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Abstract

We consider the problem of online convex optimization in two different settings:
arbitrary and i.i.d. sequence of convex loss functions. In both settings, we provide
efficient algorithms whose cumulative excess risks are controlled with fast-rate
sparse bounds. First, the excess risks bounds depend on the sparsity of the objective
rather than on the dimension of the parameters space. Second, their rates are
faster than the slow-rate 1/

√
T under additional convexity assumptions on the

loss functions. In the adversarial setting, we develop an algorithm BOA+ whose
cumulative excess risks is controlled by several bounds with different trade-offs
between sparsity and rate for strongly convex loss functions. In the i.i.d. setting
under the Łojasiewicz’s assumption, we establish new risk bounds that are sparse
with a rate adaptive to the convexity of the risk (ranging from a rate 1/

√
T for general

convex risk to 1/T for strongly convex risk). These results generalize previous
works on sparse online learning under weak assumptions on the risk.

1 Introduction

We consider the following setting of online convex optimization where a sequence of random convex
loss functions (`t : Rd → R)t>1 is sequentially observed. At each iteration t > 1, a learner
chooses a point θ̂t−1 ∈ Rd based on past observations Ft−1 = σ

(
{`1, . . . , `t−1}

)
. The learner

aims at minimizing the average excess risk defined as L̂T := (1/T )
∑T
t=1 Et−1

[
`t(θ̂t−1)

]
where

Et−1 = E[ · |Ft−1]. For any parameter θ in some reference set Θ ⊂ Rd, the average excess risk can
be decomposed as the sum of the approximation-estimation errors:

L̂T =
1

T

T∑
t=1

Et−1

[
`t(θ)

]
︸ ︷︷ ︸

approximation error

+
1

T

T∑
t=1

Et−1

[
`t(θ̂t−1)

]
− 1

T

T∑
t=1

Et−1

[
`t(θ)

]
︸ ︷︷ ︸

estimation error := RT (θ)

. (1)

Though the final goal is to minimize L̂T , a common proxy is to upper-bound the estimation term
RT (θ) (also refereed to as average excess risk1) simultaneously for all θ ∈ Θ. If the loss functions
are exp-concave and Θ is bounded, several sequential algorithms achieve the uniform bound2 on
the estimation term RT := supθ∈ΘRT (θ) 6 Õ(d/T ); see [13]. In this paper, we are interested
with non-uniform bounds on RT (θ) increasing with the complexity of θ. Such non-uniform bounds
are called oracle inequalities and state that the learner achieves the best approximation-estimation

1The average excess risk RT (θ) generalizes the average regret more commonly used in the online learning
literature by considering the Dirac masses on {`t} as conditional distributions so that `t = Et−1[`t], t ≥ 1.

2Throughout the paper . denotes an approximate inequality which holds up to universal constants and Õ
denotes an asymptotic inequality up to logarithmic terms.
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trade-off of (1). Using the `0-norm to measure the complexity of θ, we are looking for fast-rate sparse
bounds of the form

RT (θ) 6 Õ

((
‖θ‖0
T

) 1
2−β
)
, for any θ ∈ Θ.

The parameter β ∈ [0, 1] depends on the convexity properties of the loss functions and will be specified
later. We call fast-rate bound any bound which provides a better rate than 1/

√
T and sparse bounds any

bound where some dependence on d has been replaced with ‖θ‖0. Our analysis starts from a careful
study of the finite case Θ = {θ1, . . . , θK}. We consider then online averaging algorithms on adaptive
finite discretization grids that achieve sparse oracle bounds on Θ = B1 = {θ ∈ Rd : ‖θ‖1 6 1}.

First contribution: fast-rate high probability quantile bound (finite Θ, adversarial data) The
case of finite reference set Θ = {θ1, . . . , θK} corresponds to the setting of prediction with expert ad-
vice (see Section 2.2 or [5]) where a learner makes sequential predictions over a series of rounds with
the help of K experts. Hedge introduced by [19] and [26] achieves the rate RT 6 O(

√
(lnK)/T ).

The latter is optimal for general convex loss functions but better performance can be obtained in
favorable scenarios. The rate RT 6 O((lnK)/T ) is for instance obtained for strongly convex loss
functions in [28]. Another improvement (see [16] and references therein) is devoted to quantile
bounds, i.e. bounds on Ek∼π[RT (θk)] for any probability distribution π ∈ ∆K

3. The latter improve
the dependence on the number of experts from lnK to the Kullback divergence K(π, π̂0) for any
prior π̂0. They are smaller whenever many experts perform well or when a good prior knowledge
is available. Squint [16] achieves a fast-rate quantile bound for adversarial data. Such a bound is
obtained in high-probability by [20] but it suffers an additional gap term.
In Section 2, we extend the analysis of [16] to remove the gap term of [20]. We introduce a weak
version of exp-concavity; see Assumption (A2). It depends on a parameter β ∈ [0, 1] which goes
from β = 0 for general convex loss functions to β = 1 for exp-concavity. We show in Theo-
rem 2.1 that BOA [28] and Squint [16] achieve a fast rate quantile bound with high probability: i.e.
Eπ[RT (θk)] 6 Õ

(
(K(π, π̂0)/T )1/(2−β)

)
.

Second contribution: efficient sparse oracle bound (Θ = B1, adversarial data) The extension
from finite reference sets to convex sets is natural. The seminal paper [15] introduced the Exponen-
tiated Gradient algorithm (EG), a version of Hedge using the sub-gradients of the loss functions.
The latter guarantees RT 6 O(

√
(ln d)/T ) for Θ = B1 which is optimal for convex loss functions.

