. Note
that each epoch of Algorithm 3 needs at most S · 7B log3

B stochastic gradient computations by
Theorem 4.2 and Algorithm 3 has U epochs, which implies the total stochastic gradient complexity

U · S · 7B log3
B = O

✓
log3

✓
n ^ ⌧�

2

✏

◆
log

�F

✏


n ^ ⌧�

2

✏
+ ⌧L


n ^ ⌧�

2

✏

�1/2�◆
. (A.16)

B Proof of Key Lemma A.1

In this section, we focus on proving Lemma A.1 which plays a pivotal role in proving our main
theorems. Let M, {Ti}, {Bi}, B be the parameters as defined in Algorithm 1. We denote T =QK

l=1 Tl. We define filtration Ft = �(x0, . . . ,xt). Let {x(l)
t }, {g(l)

t } be the reference points and
reference gradients in Algorithm 1. We define v(l)

t as

v(l)
t :=

lX

j=0

g(j)
t , for 0  l  K. (B.1)

We first present the following definition and two technical lemmas for the purpose of our analysis.

Definition B.1. We define constant series {c
(s)
j } as the following. For each s, we define c

(s)
Ts

as

c
(s)
Ts

=
M

6K�s+1
QK

l=s Tl

. (B.2)

When 0  j < Ts, we define c
(s)
j by induction:
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Lemma B.2. For any p, s, where 1  s  K and 0  p
QK

j=s Tj < (p + 1)
QK

j=s Tj 
QK

j=1 Tj ,
we define

start = p ·
KY

j=s

Tj , end = start +
KY

j=s

Tj ,

for simplification. Then we have the following results:
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Lemma B.3 (Lei et al. [26]). Let ai be vectors satisfying
PN

i=1 ai = 0. Let J be a uniform random
subset of {1, . . . , N} with size m, then
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Proof of Lemma A.1. We have
T�1X
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+ E
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M
· EkrF (x0)� g0k22 · T, (B.4)

where the second inequality comes from Lemma B.2 with we take s = 1, p = 0. Moreover we have
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B
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where (B.5) holds because of Lemma B.3. Plug (B.6) into (B.4) and note that we have M = 6L, and
then we obtain

T�1X
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EkrF (xj)k22  C
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◆
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where C = 100. Divide both sides of (B.7) by T , then Lemma A.1 holds trivially.

C Proof of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in Appendix B.

C.1 Proof of Lemma B.2

Let M, {Tl}, {Bl}, B be the parameters defined in Algorithm 1 and {x(l)
t }, {g(l)

t } be the reference
points and reference gradients defined in Algorithm 1. Let v(l)

t , Ft be the variables and filtration
defined in Appendix B and let c

(s)
j be the constant series defined in Definition B.1.

In order to prove Lemma B.2, we will need the following supporting propositions and lemmas. We
first state the proposition about the relationship among x(s)

t ,g(s)
t and v(s)

t :

Proposition C.1. Let v(l)
t be defined as in (B.1). Let p, s satisfy 0  p ·

QK
j=s+1 Tj < (p + 1) ·

QK
j=s+1 Tj < T . For any t, t

0 satisfying p ·
QK

j=s+1 Tj  t < t
0
< (p+1) ·

QK
j=s+1 Tj , it holds that

x(s)
t = x(s)

t0 = xp
QK

j=s+1 Tj
, (C.1)

g(s0)
t = g(s0)

t0 , for any s
0 that satisfies 0  s

0  s, (C.2)

v(s)
t = v(s)

t0 = vp
QK

j=s+1 Tj
. (C.3)

The following lemma spells out the relationship between c
(s�1)
j and c

(s)
Ts

. In a word, c
(s�1)
j is about

1 + Ts�1 times less than c
(s)
Ts

:

Lemma C.2. If Bs � 6K�s+1(
QK

l=s Tl)2, Tl � 1 and M � 6L, then it holds that

c
(s�1)
j · (1 + Ts�1) < c

(s)
Ts

, for 2  s  K, 0  j  Ts�1, (C.4)

and

c
(K)
j · (1 + TK) < M, for 0  j  TK . (C.5)

