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A Count-min sketch details

Recall Theorem 1 of Cormode and Muthukrishnan [2, Theorem 1] summarized in the main text:
Let J = d eε e and N = dlog 1

δ e, with ε > 0, δ > 0. Then the estimate of the count η̂CM
x satis-

fies η̂CM
x ≥ ηx and with probability at least 1− δ, the estimate satisfies η̂CM

x ≤ ηx + εM .

Proof. Let

In,k,l :=

{
1 if hn(k) = hn(l), k 6= l

0 otherwise
. (A.1)

The expected value of In,k,l is

E(In,k,l) = Pr(hn(k) = hn(l)) = Pr(

J⋃
j=1

{hn(k) = j, hn(l) = j})

≤
J∑
j=1

Pr(hn(k) = j, hn(l) = j) =
1

J
,

due to a union bound and pairwise independence.

Now define

Xkn :=

K∑
l=1

ηl In,k,l, (A.2)

which is the number of times the kth item collides with some other type l for the nth hash function,
multiplied by the count ηl, which has expectation

E(Xkn) = E

(
K∑
l=1

ηl In,k,l

)
=

K∑
l=1

ηl E(In,k,l) ≤
1

J

K∑
l=1

ηl =
1

J
||η||1. (A.3)

Here Xkn represents the noisy part of the the counts in C that arises due to collisions. That is,

cn,hn(k) = ηk +Xkn.

This implies that cn,hn(k) ≥ ηk for all n ∈ [N ], and so each count cell in C overestimates the value
of the true count ηk. To see this, we can rearrange the probability of the event

Pr(η̂k > ηk + ε||η||1) = Pr(∀n ∈ [N ], {cn,hn(k) > ηk + ε||η||1})
≤ Pr(∀n ∈ [N ], {Xkn > εJ · E(Xkn)}).
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where the last inequality is from substituting Equation (A.3). Now by Markov’s inequality, and letting
J = d eε e, we have

Pr(∀n ∈ [N ], {Xkn > εJ · E(Xkn)}) = Pr(∀n ∈ [N ], {Xkn > eE(Xkn)}) ≤ 1

eN
.

Choosing N = log(d 1
δ e), we have that 1

eN
≤ δ. Thus, the probability the estimate η̂k is within an

ε||η||1 additive factor of the true value ηk is at least 1− δ.

B Infinite multinomial occupancy scheme

In the infinite multinomial occupancy scheme (see Gnedin et al. [3]), we have frequencies (pj)
∞
j=1,

where
∑∞
j=1 pj = 1, and we throw n balls into the boxes, where each ball lands with probability

pj . Furthermore, we assume that the frequencies (pj) are random, drawn from a subordinator with
independent increments with mean measure ν. (Jumps by pj at rate 1 for each j.)
Proposition B.1 (Gnedin et al. [3]). The expected number of bins with j balls in a sample of size n is

E(πn,j) =

(
n

j

)∫ 1

0

xj(1− x)n−jν(dx), (B.1)

where the rate measure ν is defined by ν(A) = E(
∑
i δpi(A)), and can be interpreted as the intensity

measure of a subordinator, where we have jumps at pj with rate 1.

Proof. Let πn,j be the number of bins with exactly j balls: if N1, N2 . . . are the associated counts
obtained from the n draws,

πj =

∞∑
i=1

1(Ni = j).

Then, its expectation is given by

E(πj) = E

((
n

j

) ∞∑
i=1

pji (1− pi)
n−j

)
=

(
n

j

)∫ 1

0

xj(1− x)n−jν(dx), (B.2)

where ν(dx) is the mean measure, and the equality follows from

E(
∑
i

f(pi)) =

∫ 1

0

f(x)ν(dx)

holds for arbitrary f ≥ 0.

Note that this expectation can also be applied to the case where
∑
i pi <∞ is not necessarily 1. See

Gnedin et al. [3] for details, and Broderick et al. [1] for details on applying this to the stable beta
process.

C Poisson processes

Kingman [4] provides an overview of properties of Poisson point processes. We outline a few useful
results below. A fundamental property of Poisson processes is that the superposition of independent
Poisson processes is itself a Poisson process. This is summarized by the theorem below.
Theorem C.1 (Kingman [4]). Let Π1, . . . ,ΠJ be independent Poisson processes on S, and let Πj

have mean measure µj . Then the point process defined by their superposition

Π =

J⋃
j=1

Πj

is a Poisson process with mean measure µ =
∑J
j=1 µj .
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Below we state the coloring theorem.