Recently, fast rateRT 6 Õ
(
(d/T )1/(2−β)

)
are obtained by [17] under a slightly different assumption

than (A2). Here our purpose is to improve the dependence on d under the sparsity condition ‖θ‖0
small. The literature on learning under sparsity with i.i.d. data is vast; we refer to [12] for a review.
Yet, little work was done on sparsity bounds under adversarial data; see Table 1 for a summary.
The papers [7; 18; 29] focus on providing sparse estimators θ̂t rather than sparse guarantees. More
recent works [8; 14] consider sparse approximations of the sub-gradients. Though they also compare
themselves with sparse parameters, they incur a bound larger than O(1/

√
T) which is optimal in their

setting. Fast rate sparse regret bounds involving ‖θ‖0 were, up to our knowledge, only obtained
through non-efficient (exponential time) procedures (see [10]). In Section 3.3, we provide an efficient
algorithm BOA+ which satisfies the oracle inequality

RT (θ) 6 Õ
(
(
√
d‖θ‖0/T ) ∧ (

√
‖θ‖0/T 3/4)

)
, for any θ ∈ B1 ,

for strongly-convex loss functions (β = 1). The gain
√
‖θ‖0/d ∧

√
‖θ‖0/T compared with the

usual rate Õ(d/T ) is significant for sparse parameters θ.

A crucial step of our analysis is an intermediate result which is interesting in its own. We define an
efficient algorithm with input any finite grid Θ0 ⊂ B1. We provide in Theorem 3.2 a bound of the
form RT (θ) 6 Õ(D(θ,Θ0)/

√
T ) for a pseudo-metric D and any θ ∈ B1. We say that this bound is

accelerable as the rate may decrease if D(θ,Θ0) decreases with T . In particular, it yields an oracle
bound of the form RT (θ) 6 O(‖θ‖1/

√
T ).

3Here and subsequently, ∆K := {π ∈ [0, 1]K ; ‖π‖1 = 1} denotes the simplex of dimension K ≥ 1.
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Procedure Rate Polynomial Assumption Sparsity setting

Kale et al. [8; 14] Poly(d)/
√
T Yes Convexity Sparse observed gradients

[7; 18; 29]
√

ln d
T

or d
T

Yes (Strong) Convexity Produce sparse estimators
SeqSEW [11] d0 ln d

T
No Strong Convexity Sparse bound

SABOA
√

ln d
T
∧
√
d0d
T

ln d Yes Strong Convexity Sparse bound

Table 1: Comparison of sequential optimization procedures in sparse adversarial environment.

Third contribution: sparse regret bound under Łojasiewicz assumption (Θ = B1, i.i.d. data)
In Section 3.4 we turn to a stochastic setting where the loss functions `1, . . . , `T are i.i.d.. This
setting extends the regression one with random design to general loss functions. The classical Lasso
procedure satisfies, in the regression setting for the quadratic risk (β = 1), RT (θ) 6 Õ(‖θ‖0/T )
where θ is a sparse approximation of θ∗ = arg minθ∈Rd RT (θ), see [3]. Yet, few procedures
satisfying sparse bounds are sequential; we can cite [1; 8; 9; 14; 23]. We compare in Table 2 their
results and settings.

The first line of work [1; 9; 23] provides sparse rates of order Õ(‖θ∗‖0 ln d/T ). Their settings
are close to the one of [3] but their methods differ; the one of [23] uses a `1-penalized gradient
descent whereas the one of [1] and [9] are based on restarting a subroutine centered around the current
estimate on sessions of exponentially growing length. A common limitation of these works is that they
do not provide oracle inequality. They only compete with the global optimum over Rd only, which is
assumed to be (approximately in [1]) sparse with a known `1-bound. In other words, they assume
that the global optimum also realizes the approximation-estimation errors trade-off in (1). In order to
avoid this restriction, our first objective is to obtain the sparse boundsRT (θ∗(U)) 6 Õ(‖θ∗(U)‖0/T )
where θ∗(U) ∈ arg min‖θ‖16U RT (θ) for any U > 0. For U well chosen so that ‖θ∗(U)‖1 = U ,
θ∗(U) is sparse and the approximation-estimation errors trade-off in (1) is achieved. We restrict to the
case U = 1 suppressing the dependence on U in θ∗ for the ease of notation. We leave the adaptation
in U > 0 for future research.

The second line of works [14; 8] considers sparse approximation of sub-gradients. Yet, they provide a
sparse regret bound of orderO(‖θ∗‖20 ln d/T ) where θ∗ is the optimum in B1 when the loss functions
are strongly convex. Our second objective is to relax the strong convexity assumption which is too
restrictive in the sequential regression setting. Indeed, the usual restricted eigenvalues conditions
on the Gram matrix cannot hold uniformly for small t’s. We work under Łojasiewicz’s Assumption
introduced by [32; 33]: There exist β > 0 and µ > 0 such that for all θ ∈ B1, there exists a minimizer
θ∗ of the risk over B1 satisfying

µ
∥∥θ − θ∗∥∥2

2
6 E[`t(θ)− `t(θ∗)]β .

The Łojasiewicz assumption depends on a parameter β ∈ [0, 1] that ranges from general convex risk
function (β = 0) to generalized strongly convex risk function (β = 1). In Theorem 3.4 we show that
our new efficient procedure SABOA achieves a fast rate upper-bound on the average excess risk of
order Õ((‖θ∗‖0 ln(d)/T )1/(2−β)) when the optimal parameters have `1-norm bounded by 1−γ < 1.
Then we recover the optimal rate of [1; 9; 23] in a similar setting, when the global optimum is
assumed to be sparse. When ‖θ∗‖1 = 1, guaranteeing a good approximation-estimation trade-off
in (1), the bound suffers an additional factor ‖θ∗‖0. Notice that Łojasiewicz’s Assumption (A3)
allows multiple optima which is important when we are dealing with degenerated co-linear design
(allowing zero eigenvalues in the covariance matrix). It is an open question whether the fast rate
Õ((‖θ∗‖20 ln(d)/T )) is optimal for efficient O(dT )-complex procedures such as SABOA under
Łojasiewicz’s Assumption.