Next lemma is a special case of Lemma B.2 with s = K:
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Lemma C.3. Suppose p satisfies 0  pTK < (p + 1)TK 
QK

i=1 Ti. If M > L, then we have

E
"
F
�
x(p+1)·TK

�
+ c

(K)
TK

·
��x(p+1)·TK

� xp·TK

��2

2
+

TK�1X

j=0

��rF (xp·TK+j)
��2

2
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����Fp·TK

#

 F (xp·TK ) +
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M
· E
⇥��rF (xp·TK )� vp·TK

��2

2

��Fp·TK

⇤
· TK . (C.6)

The following lemma provides an upper bound of E
⇥��rF (x(l)

t )� v(l)
t

��2

2

⇤
, which plays an important

role in our proof of Lemma B.2.

Lemma C.4. Let t
l be as defined in (3.1), then we have x(l)

t = xtl , and

E
⇥��rF (x(l)

t )� v(l)
t

��2

2

��Ftl
⇤
 L

2

Bl

��x(l)
t � x(l�1)

t

��2

2
+
��rF (x(l�1)

t )� v(l�1)
t

��2

2
. (C.7)

Proof of Lemma B.2. We use mathematical induction to prove that Lemma B.2 holds for any 1 
s  K. When s = K, the statement holds because of Lemma C.3. Suppose that for s + 1, Lemma
B.2 holds for any p

0 which satisfies 0  p
0QK

j=s+1 Tj < (p0 + 1)
QK

j=s+1 Tj 
QK

j=1 Tj . We need
to prove Lemma B.2 still holds for s and p, where p satisfies 0  p

QK
j=s Tj < (p + 1)

QK
j=s Tj QK

j=1 Tj . We first define m =
QK

j=s+1 Tj for simplification, then we choose p
0 = pTs + u, and we

set indices startu and endu as

startu = p
0

KY

j=s+1

Tj , endu = startu +
KY

j=s+1

Tj .

It can be easily verified that the following relationship also holds:
startu = start + um, endu = start + (u + 1)m. (C.8)

Based on (C.8), we have

E
 endu�1X
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⇤
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Tj , (C.9)

where the last inequality holds because of the induction hypothesis that Lemma B.2 holds for s + 1

and p
0. Note that we have xstartu = xstart+u·m = x(s)

startu from Proposition C.1, which implies

E
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⇥��rF (x(s)

startu)� v(s)
startu

��2

2

��Fstartu
⇤

 L
2

Bs

��x(s)
startu � x(s�1)
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��rF (xstart)� vstart
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2
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where (C.10) holds because of Lemma C.4 and (C.11) holds due to Proposition C.1. Plugging (C.11)
into (C.9) and taking expectation E[·|Fstart] for (C.9), we have

E
 endu�1X
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Next we bound kxstart+(u+1)·m � xstartk22 as the following:

kxstart+(u+1)·m � xstartk22
= kxstart+u·m � xstartk22 + kxstart+(u+1)·m � xstart+u·mk22

+ 2hxstart+(u+1)·m � xstart+u·m,xstart+u·m � xstarti
 kxstart+u·m � xstartk22 + kxstart+(u+1)·m � xstart+u·mk22

+
1

Ts
· kxstart+u·m � xstartk22 + Ts · kxstart+(u+1)·m � xstart+u·mk22 (C.13)

=

✓
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1
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◆
· kxstart+u·m � xstartk22 + (1 + Ts) · kxstart+(u+1)·m � xstart+u·mk22, (C.14)

where (C.13) holds because of Young’s inequality. Taking expectation E[·|Fstart] over (C.14) and
multiplying c

(s)
u+1 on both sides, we obtain
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Adding up inequalities(C.15) and (C.12) together yields
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where the last inequality holds due to the fact that c
(s)
u = c
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u+1(1+1/Ts)+3L

2
/(BsM) ·

QK
j=s+1 Tj

by Definition B.1 and c
(s)
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by Lemma C.2. Cancelling out the term c
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·
E
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⇤

from both sides of (C.16), we get
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We now telescope the above inequality for u = 0 to Ts � 1, then we have

E
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Since startu = endu�1, start0 = start, and endTs�1 = end, we have
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Therefore, we have proved that Lemma B.2 still holds for s and p. Then by mathematical induction,
we have for all 1  s  K and p which satisfy 0  p ·

QK
j=s Tj < (p + 1) ·

QK
j=s Tj 

QK
j=1 Tj ,

Lemma B.2 holds.

