
A Learning the Identity Function

Name Error % Error Graph

Hardtanh 495.47 99.1

ReLU6 494.59 98.9

Softsign 494.19 98.8

Tanh 493.65 98.7

Sigmoid 493.15 98.6

Threshold 432.97 86.6

SELU 365.66 73.1

ELU 142.83 28.4

Softshrink 119.17 23.8

ReLU 83.63 16.7

LeakyReLU 77.02 15.4

Tanhshrink 57.03 11.4

Softplus 37.60 7.5

PReLU 14.66 2.9

None <0.0001 0.0

Table 5: Mean Absolute Reconstruction Error. 500 is equivalent to simply predicting 0 for every
test datapoint. % Error is simply Error divided by 500. Scores represent averages over 100 models
reconstructing all integer values from -1000 to 1000.

In Table 5, we show the average error results for each MLP trained on the identity function on the
range from −5 to 5 when evaluated on numbers ranging from −1000 to 1000. Pictured on the right is
a small graph demonstrating the plotted shape for each nonlinearity. The important thing to note is
that nonlinearities which are sharply nonlinear exhibit greater extrapolation error than those which
are only mildly nonlinear. An error score of 500 is equivalent to simply predicting 0 for each target
prediction.

B Synthetic Arithmetic Tasks

In the static tasks, a vector x ∈ R
100 is given and the target is a scalar y whose value is formed by first

taking two random (but consistent) subsections and summing them a =
∑n

i=m xi and b =
∑q

j=p xj .

The target y is then the result of applying different arithmetic functions to a and b. The process must
be learned end-to-end by each model.

This task is challenging because the test set comes in two forms. The first is the interpolation test set,
which never proposes an example to the model requiring a, b, or y to represent a number greater than
exceeded during training. The extrapolation test set, however, always includes at least one value of a,
b, or y that is greater than observed during training in each example.

In order to test the recurrent variant of the NAC, we propose second set of tasks which are only
a slight modification of the first. Instead of the first step requiring sums over an input vector

x ∈ R
100, the sum is computed over a timeseries where each step xt ∈ R

10, a =
∑T

t

∑n

i=m xt,i,

and b =
∑T

t

∑q

j=p xt,j . Training and interpolation testing occur over sequences of length 10.

Testing occurs over sequences of length 1000 (forcing a, b, and y to take on values that are much
larger than observed during training). All baseline experiments simply use an MLP with one hidden
layer containing a non-linearity. For comparison, we stack two NALUs end-to-end. All models use a
hidden layer size of 2, the minimally required size to solve the task.

11



In Table 7, we show the raw scores for MLPs trained with a wide variety of non-linearities over the
hidden layer. As the scores for each task vary significantly, we also show scores for a randomly
initialized model in the left column (headed “Random”) for context. Table 8 normalizes all scores
reported by dividing them by this “Random” column, making them more easily comparable.

Tasks Test Random Tanh Sigmoid Relu6 Softsign SELU ELU ReLU Crelu None NAC NALU

a+ b
I 8.659 .0213 .0086 .0144 .0229 .0031 .0191 .0040 .0020 .0017 <.0001 <.0001
E 120.9 52.37 51.14 51.56 47.78 .0126 .1064 .0225 .0127 .0013 <.0001 .0012

a− b
I 6.478 .0344 .0183 .0010 .0616 .0046 .0510 .0133 .0035 .0007 <.0001 .0001
E 42.14 11.54 9.627 12.22 9.734 5.60 3.458 6.108 .0090 .0007 <.0001 <.0001

a ∗ b I 233.9 21.82 12.06 7.579 20.07 11.99 5.928 6.084 36.28 48.91 50.02 <.0001
E 3647 971.3 608.9 366.6 998.6 380.7 187.8 183.0 197.9 1076 1215 <.0001

a
b

I 1.175 .0514 .0421 .0499 .0558 .1218 .1233 .1233 .1011 .4113 .4363 .0625
E 41.56 14.65 13.34 15.46 13.55 7.219 7.286 7.291 6.746 21.75 25.48 .2920

a2
I 151.7 .3327 .0672 1.027 1.479 6.462 .1744 .7829 .1593 6.495 34.09 <.0001
E 4674 2168 2142 2195 1938 1237 406.6 569.4 408.4 1172 2490 <.0001

√
a

I 1.476 .0124 .0026 .0080 .0101 .0046 .0055 .0265 .0027 .0329 .0538 <.0001
E 4.180 .4702 .3571 .4294 .3237 .0739 .1006 .5066 .0622 .8356 .6876 <.0001

Table 6: Raw Mean Squared Error for all arithmetic tasks across activation functions. I/E refers
to interpolation/extrapolation test sets respectively. Losses on the left refer to the decoder function
where a is the sum (a scalar) over one random subset of the input matrix and b is the sum (a scalar)
over another subset. The model must correctly predict the output of the function for each grid.