Outline of the paper To summarize our contributions, we provide
- the first high-probability quantile bound achieving a fast rate in Theorem 2.1;
- an accelerable bound on RT (θ) that is small whenever θ is close to a prior grid Θ0 (Thm. 3.2);
- two efficient algorithms with sparse regret bounds in the adversarial setting with strongly convex

loss functions (BOA+, Thm. 3.3) and in the i.i.d. setting (SABOA, Thm. 3.4). In the latter setting,
the results are obtained under the Łojasiewicz’s assumption. This generalizes the usual necessary
conditions for obtaining sparse bounds that are too restrictive in our sequential setting.
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Procedure Setting Rate Assumptions / Setting Optimum over

Lasso [3] B d0 ln d/T Mutual Coherence Rd

Kale et al. [8; 14] S d20 ln d/T Strong Convexity + Sparse Gradients B1

[1; 9; 23]+SABOA S d0 ln d/T Strong convexity or Łojasiewicz (β = 1) Rd

SABOA S d20 ln d/T Łojasiewicz (β = 1) B1

Table 2: Comparison of sequential (S) and batched (B) optimization procedures in i.i.d. environment.

2 Finite reference set

In this section, we focus on finite reference set Θ := {θ1, . . . , θK} ⊂ B1, including the setting of
prediction with expert advice presented in Section 2.2. We consider the following assumptions on the
loss functions:

(A1) Convex Lipschitz4: the loss functions `t are convex on B1 and there exists G > 0 such that∥∥∇`t(θ)∥∥∞ 6 G for all t ≥ 1, θ ∈ B1.
(A2) Weak exp-concavity: There exist α > 0 and β ∈ [0, 1] such that for all t > 1, θ1, θ2 ∈ B1,

almost surely

Et−1

[
`t(θ1)−`t(θ2)

]
6 Et−1

[
∇`t(θ1)>(θ1−θ2)

]
−Et−1

[(
α
(
∇`t(θ1)>(θ1 − θ2)

)2)1/β]
.

For convex loss functions (`t), Assumption (A2) is satisfied with β = 0 and α < G−2. Fast rates are
obtained for β > 0. It is worth pointing out that Assumption (A2) is weak even in the strongest case
β = 1. It is implied by several common assumptions such as:
– Strong convexity of the risk: under the boundedness of the gradients, assumption (A2) with
α = µ/(2G2) is implied by the µ-strong convexity of the risks (Et−1[`t]), t ≥ 1.

– Exp-concavity of the loss: Lemma 4.2, Hazan [13] states that (A2) with α 6 1
4 min{ 1

8G , κ} is
implied by κ-exp-concavity of the loss functions `t, t ≥ 1. Our assumption is slightly weaker
since it holds in conditional expectation.

2.1 Fast-rate quantile bound with high probability

For prediction with K > 1 expert advice, [28] showed that a fast rate O
(
(lnK)/T

)
can be obtained

by the BOA algorithm under the LIST condition (i.e., Lipschitz and strongly convex loss functions).
In this section, we show that Assumption (A2) is enough and we improve the dependence on the total
number of experts with a quantile bound.

Our algorithm is described in Algorithm 1 and corresponds to a particular case of two algorithms: the
Squint algorithm of [16] used with a discrete prior over a finite set of learning rates and the BOA
algorithm of [28] where each expert is replicated multiple times with different constant learning rates.
The proof (with the exact constants) is deferred to Appendix C.1.
Theorem 2.1. Let T > 1. Assume (A1) and (A2). Apply Algorithm 1, parameter E = 4G/3 and
initial weight vector π̂0 ∈ ∆K . Then, for all π ∈ ∆K , with probability at least 1− 2e−x, x > 0,

Ek∼π [RT (θk)] .

(
K(π, π̂0) + ln ln(GT ) + x

αT

) 1
2−β

,

where K(π, π̂0) :=
∑K
k=1 πk ln(πk/π̂k,0) is the Kullback-Leibler divergence.

A fast rate of this type (without quantiles property) can be obtained in expectation by using Hedge
for exp-concave loss functions. However, Theorem 2.1 is stronger. First, Assumption (A2) is weaker
than the exp-concavity of the loss functions `t as it holds for absolute or quantile loss functions in a
sufficiently regular regression setting. Second, the algorithm uses the so-called gradient trick; See
[24]. Therefore, simultaneously with the fast rate O(T−1/(2−β)) with respect to the experts (θk),

4Throughout the paper, we assume that the Lipschitz constant G in (A1) is known. It can be calibrated online
with standard tricks such as the doubling trick (see [6] for instance) under sub-Gaussian conditions.
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Algorithm 1 Squint – BOA with multiple constant learning rates assigned to each parameter
Parameters: Θ0 = {θ1, . . . , θK} ⊂ B1, E > 0 and π̂0 ∈ ∆K .
Initialization: For 1 6 i 6 ln(ET 2), define ηi := (eiE)−1.
For each iteration t = 1, . . . , T do:

– Choose θ̂t−1 =
∑K
k=1 π̂k,t−1θk and observe ∇`t(θ̂t−1),

– Update component-wise for all 1 6 k 6 K

π̂k,t =

∑ln(ET 2)
i=1 ηie

ηi
∑t
s=1(rk,s−ηir2k,s)π̂k,0∑ln(ET 2)

i′=1 Ej∼π̂0

[
ηi′e

ηi′
∑t
s=1(rj,s−ηi′r2j,s)

] , rk,s = ∇`t(θ̂s−1)>(θ̂s−1 − θk) .

the algorithm achieves the slow rate O(1/
√
T ) with respect to any convex combination Ek∼π[θk]

(similarly to EG). Finally, high-probability regret bounds as ours are not satisfied by Hedge (see [2]).

If the algorithm is run with a uniform prior π̂0 = (1/K, . . . , 1/K), Theorem 2.1 implies that for any
subset Θ′ ⊆ Θ

maxθ∈Θ′ RT (θ) .
(

ln(K/Card(Θ′))+ln ln(GT )
αT

) 1
2−β

with high probability.