C.2 Proof of Lemma B.3

The following proof is adapted from that of Lemma A.1 in Lei et al. [26]. We provide the proof here
for the self-containedness of our paper.

Proof of Lemma B.3. We only consider the case when m < N . Let Wj = 1(j 2 J ), then we have
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Thus we can rewrite the sample mean as
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which immediately implies
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D Proofs of the Auxiliary Lemmas

In this section, we present the additional proofs of supporting lemmas used in Appendix C. Let
M, {Tl}, {Bl} and B be the parameters defined in Algorithm 1. Let {x(l)

t }, {g(l)
t } be the reference

points and reference gradients used in Algorithm 1. Finally, v(l)
t , Ft are the variables and filtration

defined in Appendix B and c
(s)
j are the constant series defined in Definition B.1.

D.1 Proof of Proposition C.1

Proof of Proposition C.1. By the definition of reference point x(s)
t in (3.1), we can easily verify that

(C.1) holds trivially.

Next we prove (C.2). Note that by (C.1) we have x(s)
t = x(s)

t0 . For any 0  s
0  s, it is also true that

x(s0)
t = x(s0)

t0 by (3.1), which means xt and xt0 share the same first s + 1 reference points. Then by
the update rule of g(s0)

t in Algorithm 1, we will maintain g(s0)
t unchanged from time step t to t

0. In
other worlds, we have g(s0)

t = g(s0)
t0 for all 0  s

0  s.

We now prove the last claim (C.3). Based on (B.1) and (C.2), we have v(s)
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by the update in Algorithm 1 (Line 18).
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Thus, we have
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where the first equality holds because of the definition of vp·
QK

j=s+1 Tj
, the second equality holds due

to (D.1) , the third equality holds due to (C.2) and the last equality holds due to (B.1). This completes
the proof of (C.3).

D.2 Proof of Lemma C.2

Proof of Lemma C.2. For any fixed s, it can be seen that from the definition in (B.3), c
(s)
j is monoton-

ically decreasing with j. In order to prove (C.4), we only need to compare (1+Ts�1) ·c(s�1)
0 and c

(s)
Ts

.
Furthermore, by the definition of series {c

(s)
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We take j = 0 in (D.3) and obtain
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, (D.6)

where (D.4) holds because (1 + 1/n)n
< 2.8 for any n � 1, (D.5) holds due to the definition of

c
(s�1)
Ts�1

in (B.2) and Bs�1 � 6K�s+2(
QK

l=s�1 Tl)2 and (D.6) holds because M � 6L. Recall that

c
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j is monotonically decreasing with j and the inequality in (D.6). Thus for all 2  s  K and
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where the third inequality holds because (1 + Ts�1)/Ts�1  2 when Ts�1 � 1 and the last equation
comes from the definition of c

s
Ts

in (B.2). This completes the proof of (C.4).

Using similar techniques, we can obtain the upper bound for c
K
0 which is similar to inequality (D.6)

with s� 1 replaced by K. Therefore, we have

(1 + TK) · c
(K)
j  (1 + TK) · c

(K)
0 <

6M

6K�K+1 ·
QK

l=K Tl

M,

which completes the proof of (C.5).

D.3 Proof of Lemma C.3

Now we prove Lemma C.3, which is a special case of Lemma B.2 if we choose s = K.