Tasks Relu6 Softsign Tanh Sigmoid SELU ELU ReLU Crelu None NAC NALU

Interpolation Test Error - Relative to Random Initialization Baseline

a+ b 0.2 0.3 0.2 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0
a− b 0.0 1.0 0.5 0.3 0.1 0.8 0.2 0.1 0.0 0.0 0.0
a× b 3.2 8.6 9.3 5.2 5.1 2.5 2.6 15.5 20.9 21.4 0.0
a/b 4.2 4.7 4.4 3.58 10.4 10.5 10.5 8.6 35.0 37.1 5.3

a2 0.7 1.0 0.2 0.0 4.3 0.1 0.5 0.1 4.3 22.4 0.0√
a 0.5 0.7 31.6 24.2 0.3 0.4 1.8 0.2 2.2 3.6 0.0

Extrapolation Test Error - Relative to Random Initialization Baseline

a+ b 42.6 39.5 43.3 42.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
a− b 29.0 23.1 27.3 22.8 13.3 8.2 14.5 0.0 0.0 0.0 0.0
a× b 10.1 27.4 26.6 16.7 10.4 5.1 5.0 5.4 29.5 33.3 0.0
a/b 37.2 32.6 35.3 32.1 17.4 17.5 17.5 16.2 52.3 61.3 0.7

a2 47.0 41.5 46.4 45.8 26.5 8.7 12.2 8.7 25.1 53.3 0.0√
a 10.3 7.7 11.2 8.5 1.7 2.4 12.1 1.5 20.0 16.4 0.0

Table 7: Static (non-recurrent) arithmetic error rates. Lower is better. Best models in bold. Scores
relative to one randomly initialized model for each task. 100.0 is equivalent to random. 0.0 is perfect
accuracy. Raw scores are in the Appendix.

12



Model T/I/E a a+ b a− b a ∗ b a
b

a2
√
a

Random
I 38.03 30.86 30.17 30.69 29.12 30.92 28.84
E 330341 336847 336769 336829 336451 336876 336452

LSTM
T .001771 .004392 .010654 .017190 .017723 .014044 .006919
I .000544 .037351 .015579 .004282 .014142 .016741 .002258
E 330097 323877 326746 330618 321622 330264 322305

GRU
T .002800 .005177 .011987 .020600 .024754 .018683 .006823
I .000584 .006819 .026034 .005473 .059921 .029642 .002185
E 330309 324036 321989 333336 318537 334332 321107

RNN - TANH
T .049635 .049862 .072149 .161817 .117094 .076251 .071165
I .041697 .020395 .040893 .169256 .115955 .340204 .068180
E 332760 324180 324000 330137 323908 329339 320840

RNN - RELU
T .058062 .037226 .044367 .127584 .096943 .051219 .045705
I .005471 .010728 .019738 .091305 .073977 .017803 .007818
E 325690 287928 238771 329636 2902047 330305 114725

Neural Accumulator
T .000002 .000001 .00002 .46505 .34161 .69882 .613314
I .00020 <.00001 .000001 .46862 0.350227 .70909 .617613
E 1.8946 .00004 0.01537 297800 3083319119 416701 2152274742

Neural ALU
T <.000001 <.000001 .000171 .000074 .001740 .000164 .000703
I <.000001 <.000001 .000001 .000003 .000431 .000001 .003492
E <.000001 .013131 .013843 47.0244 >999999 2804.85 1671.81

Table 8: Mean Squared Error Loss values for all recurrent arithmetic tasks across baseline and
proposed models. T/I/E refers to final training loss, interpolation loss, and extrapolation loss
respectively. Best scores in bold.