Theorem C.2 (Kingman [4]). Let Π be a Poisson process on Ω with mean µ. Let the points of Π
be colored randomly with J colors, and let the probability of a point receiving the jth color be pj .
Furthermore, suppose the colors of different points are independent. Let Πj be the set of points with
the jth color. Then, the Πj are independent Poisson processes with mean measures µj = pjµ.

Note that the superposition of the Πj gets back Π = ∪Jj=1Πj with mean measure
∑J
j=1 µj .

D Proofs for Bayesian CM-sketch

Lemma D.1 (Main text, Lemma 1). Let π be a CRP(α)-distributed random partition of c items
and πk be the number of subsets in that partition of size k. The expected number of size-k subsets is

π̄k := E[πk] =
α

k

Γ(c+ α− k)Γ(c+ 1)

Γ(c+ α)Γ(c+ 1− k)
. (D.1)

where Γ(·) is the gamma function.

Proof. The Dirichlet process with concentration α has rate measure ν(dp) = αp−1(1− p)α−1dp
which can be obtained by computing p−1ν1(dp), where ν1 is the structural distribution [6, 3]. We
can apply Proposition B.1 to get

E[πk] =
Γ(c+ 1)

Γ(c− k + 1)Γ(k + 1)

∫ 1

0

pk(1− p)c−k α′p−1(1− p)α−1dp

= α
Γ(c+ 1)

Γ(c− k + 1) Γ(k + 1)︸ ︷︷ ︸
=kΓ(k)

B(k, c− k + α)

∫ 1

0

pk−1(1− p)c−k+α−1 1

B(k, c− k + α)
dp︸ ︷︷ ︸

:=1

= α
Γ(c+ 1)Γ(k)Γ(c− k + α)

Γ(c− k + 1)kΓ(k)Γ(c+ α)
=
α

k

Γ(c+ 1)Γ(c− k + α)

Γ(c− k + 1)Γ(c+ α)
.

Theorem D.1 (Main text, Theorem 2). Let there be N hash functions h1, . . . , hN each drawn
uniformly at random from a truly random hash familyH. Define a Dirichlet process stream of tokens
as in Proposition 1. When the M th item xM arrives, let its nth hashed value be hn(xM ) = jn.
Define cn,jn to be the number of previous items in the stream that the nth hash has also hashed to jn,
i.e., cn,jn =

∑M−1
m=1 1[hn(xm) = jn]. Given the counts c1,j1 , . . . , cN,jN , the posterior distribution

over the true number of previous occurrences of items with the same type as xM is

Pr(ηx = k | c1,j1 , . . . , cN,jN , α) ∝
N∏
n=1

1

α/J + cn,jn

{
k π̄k,cn,jn

if k > 0

α/J if k = 0,
(D.2)

where

π̄k,cn,jn
=

α

Jk

Γ(cn,jn + 1)Γ(cn,jn − k + α/J)

Γ(cn,jn − k + 1)Γ(cn,jn + α/J)
. (D.3)

Proof. Because of the assumption of independence of the hash family, we can factor the joint
distribution of the observed counts into the product of the likelihoods of the individual hash function
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count cn:

Pr(ηx = k|c1,j1 , . . . , cN,jN , α′) = [Pr(c1,j1 , . . . , cN,jN )]−1 Pr(ηx = k)

N∏
n=1

Pr(cn,jn |ηx = k, α′)

= [Pr(c1,j1 , . . . , cN,jN )]−1 Pr(ηx = k)

N∏
n=1

Pr(cn,jn , ηx = k|α′)
Pr(ηx = k)

= [Pr(c1,j1 , . . . , cN,jN ) Pr(ηx = k)N−1]−1
N∏
n=1

Pr(cn,jn) Pr(ηx = k|α′)

= [Pr(ηx = k)N−1]−1
N∏
n=1

Pr(ηx = k|α′)

∝
N∏
n=1

1

α′ + cn,jn

{
k π̄k,cn,jn

if k > 0

α′ if k = 0,

where in the last line, we substitute the result from Proposition 1 and observe that Pr(ηx = k) is a
small positive constant under the DP prior.

E Point estimates

Lemma E.1 (Main text, Lemma 2). For α < J , the function p(ηx = k|cn,jn , α′) is strictly increasing
on k = 0, . . . , cn,jn .