Proof of Lemma C.3. To simplify notations, we use E[·] to denote the conditional expectation
E[·|Fp·TK ] in the rest of this proof. For 0  j < TK , we denote hp·TK+j = �(10M)�1 · vp·TK+j .
According to the update in Algorithm 1 (Line 12), we have

xp·TK+j+1 = xp·TK+j + hp·TK+j , (D.8)

which immediately implies

F (xp·TK+j+1) = F (xp·TK+j + hp·TK+j)
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(D.10)
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where (D.9) is due to the L-smoothness of F , which can be verified as follows

krF (x)�rF (y)k2 = kEi[rfi(x)�rfi(y)]k2


q
Eikrfi(x)�rfi(y)k22

 Lkx� yk2.

(D.10) holds because hvp·TK+j ,hp·TK+ji+ 5Mkhp·TK+jk22 = �5Mkhp·TK+jk22  0. Further by
Young’s inequality, we obtain
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where the second inequality holds because M > L. Now we bound the term c
(K)
j+1kxp·TK+j+1 �

xp·TKk22. By (D.8) we have
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Adding up inequalities (D.12) and (D.11), we get
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where the last inequality holds due to the fact that c
(K)
j+1(1 + TK) < M by Lemma C.2. Next we

bound krF (xp·TK+j)k22 with khp·TK+jk22. Note that by (D.8), we have
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Plugging (D.14) into (D.13), we have
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Next we bound krF (xp·TK+j)� vp·TK+jk22. First, by Lemma C.4 we have
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We now take expectation E[·] with (D.15) and plug (D.16) into (D.15). We obtain that
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where (D.17) holds because we have c
(K)
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/(BKM) by Definition B.1.

Telescoping (D.17) for j = 0 to TK � 1, we have
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which completes the proof.

D.4 Proof of Lemma C.4

Proof of Lemma C.4. If t
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t . In this case the
statement in Lemma C.4 holds trivially. Therefore, we assume t
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l�1 in the following proof. Note

that

E
⇥��rF (x(l)

t )� v(l)
t

��2

2
|Ftl

⇤

= E
⇥��rF (x(l)

t )� v(l)
t � E

⇥
rF (x(l)

t )� v(l)
t

⇤��2

2
|Ftl

⇤
+
��E
⇥
rF (x(l)

t )� v(l)
t |Ftl

⇤��2

2

= E
"����rF (x(l)

t )�
lX

j=0

g(j)
t � E


rF (x(l)

t )�
lX

j=0

g(j)
t

�����
2

2

����Ftl

�

| {z }
J1

+

����E

rF (x(l)

t )�
lX

j=0

g(j)
t

����Ftl

�����
2

2
| {z }

J2

,

(D.19)

23



where in the second equation we used the definition v(l)
t =

Pl
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t in (B.1). We first upper bound
term J1. According to the update rule in Algorithm 1 (Line 21-25), when j < l, g(j)
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We further have
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Therefore, we can apply Lemma B.3 to (D.20) and obtain
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where the second inequality is due to the fact that E[kX�E[X]k22]  EkXk22 for any random vector
X and the last inequality holds due to the fact that F has averaged L-Lipschitz gradient.

Next we turn to bound term J2. Note that
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= rF (x(l�1)
t )� v(l�1)

t ,

where the last equation is due to the definition of Ft. Plugging J1 and J2 into (D.19) yields the
following result:
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which completes the proof.

E Additional Experimental Results

We also conducted experiments comparing different algorithms without the learning rate decay
schedule. The parameters are tuned by the same grid search described in Section 5. In particular, we
summarize the parameters of different algorithms used in our experiments with and without learning
rate decay for MNIST in Table 2, CIFAR10 in Table 3, and SVHN in Table 4. We plotted the training
loss and test error for each dataset without learning rate decay in Figure 4. The results on MNIST
are presented in Figures 4(a) and 4(d); the results on CIFAR10 are in Figures 4(b) and 4(e); and the
results on SVHN dataset are shown in Figures 4(c) and 4(f). It can be seen that without learning
decay, our algorithm SNVRG still outperforms all the baseline algorithms except for the training loss
on SVHN dataset. However, SNVRG still performs the best in terms of test error on SVHN dataset.
These results again suggest that SNVRG can beat the state-of-the-art in practice, which backups our
theory.
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Table 2: Parameter settings of all algorithms on MNIST dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate ⌘ B ratio b rate ⌘ B ratio b