Model a a+ b a− b a ∗ b a/b a2
√
a

Interpolation Test

LSTM 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GRU 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tanh 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ReLU 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NAC 0.0 0.0 0.0 1.5 1.2 2.3 2.1

NALU 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Extrapolation Test

LSTM 100.0 96.1 97.0 98.2 95.6 98.0 95.8
GRU 100.0 96.2 95.6 99.0 94.7 99.2 95.4
tanh 100.0 96.2 96.2 98.0 96.3 97.8 95.4

ReLU 98.6 85.5 70.9 97.9 862.5 98.0 34.1
NAC 0.0 0.0 0.0 88.4 >999.9 123.7 >999.9

NALU 0.0 0.0 0.0 0.0 >999.9 0.0 0.0

Table 9: Recurrent use of NALU and NAC compared to modern recurrent architectures, evaluated
using Mean Squared Error relative to a randomly initialized LSTM. 100.0 is equivalent to random.
>100.0 is worse than random. 0 is perfect accuracy. Raw scores in appendix.

In Table 7, we observe that with very strong supervision over a simple task, most nonlinearities cannot
learn functions requiring numeracy that generalize outside of the range observed during training.
Note the consistency in these results with those in Table 5; common non-linearities with a very small
output range catastrophically fail to extrapolate in any case, even with strong supervision, notably
including Sigmoid and Tanh which are ubiquitous in recurrent neural networks, leading to results in
Table 9.

In Table 9, we observe the accuracy of various baselines and our models when used recurrently. The
tanh and relu in Table 9 refer to vanilla RNNs with tanh and relu respectively applied to hidden states.
All models successfully learn to interpolate over learned functions of the input. However, the when
attempting to extrapolate a function learned over series of length 10 to series of length 1000, the
NAC and NALU significantly outperform the baselines. Division, however, was quite challenging to
extrapolate and no models were able to solve the task in a way that extrapolates. Baselines generally
predicted a fixed range. However, the NAC and NALU underestimated the denominator, leading to
quite significant error during extrapolation.

13



While these simple experiments are quite numerous, they exist to make clear a simple idea. Across
a wide variety of nonlinearities and recurrent combinations of nonlinearities, most architectures
can fit a training dataset requiring arithmetic; many can even learn to generalize to a test set if the
numbers are within the same bounded range. However, modern neural architectures are ill-equipped
to learn arithmetic in a systematic way. We did observe a few narrow exceptions in Table 7, but
we will later show that even these do not hold when the supervised signal is more realistic (such as
when this model is merely a piece of a large end-to-end architecture). It is the systematic numerical
representations present in NAC and NALU that create the desirable learning bias leading to accurate
extrapolation. This will continue to be the key to systematic extrapolation in future experiments as
well.

C MNIST Counting

We report the performance of MNIST counting and addition for the full set of models considered in
Table 10.

MNIST Digit Counting (test) MNIST Digit Addition (test)

Classification Mean Squared Error Classification Mean Squared Error

Seq Len 1 10 100 1000 1 10 100 1000

LSTM 98.29% 1.14 181.06 19883 0.0% 168.18 321738 38761851
GRU 99.02% 1.12 180.95 19886 0.0% 168.09 321826 38784947

RNN-tanh 38.91% 1.53 226.95 20346 0.0% 167.19 321841 38784910
RNN-ReLU 9.80% 0.54 160.80 19608 88.18% 4.29 882.87 10969180

NAC 99.23% 0.03 0.26 3 97.58% 2.82 28.11 280.89
NALU 97.62% 0.08 0.90 17 77.73% 18.22 1199.12 114303

Table 10: Accuracy of the MNIST Counting & Addition tasks for series of length 1, 10, 100, and
1000.

D Language To Number Translation Tasks

For the LSTM, we tried both summing the preceding states as output instead of using the final state
and found this to be slightly advantageous to simply outputting the final state, as shown in Table 11.
This summed state LSTM is what we use for comparison with the NAC and NALU in table 3. We
train all models for 300K steps of gradient descent on the whole training set using Adam.

We selected the best model by validation loss over layer sizes {16, 32}, learning rates {0.01, 0.001},
and 10 initializations.