Thanks to the quantile bounds, we pay the proportion of good experts ln(K/Card(Θ′)) in the regret
instead of the total number of experts ln(K). We refer to [16] for more interesting applications. Such
quantile bounds on the risk were studied by Mehta [20, Section 7] in a batch i.i.d. setting (i.e., `t are
i.i.d.). A standard online to batch conversion shows that Theorem 2.1 yields with high probability

ET
[
`T+1(θ̄T )− Ek∼π

[
`T+1(θk)

]]
.
(
K(π,π̂0)+ln ln(GT )+x

αT

) 1
2−β

, θ̄T =
1

T

∑T
t=1 θ̂t−1 .

This improves the bound obtained by [20] who suffers the additional gap
(e− 1) ET

[
Ek∼π[`T+1(θk)]−minπ∗∈∆K

`T+1(Ej∼π∗ [θj ])
]
.

2.2 Prediction with expert advice

The framework of prediction with expert advice is widely considered in the literature (see [5] for
an overview). We recall now this setting and how it can be included in our framework. At the
beginning of each round t, a finite set of K > 1 experts predict f t = (f1,t, . . . , fK,t) ∈ [0, 1]K

from the history Ft−1. The learner then chooses a weight vector θ̂t−1 in the simplex ∆K and
produces a prediction f̂t := θ̂>t−1f t ∈ R as a convex combination of the experts. Its perfor-
mance at time t is evaluated by a loss function gt : R → R. The goal of the learner is to
approach the performance of the best expert on a long run. This can be done by minimizing
the average excess risk Rk,T := 1

T

∑T
t=1 Et−1[gt(f̂t)]− Et−1[gt(fk,t)] , with respect to all experts

k ∈ {1, . . . ,K}. This setting reduces to our framework with dimension d = K. Indeed, it
suffices to choose the K-dimensional loss function `t : θ 7→ gt(θ

>f t) and the canonical basis
Θ := {θ ∈ RK+ : ‖θ‖1 = 1, ‖θ‖0 = 1} in RK as the reference set. Denoting by θk the k-th ele-
ment of the canonical basis, we see that θ>k f t = fk,t, so that `t(θk) = gt(fk,t). Therefore, Rk,T
matches our definition of RT (θk) in Equation (1) and we get under the assumptions of Theorem 2.1
a bound of order:

Ek∼π
[
Rk,T

]
.
(
K(π,π̂0)+ln ln(GT )+x

αT

) 1
2−β

.

An important point to note here is that though the parameters θk of the reference set are constant,
this method can be used to compare the player with arbitrary strategies fk,t that may evolve over
time and depend on recent data. We do not assume in this section that there is a single fixed expert
k∗ ∈ {1, . . . ,K} which is always the best, i.e., Et−1[gt(fk∗,t)] 6 mink Et−1[gt(fk,t)]. Hence, we
cannot replace (A2) with the closely related Bernstein assumption (see Ass. (A2’) or [17, Cond. 1]).

Actually one can reformulate Assumption (A2) on the one dimensional loss functions gt as follows:
there exist α > 0 and β ∈ [0, 1] such that for all t > 1, for all 0 6 f1, f2 6 1,

Et−1[gt(f1)− gt(f2)] 6 Et−1

[
g′t(f1)(f1 − f2)

]
− Et−1

[(
α
(
g′t(f1)(f1 − f2)

)2)1/β
]
, a.s.

It holds with α = κ/(2G2) for κ-strongly convex risk Et−1[gt]. For instance, the square loss
gt = ( · − yt )2 satisfies it with β = 1 and α = 1/8.
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3 Online optimization in the unit `1-ball

The aim of this section is to extend the preceding results to the reference set Θ = B1 instead of finite
Θ = {θ1, . . . , θK}. A classical reduction from the expert advice setting to the `1-ball is the so-called
“gradient-trick”. A direct analysis on BOA applied to Θ0 = {θ ∈ Rd : ‖θ‖0 = 1, ‖θ‖1 = 1} the
2d corners of the `1-ball suffers a slow rate O(1/

√
T) on the average excess risk with respect to any

θ ∈ B1. The goal is to exhibit algorithms that go beyond O(1/
√
T). In Section 3.1 we investigate

non-adaptive discretization grids of the space that yield optimal upper-bounds but suffer exponential
time complexity. In Section 3.2 we introduce a pseudo-metric in order to bound the regret of grids
consisting of the 2d corners and some arbitrary fixed points. From this crucial step, we derive the
adaptive points to add to the 2d corners in the adversarial case (Section 3.3) and in the i.i.d. case
(Section 3.4) in order to obtain two efficient procedures (BOA+ and SABOA respectively) with sparse
guarantees.

3.1 Warmup: fast rate by discretizing the space

As a warmup, we show how to use Theorem 2.1 in order to obtain fast rate on RT (θ) for any θ ∈ B1.
Basically, if the parameter θ could be included into the grid Θ0, Theorem 2.1 would turn into a bound
on the regret RT (θ) with respect to θ. However, this is not possible as we do not know θ in advance.
A solution consists in approaching B1 with B1(ε), a fixed finite ε-covering in `1-norm of minimal
cardinal so that Card(B1(ε)) .

(
1/ε
)d

. We obtain a nearly optimal regret for this procedure.

Proposition 3.1. Let T > 1. Under Assumptions of Theorem 2.1, applying Algorithm 1 with grid
Θ0 = B1(T−2) and uniform prior π̂0 over ∆Card(B1(T−2)) satisfies for all θ ∈ B1

RT (θ) .
(d lnT + ln ln(GT ) + x

αT

) 1
2−β

+
G

T 2
, (2)

with probability at least 1− e−x, x > 0.

Proof. Let ε = 1/T2 and θ ∈ B1 and θ̃ be its ε-approximation in B1(ε). The proof follows from
Lipschitzness of the loss: RT (θ) 6 RT (θ̃) +Gε and by applying Theorem 2.1 on RT (θ̃).