Proof. By our assumption that α < J , we have that α′ < 1. For k = 0, the probability is proportional
to α′ < 1. For k = 1, the probability is proportional to

π1,cn = α′
Γ(cn + α′ − 1)Γ(cn + 1)

Γ(cn + α′)Γ(cn)
= α′

Γ(cn + α′ − 1)(cn)Γ(cn)

(cn + α′ − 1)Γ(cn + α′ − 1)Γ(cn)
= α′

cn
cn + α′ − 1

> α′,

where we used Γ(x+ 1) = xΓ(x), and the inequality follows from α′ < 1. Thus, the value of the
function for k = 1 is greater than for k = 0.

Now the goal is to show for all k = 2, . . . , cn,jn , p(k|cn,jn , α′) > p(k − 1|cn,jn , α′). We have that

k πk,n
(k − 1)πk−1,n

=
k

k − 1

α′

k

Γ(cn,jn + α′ − k)Γ(cn,jn + 1)

Γ(cn,jn + α′)Γ(cn,jn + 1− k)

k − 1

α′
Γ(cn,jn + α′)Γ(cn,jn + 1− (k − 1))

Γ(cn,jn + α′ − (k − 1))Γ(cn,jn + 1)

=
Γ(cn,jn + α′ − k)

Γ(cn,jn + 1− k)

Γ(cn,jn + 1− k + 1))

Γ(cn,jn + α′ − k + 1))

=
Γ(cn,jn + α′ − k)

Γ(cn,jn + 1− k)

(cn,jn + 1− k)Γ(cn,jn + 1− k))

(cn,jn + α′ − k)Γ(cn,jn + α′ − k)
=

(cn,jn + 1− k)

(cn,jn + α′ − k)
> 1,

since α′ < 1. Thus, p(k|cn) is (strictly) monotonically increasing on k = 0, . . . , cn,jn .

From the last line of the proof, we can also see that the posterior is strictly decreasing when α > J .

Using this result, we can describe the behavior of the posterior mean, median, and mode (MAP).
Proposition E.1. For α < J , we the following relationships between estimators:

η̂MAP
x = η̂CM

x , and η̂mean
x ≤ η̂med

x ≤ η̂MAP
x .

Proof. The MAP estimator is given by the k that maximizes a product of monotone functions (from
k = 0, . . . , cn,jn ), i.e.,

η̂MAP
x := arg max

k
p(ηx = k|c1,j1 , . . . , cN,jN , α′) = arg max

k

N∏
n=1

p(ηx = k|cn,jn , α′),
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where jn := hn(x) is the bucket that the nth hash sends x to.

By Lemma 2, the posterior of each hash hn, p(ηx = k|cn,jn , α′), is monotonically increasing in k,
for k = 0, . . . , cn,jn . Furthermore, each individual posterior is equal to 0 for k > cn, since the true
count nk cannot exceed the total colliding mass cn.

Thus, this full posterior, which is proportional to the product of the individual hash functions’
posteriors, is monotonically increasing in k = 0, . . . ,minn∈[N ] cn,jn since for each all hash functions
hn, p(ηx = k|cn,jn , α′) is monotone on k = 0, . . . ,minn∈[N ] cn,jn . Since, for the hash function hn′

with the minimum count cn′ , the posterior is 0 for any k > cn′,jn′ , the product of all of the hashes’
posteriors must be 0 for k > minn∈[N ] cn,jn .

Thus, we have that the MAP estimate is equal to the minimum count, i.e.,
η̂MAP
x = min

n∈[N ]
cn,jn := η̂CM

x ,

which is the estimator given by the CM-sketch.

The relationship η̂mean
x ≤ η̂med

x ≤ η̂MAP
x follows from the fact that the distribution is skewed, as it is

monotonically increasing.

F Details for stable beta-Bernoulli process sketching

Recall the model given by stable beta-Bernoulli process (BP)

B ∼ BP(α, γ, d), Xm|B
iid∼ BeP(B), (F.1)

where α > 0 is the concentration parameter, γ > 0 is the mass parameter, d ∈ [0, 1), d > −α is the
discount parameter. The condition d > −α ensures that the total mass is finite (and therefore each
Xm has a finite number of non-zero features). For additional details on the stable beta process (aka
3-parameter beta process), see Teh and Görür [7], Broderick et al. [1]. For additional details on beta
processes, see Thibaux and Jordan [8].