SGD 0.1 1024 N/A 0.01 1024 N/A
SGD-momentum 0.01 1024 N/A 0.1 1024 N/A

ADAM 0.001 1024 N/A 0.001 1024 N/A
SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 512 8 0.01 512 8

Table 3: Parameter settings of all algorithms on CIFAR10 dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate ⌘ B ratio b rate ⌘ B ratio b

SGD 0.1 1024 N/A 0.01 512 N/A
SGD-momentum 0.01 1024 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 2048 N/A
SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 1024 8 0.01 512 4

(a) training loss (MNIST) (b) training loss (CIFAR10) (c) training loss (SVHN)

(d) test error (MNIST) (e) test error (CIFAR10) (f) test error (SVHN)

Figure 4: Experimental results on different datasets without learning rate decay. (a) and (d) depict the
training loss and test error (top-1 error) v.s. data epochs for training LeNet on MNIST dataset. (b)
and (e) depict the training loss and test error v.s. data epochs for training LeNet on CIFAR10 dataset.
(c) and (f) depict the training loss and test error v.s. data epochs for training LeNet on SVHN dataset.

F An Equivalent Version of Algorithm 1

Recall the One-epoch-SNVRG algorithm in Algorithm 1. Here we present an equivalent version
of Algorithm 1 using nested loops, which is displayed in Algorithm 4 and is more aligned with the
illustration in Figure 2. Note that the notation used in Algorithm 4 is slightly different from that in
Algorithm 1 to avoid confusion.
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Table 4: Parameter settings of all algorithms on SVHN dataset.

Algorithm
With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size
rate ⌘ B ratio b rate ⌘ B ratio b

SGD 0.1 2048 N/A 0.01 1024 N/A
SGD-momentum 0.01 2048 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 512 N/A
SCSG 0.01 512 4 0.1 1024 4

SNVRG 0.01 512 8 0.01 512 4

Algorithm 4 One-epoch SNVRG(F,x0, K, M, {Ti}, {Bi}, B)
1: Input: Function F , starting point x0, loop number K, step size parameter M , loop parameters

Ti, i 2 [K], batch parameters Bi, i 2 [K], base batch B > 0.
Output: [xout,xend]

2: T  
QK

l=1 Tl

3: Uniformly generate index set I ⇢ [n] without replacement
4: g(0)

[t0]
 1

B

P
i2I rfid(x0)

5: x(l)
[0]  x0, 0  l  K,

6: for t1 = 0, . . . , T1 � 1 do

7: Uniformly generate index set I ⇢ [n] without replacement, |I| = B1

8: g(1)
[t1]
 1

B1

P
i2I

⇥
rfi(x

(1)
[t1]

)�rfi(x
(0)
[0] )
⇤

9: . . .

10: for tl = 0, . . . , Tl � 1 do

11: Uniformly generate index set I ⇢ [n] without replacement, |I| = Bl

12: g(l)
[tl]
 1

Bl

P
i2I

⇥
rfi(x

(l)
[tl]

)�rfi(x
(l�1)
[tl�1]

)
⇤

13: . . .

14: for tK = 0, . . . , TK � 1 do

15: Uniformly generate index set I ⇢ [n] without replacement, |I| = BK

16: g(K)
[tK ]  

1
BK

P
i2I

⇥
rfi(x

(K)
[tK ])�rfi(x

(K�1)
[tK�1]

)
⇤

17: Denote t =
PK

j=1 tj
QK

l=j+1 Tl, then let xt+1  xt � 1/(10M) ·
PK

l=0 g(l)
[tl]

18: x(K)
[tK+1]  xt+1

19: end for

20: . . .

21: x(l)
[tl+1]  x(l+1)

[Tl+1]

22: end for

23: . . .

24: x(1)
[t1+1]  x(2)

[T2]

25: end for

26: xout  a uniformly random choice from {x0, ...,xT�1}
27: return [xout,xT ]
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