One can improve d to ‖θ‖0 ln d by carefully choosing the prior π̂0 as in [21]; see Appendix A for
details. The obtained rate is optimal up to log-factors. However, the complexity of the discretization
is prohibitive (of order T d) and non realistic for practical purpose.

3.2 Oracle bound for arbitrary fixed discretization grid

Let Θ0 ⊂ B1 be a finite set. The aim of this Section is to study the regret of Algorithm 1 with respect
to any θ ∈ B1. Similarly to Proposition 3.1, the average excess risk may be bounded as

RT (θ) .
(

ln Card(Θ0)+ln lnT+x
αT

) 1
2−β

+G‖θ′ − θ‖1 , (3)

for any θ′ ∈ Θ0. We say that a regret bound is accelerable if it provides a fast rate except a term
depending on the distance with the grid (i.e., the term in ‖θ′ − θ‖1 in (3)) that decreases with T .
This property will be crucial in obtaining fast rates by adapting the grid Θ0 sequentially. The regret
bound (3) is not accelerable due to the second term that is constant. In order to find an accelerable
regret bound, we introduce the notion of averaging accelerability, a pseudo-metric that replaces the
`1-norm in (3). We give the intuition behind this notion in the sketch of the proof of Theorem 3.2.

Definition 3.1 (Averaging accelerability). For any θ, θ′ ∈ B1, we define

D(θ, θ′) := min
{

0 6 π 6 1 : ‖θ − (1− π)θ′‖1 6 π
}
.

This averaging accelerability has several nice properties. In Appendix B, we provide a few concrete
upper-bounds in terms of classical distances. For instance, Lemma B.1 provides the upper-bound
D(θ, θ′) 6 ‖θ − θ′‖1/(1− ‖θ′‖1 ∧ ‖θ‖1). We are now ready to state our regret bound, when Algo-
rithm 1 is applied with an arbitrary approximation grid Θ0.
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Theorem 3.2. Let Θ0 ⊂ B1 such that {θ : ‖θ‖1 = 1, ‖θ‖0 = 1} ⊆ Θ0. Let Assumption (A1) and
(A2) be satisfied. Then, Algorithm 1 applied with uniform prior π̂0 over the elements of Θ0 and
E = 8G/3, satisfies with probability 1− e−x, x > 0,

RT (θ) .
( a

αT

) 1
2−β

+GD(θ,Θ0)

√
a

T
+
aG

T
, θ ∈ B1 ,

where a = ln Card(Θ0) + ln ln(GT ) + x and D(θ,Θ0) := minθ′∈Θ0
D(θ, θ′).

Sketch of proof. The complete proof can be found in Appendix C.2. We give here the high-level
ideas. Let θ′ ∈ Θ0 be a point in the grid Θ0 minimizing D(θ, θ′). Then one can decompose
θ = (1− ε)θ′ + εθ′′ for a unique point ‖θ′′‖1 = 1 and ε := D(θ, θ′). See Appendix C.2 for details.
The regret bound can be decomposed into two terms:

– The first term quantifies the cost of picking the correct θ′ ∈ Θ0, bounded using Theorem 2.1;
– The second one is the cost of learning θ′′ ∈ B1 rescaled by ε. Using a classical slow-rate

bound in B1, it is of order O(1/
√
T ).

The average excess risk RT (θ) is thus of order
(1− ε)RT (θ′)︸ ︷︷ ︸

Thm 2.1

+ ε RT (θ′′)︸ ︷︷ ︸
G
√

ln(Card Θ0))/T

.
( ln Card(Θ0) + ln ln(GT ) + x

αT

) 1
2−β

+ εG

√
ln Card(Θ0)

T
.

Note that the bound of Theorem 3.2 is accelerable as its second term vanishes to zero on the contrary
to Inequality (3). Theorem 3.2 provides an upper-bound which may improve the rate O(1/

√
T) if

the distance D(θ,Θ0) is small enough. By using the properties of the averaging accelerability (see
Lemma B.1 in Appendix B), Theorem 3.2 provides some interesting properties of the rate in terms of
`1 distance. By including 0 into the grid Θ0, we get an oracle-bound of order O(‖θ‖1/

√
T ) for any

θ ∈ B1. Moreover a bound of order RT (θ) 6 O
(
‖θ − θk‖1/(γ

√
T )
)

is obtained for all θk ∈ Θ0

and ‖θ‖1 6 1− γ < 1.

It is worth pointing out that the bound on the gradient G can be substituted with the average gradient
observed by the learner. The constant G can be improved to the level of the noise in certain situations
with vanishing gradients (see for instance Theorem 3 of [9]).

3.3 Fast-rate sparsity regret bound in the adversarial setting

In this section, we focus on the adversarial case where `t = Et−1[`t] are µ-strongly convex deter-
ministic functions. In this case, Assumption (A2) is satisfied with β = 1 and α = µ/(2G2). Our
algorithm, called BOA+, is defined as follows. For each doubling session i > 0, BOA+ chooses θ̂t
from time step ti = 2i to ti+1−1 by restarting Algorithm 1 with uniform prior, parameterE = 4G/3
and updated discretization grid Θ0 indexed by i:

Θ(i) = {[θ∗i ]k, k = 0, . . . , d} ∪ {θ : ‖θ‖1 = 2, ‖θ‖0 = 1} ,
where θ∗i ∈ arg minθ∈B1

∑ti−1
t=1 `t(θ) is the empirical risk minimizer (or the leader) until time

ti − 1. The notation [ · ]k denotes the hard-truncation with k non-zero values. Remark that θ∗i for
i = 1, 2, . . . , ln2(T ) can be efficiently computed approximately as the solution of a strongly convex
optimization problem.
Theorem 3.3. Assume the loss functions are µ-strongly convex on B2 := {θ ∈ Rd : ‖θ‖1 6 2} with
gradients bounded by G in `∞-norm on B2. The average regret of BOA+ satisfies the oracle bound

RT (θ) 6 Õ

min

G
√

ln d

T
,

√
‖θ‖0
µ

(
G

√
ln d

T

) 3
2

,

√
‖θ‖0dG2 ln d

µT

+
G2 ln d

µT

 , θ ∈ B1 .