The stable beta process is a completely random measure, which can be represented by a Poisson point
process with rate measure

ν(dw) = γ
Γ(1 + α)

Γ(1− d)Γ(α+ d)
w−1−d(1− w)α+d−1dw,

which governs the distribution of the weights. A separate base measure can be specified, but for this
paper, we assume the atoms ω are distributed uniform in Ω.

As in the Dirichlet (gamma) process case, we can apply the Poisson coloring theorem to get J
independent beta-Bernoulli processes with mass parameter γ′ = γ/J . Analogous to the DP case, this
is used then used to model the sketch data generating process with a beta-Binomial process with M
draws.

To compute the posterior BP query, we need the predictive rule from the 3-parameter Indian buffet
process (3-IBP), the marginal process of the stable beta process. In the IBP analogy, customers
are observations, and dishes represent features. The 3-parameter Indian buffet process gives the
probability of seeing an existing feature i in the next observation as Pr(xn+1,i = 1|x1,i, . . . , xn,i) =
ηi−d
n+α , and then Pois(γ Γ(1+α)Γ(n+α+d)

Γ(n+1+α)Γ(α+d) ) new features are drawn. Here ηk is the number of times a
customer has tried the kth dish.

Note that when the discount d = 0, we recover the 2-parameter IBP (2-IBP):

Pr(xn+1,i = 1|x1,i, . . . , xn,i) =
ηi

n+ α
for an existing dish i and then Pois( γα

n+α ) new dishes are drawn.

Now the conditional probability of the count of feature x ∈ N in a new observation being k
conditioned on the number of items that hashed into the same bucket ch(x) and the number of features
in that bucket with count k is:

p(ηx = k|πk,ch(x)
, ch(x)) =

πk,ch(x)

k−d
ch(x)+α

if k > 0

γ
Γ(1+α)Γ(ch(x)+α+d)

Γ(ch(x)+1+α)Γ(α+d) if k = 0
,
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Figure 1: Beta-Bernoulli process posterior for γ′ = 1 and c = 50 for a single hash function. The dashed line
denotes the posterior mean.

where πk,n is the number of tokens with count k in a bin with n tokens hashing to it.

Thus, we have the individual hash’s posterior

p(ηx = k|ch(x)) =
∑
πk

p(ηx = k|πk,ch(x)
ch(x))p(πk|ch(x)) =

π̄k
k−d

ch(x)+α
if k > 0

γ
Γ(1+α)Γ(ch(x)+α+d)

Γ(ch(x)+1+α)Γ(α+d) if k = 0
,

where

π̄k,n ≈
(
n

k

)
γ

∫ 1

0

wk(1− w)n−kγ
Γ(1 + α)

Γ(1− d)Γ(α+ d)
w−1−d(1− w)α+d−1dw

= γ
Γ(n+ 1)Γ(1 + α)Γ(k − d)Γ(n− k + α+ d)

Γ(n− k + 1)Γ(k + 1)Γ(1− d)Γ(α+ d)Γ(n+ α)
.

Note that when the discount d = 0, and we recover the 2-IBP, the query is very similar to that of the
CRP case, except with the extra mass parameter γ. The posterior count conditioned on all N counters
is then proportional to the product of the individual hash posteriors.

In Figure 1, we plot the posterior for a single hash function. The vertical line denotes the poste-
rior mean. Lighter colors (higher values of d) represent heavier-tailed distributions, and we can
see that higher values of d correspond to the posterior assigning more mass to smaller counts.
For d = 0, α < 1, we again observe the monotonicity of the posterior. We can also see that as the
concentration parameter α grows, the posterior places more mass on lower counts; this reflects the
distribution spreading the mass of the random measure across more atoms.

G Additional experiments and details

For all experiments, we used a 2-universal hash family, given by the construction below. All code
was implemented in the Julia programming language (v0.6), and experiments were run on a laptop.

G.1 Hash family construction

For all experiments, we used the following construction for a 2-universal hash family. Fix K,J . Let
p ≥ K be a prime number. Let g : Zp → [J ] be the function given by g(x) = x mod J. For all
a, b ∈ Zp, define the linear function fa,b : Zp → Zp as

fa,b(x) = ax+ b ( mod p).
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(a) Low frequency example (b) High frequency example

Figure 2: Simulations for the Bayesian count-min sketch with CRP-distributed tokens for a low
and high frequency token example. The dashed black curve is the full posterior over N = 4 hash
functions. The vertical red lines denote the mean, median, and MAP estimators, and the blue vertical
line is the true count. Here α is assumed to be known.