Model Train MAE Validation MAE Test MAE

LSTM w/ final state 0.0085 32.1 32.2
LSTM w/ summed states 0.003 29.9 29.4

Table 11: Mean absolute error (MAE) comparison on translating number strings to scalars with
LSTM state aggregation methods. Summing states improved generalization slightly, but

E Program Evaluation

The addition task, which is the simpler variant of the two program evaluation tasks considered, is
simple for all models to solve. However all models fail to generalize except for the recurrent NALU.
The UGRNN proves much better than the LSTM and DNC, likely due to the simple linear update of
the state.

14



50 100 150 200
Training steps (1,000)

0

20

40

60

80

100

%
 D

ig
it

s 
co

rr
e
ct

NALU

DNC

LSTM

UGRNN

(a) Train (2 digits)

50 100 150 200
T

0

20

40

60

80

100

%

(b) Validation (3 digits)

0 50 100 150 200
T

0

20

40

60

80

100

%

(c) Test (4 digits)

Figure 6: Summing a sequence of two random integers with extrapolation to larger values. All models
are averaged over 10 independent runs, 2σ confidence bands are displayed.

F NAC/NALU Using Imaginary Activations

One limitation in the aforementioned implementation is that it cannot learn to multiply negative
numbers. Gabor Gulyas (guyko81@gmail.com) proposes that we could solve this issue by forward
propagating with imaginary numbers. Thus, the proposed NAC and NALU formulas become:

NAC: a = Wx W = tanh(Ŵ)⊙ σ(M̂)

NALU: y = g ⊙ a+ (1− g)⊙m m = expW(log(x+ ǫ)), g = σ(Gx)

where all activations and gradients are computed including an imaginary term. We have evaluated this
task on the Static Arithmetic tasks and found that we get nearly identical performance. However, we
still need to mask out zero activations (by adding ǫ to them) because (in log space) they correspond
to an infinite value, causing numerical stability issues.

Tasks Test Random Tanh Sigmoid Relu6 Softsign SELU ELU ReLU Crelu None NAC NALU

a+ b
I 8.659 .0213 .0086 .0144 .0229 .0031 .0191 .0040 .0020 .0017 <.0001 .0001
E 120.9 52.37 51.14 51.56 47.78 .0126 .1064 .0225 .0127 .0013 <.0002 .17

a− b
I 6.478 .0344 .0183 .0010 .0616 .0046 .0510 .0133 .0035 .0007 <.0001 <.0001
E 42.14 11.54 9.627 12.22 9.734 5.60 3.458 6.108 .0090 .0007 <.0001 <.0001

a ∗ b I 233.9 21.82 12.06 7.579 20.07 11.99 5.928 6.084 36.28 48.91 50.13 <.0001
E 3647 971.3 608.9 366.6 998.6 380.7 187.8 183.0 197.9 1076 1217 <.0001

a
b

I 1.175 .0514 .0421 .0499 .0558 .1218 .1233 .1233 .1011 .4113 .4366 .1659
E 41.56 14.65 13.34 15.46 13.55 7.219 7.286 7.291 6.746 21.75 25.45 26.09

a2
I 151.7 .3327 .0672 1.027 1.479 6.462 .1744 .7829 .1593 6.495 34.09 <.0001
E 4674 2168 2142 2195 1938 1237 406.6 569.4 408.4 1172 2489 <.0001

√
a

I 1.476 .0124 .0026 .0080 .0101 .0046 .0055 .0265 .0027 .0329 .0538 <.0001
E 4.180 .4702 .3571 .4294 .3237 .0739 .1006 .5066 .0622 .6866 .6876 <.0001

Table 12: Raw Mean Squared Error for all arithmetic tasks across activation functions. The
NAC/NALU columns in this table were trained using imaginary activations and the formula specified
above this table (here in Appendix F). I/E refers to interpolation/extrapolation test sets respectively.
Losses on the left refer to the decoder function where a is the sum (a scalar) over one random subset
of the input matrix and b is the sum (a scalar) over another subset. The model must correctly predict
the output of the function for each grid.

Accuracy overall for this model is very similar to that of the one proposed above, although extrapola-
tion for division appears to be less stable. Future work will explore further improving the numerical
stability of this process in a wider variety of contexts.

15


	Learning the Identity Function
	Synthetic Arithmetic Tasks
	MNIST Counting
	Language To Number Translation Tasks
	Program Evaluation
	NAC/NALU Using Imaginary Activations