The proof is deferred to Appendix C.6. We emphasize that the bound can be rewritten as follows:

RT (θ) 6 Õ

(
min

{
G

√
ln d

T
,
‖θ‖0G2 ln d

µT

}
min

{
G

√
ln d

T
,
dG2 ln d

µT

})1/2

, θ ∈ B1\{0} .

It provides an intermediate rate between known optimal rates without sparsity O(
√

ln d/T ) and
Õ(d/T ) and known optimal rates with sparsity O(

√
ln d/T ) and (for non-efficient procedures only)

Õ(‖θ‖0/T ). If all θ∗i are approximately d0-sparse it is possible to achieve the optimal rate of order
Õ(d0/T ), for any ‖θ‖0 6 d0. We leave for future work whether it is possible to achieve it in general.
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Remark 3.1. The strongly convex assumption on the loss functions can be relaxed (see Inequality (33)
in the proof of Theorem 3.3) by assuming (A2) on B2 and that there exists µ > 0 and β ∈ [0, 1] such
that for all t > 1 and θ ∈ B1

µ‖θ − θ∗t ‖22 6
(

1
t

∑t
s=1(`s(θ)− `s(θ∗t ))

)β
, where θ∗t ∈ arg minθ∈B1

∑t
s=1 `s(θ) . (4)

The rates will depend on β as it is the case in Theorem 2.1. A specific interesting case is when
‖θ∗t ‖1 = 1. Then θ∗t is very likely to be sparse. Denote S∗t its support. Assumption (4) can be
restricted in this case. Indeed any θ ∈ B1 satisfies ‖θ‖1 6 ‖θ∗t ‖1, which from Lemma 6 of [1] yields
‖θ − θ∗t ‖1 6 2‖[θ − θ∗t ]S∗t ‖1 where [θ]S = (θi11i∈S)16i6d. One can restrict Assumption (4) to
hold on S∗t only. Such restricted conditions for β = 1 are common in the sparse learning literature
and essentially necessary for the existence of efficient and optimal sparse procedures, see [31]. For
obtaining regret bounds on BOA+, the restricted condition (4) with β = 1 should hold at any time
t ≥ 1, which is unlikely in the regression setting.

3.4 Fast-rate sparse excess risk bound in the i.i.d. setting

In this section, we assume the loss functions `t to be i.i.d. We provide an algorithm with fast-rate
sparsity risk-bound on B1 by regularly restarting Algorithm 1 with an updated discretization grid Θ0

approaching the set of minimizers Θ∗ := arg minθ∈B1
E[`t(θ)].

In the i.i.d. setting, a close inspection of the proof of Theorem 3.4 shows that we can replace
Assumption (A2) with the Bernstein condition: there exists α′ > 0 and β ∈ [0, 1], such that for all
θ ∈ B1, all θ∗ ∈ Θ∗ and all t > 1,

α′E
[(
∇`t(θ)>(θ − θ∗)

)2]
6 E

[
∇`t(θ)>(θ − θ∗)

]β
. (A2’)

This fast-rate type stochastic condition is equivalent to the central condition (see [25, Condition 5.2])
and was already considered to obtain faster rates of convergence for the regret (see [17, Condition 1]).

The Łojasiewicz assumption In order to obtain sparse oracle inequalities we work under Ło-
jasiewicz’s Assumption (A3) which is a relaxed version of strong convexity of the risk.

(A3) Łojasiewicz’s inequality: (`t)t>1 is an i.i.d. sequence and there exist β ∈ [0, 1] and
0 < µ 6 1 such that, for all θ ∈ Rd with ‖θ‖1 6 1 , there exists θ∗ ∈ Θ∗ ⊆ B1 satisfying

µ
∥∥θ − θ∗∥∥2

2
6 E[`t(θ)− `t(θ∗)]β .

This assumption is fairly mild. It is indeed satisfied with β = 0 and µ = 1 as soon as the loss function
is convex. For β = 1, this assumption is implied by the strong convexity of the risk E[`t]. Our
framework is more general because

- multiple optima are allowed, which seems to be new when combined with sparsity bounds. An
exception is [21] that provides the optimal sparse rate under a low-rank Gram matrix setting for
the non-efficient ES algorithm;

- on the contrary to [23] or [9], our framework does not compete with the minimizer θ∗ over Rd
with a known upper-bound on the `1-norm ‖θ∗‖1. We consider the minimizer over the `1-ball B1

only. The latter is more likely to be sparse and Assumption (A3) only needs to hold over B1.

Assumption (A2) (or (A2’)) and (A3) are strongly related. Assumption (A3) is more restrictive
because it is design dependent in the regression setting; The constant µ corresponds to the smallest
non-zero eigenvalue of the covariance matrix while α = 1/G2 for the square loss functions. If
Θ∗ = {θ∗} is a singleton than Assumption (A3) implies Assumption (A2’) with α′ > µ/G2.