Finally, define the hash function ha,b : Zp → [J ] as ha,b(x) = g(fa,b(x)). The family of hash
functions defined byH = {ha,b : a, b ∈ Zp with a 6= 0} is a 2-universal family [5, Thm. 8.16], i.e.,
for all x, y ∈ [K] such that x 6= y, and h chosen uniformly at random fromH,

Pr
h∈H

(h(x) = h(y)) ≤ 1

J
.

This also can be applied to the restriction of Zp to [M ]. To generate a hash function ha,b fromH, we
choose a, b uniformly at random from Zp, and then we can easily compute ha,b.

G.2 Synthetic data

We generated several synthetic datasets in order to better understand the behavior of the posterior
queries and our theoretical results.

G.2.1 Dirichlet process simulations

Data generation We simulated a synthetic data from the Chinese restaurant process with concen-
tration parameter α = 3000. We generated M = 5× 104 tokens for constructing the sketch, and then
conditioned on those tokens, another M ′ = 1× 103 tokens for query processing. The total number
of unique tokens was 15,562.

Sketch construction For a fixed N, J , we first generated N hash functions from the 2-universal
family described above, where the domain was set to the largest possible number of unique tokens,
and chose a prime larger than that. For the first M data points, we hashed each data point and
incremented the associated counters (i.e., performed the update operation for the sketch).

Posterior queries Figure 2 shows the posterior for a low and high frequency example, highlighting
the posterior mean, median, and MAP. In these examples, we can see that posterior mean provides a
better estimate than the MAP, as it the averaging takes into account uncertainty from the posterior
probability mass placed on other counts.

We also looked at the query of the same token but under different sketches (each sketch with a
different random seed) and how the posterior changes depending on the randomness of the hash
functions drawn. For clarity of presentation, we show two runs per query.

Predictive distribution approximation Under the Dirichlet process, the predictive distribution of
a new token is

p(xM+1|x1, . . . , xM ) =
1

M + α

{
ηxM+1

if xM+1 is an existing token
α if xM+1 is a novel token

,
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Figure 3: Posterior distributions generated under 2 different sketches both with N = 4, J = 4000,
denoted by black and gray lines. The true count is indicated by the blue solid line. Here we show
three example token queries for a low, medium, and high frequency token.

Figure 4: Predictive distribution approximation errors induced from using the full posterior and
averaging out the count vs plug-in point estimators given by the posterior mean, median, and MAP
(CM).

where ηxM+1
is the number of times we observed that token in the first M elements.

Now, under the sketch, we are throwing away the information in x1, . . . , xM and replacing it with
the sketch (cn,j), thereby introducing uncertainty in the value of the count ηxM+1

.

One way of approximating this predictive distribution is to approximate the sufficient statistic using a
point estimator, such as the count-min sketch estimator or the posterior mean/median of our method.
To do so, we replace ηxM+1

with its estimate η̂xM+1
.

Alternatively, we can consider averaging over the value of the count η∑
ηxM+1

p(xM+1, ηxM+1
|(cn,j)) =

∑
η

p(ηxM+1
= η|(cn,j)) p(xM+1|ηxM+1

= η),

where, on the right hand side, the first term is the posterior distribution over the count that is output
from our method, and the second term is the predictive distribution evaluated at a particular value of
ηxM+1

= η.

We compared the predictive distribution approximation errors from averaging over the posterior with
the predictive distributions induced by the plug-in estimators from the posterior mean, median, and
MAP. We computed the exact predictive distribution and then computed the relative error between
the true predictive distribution and each approximation, where we computed one relative error for
each token in the query “test” set.

Point estimation results For the sketches that we constructed, varied the sketch width N = 3, 4

and depth J = 4000, 4800, 5600. In Figure 5, we plotted the relative error, defined by |η̂v−ηv|ηv
by the

true counts ηv for all tokens in the test set. Here we plot the relative error against the true count to get
a sense of the performance of the various estimators on low and high frequency tokens. Recall that
the MAP is the same as the count-min sketch estimator.
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(a) N = 3, J = 4000 (b) N = 3, J = 4800 (c) N = 3, J = 5600

(d) N = 4, J = 4000 (e) N = 4, J = 4800 (f) N = 4, J = 5600

Figure 5: Relative error measured by absolute difference between estimate and true count, divided by
the true count, on a held out test set.