Algorithm and excess risk bound Our new procedure called SABOA is described in Algorithm 2.
Again it starts from the accelerable bound provided in Theorem 3.2 which is small if one of the points
in Θ0 is close to Θ∗. As BOA+, SABOA restarts BOA by adding current estimators of Θ∗ into an
updated grid Θ0. The new points added to the grid are slightly different between the two algorithms.
They are truncated versions of the average of past iterates θ̂t−1 for SABOA and of the leader for
BOA+. Remark that restart schemes under Łojasiewicz’s Assumption is natural and was already used
by [22]. We get the following upper-bound on the average excess risk. The proof that computes the
exact constants is postponed to Appendix C.7.
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Algorithm 2 SABOA – Sparse Acceleration of BOA
Parameters: E > 0
Initialization: ti = 2i for i > 0,
For each session i = 0, . . . do:

• Define θ̄(i−1) := 0 if i = 0 and θ̄(i−1) := 2−i+1
∑ti−1
t=ti−1

θ̂t−1 otherwise,
• Define Θ(i) a set of hard-truncated and dilated soft-thresholded versions of θ̄(i−1) as in (45),
• Denote Ki := Card(Θ(i)) + 2d 6 (i+ 1)(1 + ln d) + 3d ,
• At time step ti, restart Algorithm 1 in ∆Ki with parameters Θ0 := Θ(i) ∪ {θ : ‖θ‖1 =

1, ‖θ‖0 = 1} (denote by θ1, . . . , θKi its elements), E > 0 and uniform prior π̂0.
In other words, for time steps t = ti, . . . , ti+1 − 1:

– Choose θ̂t−1 =
∑Ki
k=1 π̂k,t−1θk and observe ∇`t(θ̂t−1),

– Define component-wise for all 1 6 k 6 Ki, denoting ηj := (ejE)−1,

π̂k,t =

∑ln(ET 2)
j=1 ηje

ηj
∑t
s=ti

(rk,s−ηjr2k,s)π̂k,0∑ln(ET 2)
j=1 Ek′∼π̂0

[
ηje

ηj
∑t
s=ti

(rk′,s−ηjr2k′,s)
] ,

where rk,s = ∇`t(θ̂s−1)>(θ̂s−1 − θk).

Theorem 3.4. Under Assumptions (A1), (A2) and (A3), Algorithm 2 with E = 4/3G > 1 satisfies
with probability at least 1− e−x, x > 0, the average excess risk bound

RT (θ∗) .

(
ln d+ ln ln(GT ) + x

T

(
1

α
+
G2

µ

(
d2

0 ∧
d0

γ2

))) 1
2−β

,

where d0 = maxθ∗∈Θ∗ ‖θ∗‖0 and 0 6 γ 6 1 satisfies Θ∗ ⊆ B1−γ .

We conclude with some important remarks about Theorem 3.4. First, we point out that SABOA
adapts automatically to unknown parameters δ, β, α, µ and d0 to fulfill the rate of Theorem 3.4.

On the radius of L1 ball. We provide the analysis into B1, the `1-ball of radius U = 1 only.
However, one might need to compare with points into B1(U), the `1-ball of radius U > 0, in order to
obtain a good approximation-estimation trade-off. This can be done by rescaling the loss functions
θ ∈ B1 7→ `t(Uθ) and applying our results with UG, U2µ and α under Assumptions (A1), (A2) and
(A3) on B1(U). The main rate of convergence of Theorem 3.4 is unchanged. The optimal choice of
the radius, if it is not imposed by the application, is left for future research.

Support recovery. When all θ∗ ∈ Θ∗ lie on the border of the `1-ball, they are likely to be sparse.
One can relax Assumption (A3) to hold in sup-norm and in a restricted version similar as done in
the end of Remark 3.1. In this interesting setting, we could not avoid a factor d2

0. The reason is that
our sequential algorithm recovers the (largest) support of θ∗ (see Configuration 3 of Figure 1) in a
framework where the necessary (for the rate ‖θ∗‖0) Irreprensatibility Condition [27] does not hold.

Conclusion In this paper, we show that BOA is an optimal online algorithm for aggregating experts
under very weak conditions on the loss. Then we aggregate sparse versions of the leader (BOA+)
or of the average of BOA’s iterates (SABOA) in the adversarial or in the i.i.d. setting, respectively.
Aggregating both achieves sparse fast-rates of convergence in any case. These rates are deteriorated
compared with the ideal one Õ

(
(‖θ‖0/T )1/(2−β)

)
that requires restrictive assumption for efficient

algorithm. Our main condition (A3) is weaker and more realistic than the usual ones when seeking
for sequential sparse rate bounds for any t ≥ 1.
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Supplementary material

A Sparse oracle inequality by discretizing the space

Inspired by the work of [21], one can improve d to ‖θ‖0 ln d in Proposition 3.1 by carefully choosing
the prior π̂0. To do so, we cover B1 by the subspaces

Bτ1 :=
{
θ ∈ B1 : ∀i τi = 0⇒ θi = 0

}
,

where τ ∈ {0, 1}d denotes a sparsity pattern which determines the non-zero components of θ ∈ Bτ1 .
For each sparsity pattern τ ∈ {0, 1}d, the subspace Bτ1 can be approximated in `1-norm by an ε-cover
Bτ1 (ε) of size ε−‖τ‖0 . In order to obtain the optimal rate of convergence, we apply Algorithm 1 with
Θ0 = ∪τ∈{0,1}dBτ1 (ε) with a non-uniform prior π̂0. The latter penalizes non-sparse τ to reflect their
respective complexities. We assign to any θ ∈ Bτ1 (ε) the prior, depending on τ ∈ {0, 1}d,

π̂τ,0 =

(
#Bτ1 (ε)(d+ 1)

(
d

d0

))−1

≈ εd0

(d+ 1)
(
d
d0

) where d0 = ‖τ‖0 .

Note that the sum π̂τ,0 over θ ∈ Bτ1 (ε) and τ ∈ {0, 1}d is one. Therefore, Theorem 2.1 yields

RT (θ) .

(
‖θ‖0 ln(dT/‖θ‖0) + x

αT

) 1
2−β

+
‖θ‖0G
T 2

, (5)

by noting that
(
d
‖θ‖0

)
6 d‖θ‖0 and choosing ε = ‖θ‖0/T 2. Similar optimal oracle inequalities for

mixing arbitrary regressions functions are obtained by Yang [30] and Catoni [4].

B Properties of the averaging accelerability

In this appendix, we give a geometric interpretation of the averaging accelerability defined in
Definition (3.1). We also provide several properties in terms of classical distances.