G.3 Count-min sketch extensions

Conservative updates We show results on the synthetic data of the posterior point estimates
in comparison to the estimates obtained from count-min sketch and conservative updates, where
counters are only updated when needed. That is, the update only increments minimum counter(s).
Conservative updates worked well on our example for high-frequency counts, far exceeding the
CM-sketch estimator (and therefore the MAP estimator). We display some of the low frequency
count results, showing that the posterior mean has comparable or slightly worse relative error than
conservative updates. In future work, computing a posterior distribution over the counts from a sketch
constructed using conservative updates is desirable to quantify the uncertainty in the count.

Count-mean-min In the conservative updates setting, the update rule is changed but the point
query is the same. By contrast, like in our Bayesian CM setting, the count-mean-min estimator
assumes the same update rule as CM but has a different point query. The aim of the count-mean-min
estimator is to subtract the an estimate of the bias from the count-min estimator. We compared to the
count-mean-min estimator and found that it tended to underestimate the count, even more so than the
posterior mean, for the same settings of hash parameters.

G.3.1 Beta process simulations

For the beta-Bernoulli process, we generated data from a 3-parameter Indian buffet process with
parameters γ = 400, α = 0.5,M = 2000. We generated one dataset with d = 0 (no power law, left
figure) and one with d = 0.2 (slight power law, right figure). We fit the sketch with N = 3, J = γ. In
Figure 7, we plot the posterior along with the posterior mean and the count given by count-min sketch.
As we can see from the true count, the estimate from CM-sketch is significantly overestimating the
true count.

G.4 Text data

As stated in the main paper, we constructed a stream of tokens using the 20 Newsgroups data set,
where the sketch was updated using the training data set (M = 1,467,345), and evaluated queries
on the set of unique tokens in the test set, which had 53,975 elements. For each task, we examined
several hash parameter settings of N = 4, 5, 6, with J = 8000, 10000, 12000. For the posterior
distribution of the count, we used the Dirichlet process sketching model, inferring α via empirical
Bayes.
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Figure 6: Low frequency counts generated from the CRP(α). The posterior point estimates are
compared to the point estimator from the count-min sketch with conservative updates.

Figure 7: Posterior over count of tokens from data generated from a beta-Bernoulli processes, where d = 0, 0.2,
respectively.

In Figure 8, we provide a few additional visualizations of various posterior queries for tokens,
representing low, medium, and high frequency token examples. Here we see that the posterior mean is
a useful estimator for low frequency counts, the median may provide a better estimate than the MAP
(CM) for medium and high frequency counts. In the query for religion, we see that the MAP performs
quite well already, and thus, the mean and medium will underestimate, due to the monotonicity
property of the posterior.

Additional point estimation results In Figure 9, we plot additional point estimation results for
the other hash parameter settings. We see the same trends summarized in the main document: the
posterior mean provides the most shrinkage and therefore tends to perform well on low frequency
counts, whereas medium and high frequency counts often benefit from the more modest shrinkage
posterior median, as the CM sketch tends to perform well on large counts. Additionally, we see
that the posterior mean tends to be useful (relative to the MAP) in the cases when we use less space
J = 8000.
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Figure 8: Additional posterior queries for low, medium, and high frequency tokens.

Figure 9: Mean relative error for point estimators of the posterior, constructed with N hash functions
with a range of size J .

Estimation of α In Figure 10, we plot the marginal likelihood (Equation (10)) and the inferred
value of α for the N = 4, J = 12000 hash setting. We computed the maximum marginal likelihood
using the optimize function in the Julia package Optim.jl.

Query time We measured the query times to get a sense of the additional time cost computing the
posterior distribution has over the count-min sketch point query. Here we considered the settings of
N = 5, J = 10000. We constructed the sketch using the entire training data set and then queried
the counts for the test set. Averaged over all timings in the test set, the average query time for the
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Figure 10: Marginal likelihood of α for the N = 4, J = 12000 sketch.

count-min estimator was 7.5e− 6 seconds, and the average query time for the posterior distribution
was 2.5e − 4 seconds. While this is much slower, the latter is still computationally efficient, in
practice. Note that the timings are based on an implementation in Julia on a standard laptop.
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