Geometric insight Let θ ∈ B1 be some unknown parameter and θ′ ∈ B1 a point approximating θ.
Let us define θ′′ ∈ B1 the unique point satisfying

‖θ′′‖1 = 1 and θ′′ = λ(θ − θ′) + θ′ (6)

for some λ ≥ 1. From this definition, we immediately derive that∥∥∥∥θ − (1− 1

λ

)
θ′
∥∥∥∥

1

=
‖θ′′‖1
λ

=
1

λ

Therefore from Definition 3.1, we have D(θ, θ′) 6 1
λ . Actually, this is an equality and we can write

D(θ, θ′) = max
{
λ ≥ 1 : ‖λ(θ − θ′) + θ′‖1 6 1

}−1

.

As the maximum is achieved, the averaging accelerability corresponds to the inverse of λ in the
definition (6) of the extrapolation point θ′′.

θθ′

θ′′

θ′

θ = θ′′ θ′ θ

θ′′

Figure 1: Averaging accelerability for 3 different configurations.

Figure 1 pictures several configurations of θ′ and θ that lead to different averaging accelerability. The
further θ′′ is from θ, the smaller is D(θ, θ′) and the smaller is the averaging accelerability. When
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D(θ, θ′) = 1/λ = 1, then θ = θ′′ and our regret bound does not improve the classic slow-rate
O(1/

√
T ). That typically happens when ‖θ‖1 = 1, as in the second configuration in Figure 1. In

this case, a possible solution is to consider a larger ball (for instance of radius 2 instead of 1). This
approach was considered in [9], see Figure 1 there. Another solution is to remark that even when
‖θ‖1 = 1, the procedure is still accelerable (D(θ, θ′) < 1) if the approximation θ′ satisfies the same
constraints than θ (see the third configuration in Figure 1 where θ′′ and θ are on the same edge of the
ball). We make this statement more precise in the following subsections.

B.1 The averaging accelerability in terms of classical distances

We provide in the next Lemmas a few concrete upper-bounds in terms of classical distances. The
proofs are respectively postponed to Appendices C.3 to C.5. The first Lemma, states that the averaging
accelerability can be upper-bounded with the `1-distance.
Lemma B.1. We have for any θ, θ′ ∈ B1

D(θ, θ′) 6
‖θ − θ′‖1

‖θ − θ′‖1 + 1− ‖θ‖1
.

The Lemma above has a main drawback. The averaging accelerability does not decrease with the
`1-distance if ‖θ‖1 = 1. In this case, we thus need additional assumptions. The following Corollary
upper-bounds the averaging accelerability in sup-norm as soon as a θ′ has a support included into the
one of θ. This situation is represented in the third configuration of Figure 1.
Lemma B.2. Let θ, θ′ ∈ B1. Assume that ‖θ′‖1 > ‖θ‖1 and sign(θ′i) ∈ {0, sign(θi)} for all
1 6 i 6 d. Then,

D(θ, θ′) 6 1− min
16i6d

|θi|
|θ′i|

6
‖θ − θ′‖∞

∆
,

where ∆ := mini:θ′i 6=0 |θi|.

We want to emphasis here the two very different behavior of the averaging accelerability;
– in the case ‖θ‖1 < 1: the averaging accelerability is proportional to ‖θ − θ′‖1.
– in the case ‖θ‖1 = 1: the averaging accelerability may be smaller than 1 and lead to

improved regret guarantees under extra assumptions: ‖θ′‖1 = 1 and the support of θ′ is
included in the one of θ. The relative gain is then proportional to ‖θ‖0‖θ − θ′‖∞.

B.2 The averaging accelerability with an approximation in sup-norm in hand

Let us focus on the second case, where the averaging accelerability is controlled under the knowledge
of the support of θ. The second inequality in Lemma B.2 is interesting but yields an undesirable
dependence on ∆ := mini:θi 6=0 |θi|, which can be arbitrarily small and which is at best of order
‖θ‖1/‖θ‖0. Moreover, the recovery of the support of θ is a well studied difficult problem, see [27].
Thanks to the following Lemma, we ensure the averaging accelerability from any `∞-approximation
θ′ of θ. We use a dilated soft-thresholding version of θ′ as an approximation of θ. For any ε > 0, let
us introduce Sε the soft threshold operator so that Sε(x)i = sign(xi)(|xi| − ε)+ for all 1 6 i 6 d.
The soft threshold operator is equivalent to the popular LASSO algorithm in the orthogonal design
setting for the square loss. We couple the soft-thresholding with a dilatation that has the benefit of
ensuring non thresholded coordinates faraway from zero. This allows to get rid of the unwanted
factor 1/∆ of the Lemma B.2. It is replaced with a factor 2‖θ‖0/‖θ‖1 which corresponds (up to the
factor 2) to the best possible scenario for the value of ∆.
Lemma B.3. Let θ, θ′ ∈ B1 such that ‖θ − θ′‖∞ 6 ε and ‖θ‖0 6 d0. Then, define the dilated
soft-threshold

θ̃ := Sε(θ
′)

(
1 +

2d0ε

‖Sε(θ′)‖1

)
∧ 1

‖Sε(θ′)‖1
where by convention θ̃ = 0 when Sε(θ′) = 0. Then θ̃ satisfies

(i) ‖θ̃‖1 > ‖θ‖1 if θ̃ 6= 0

(ii) sign(θ̃i) ∈ {0, sign(θi)} for all 1 6 i 6 d

(iii) D(θ, θ̃) 6 2d0ε/‖θ‖1 .

Performing this transformation requires the knowledge of the values of ε and d0 that are not observed.
However, performing an exponential grid on ε from 1/T to U only harms the complexity by a factor
ln(UT ).
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C Proofs

C.1 Proof of Theorem 2.1

Algorithm 1 is a particular case of the Bernstein Online Aggregation algorithm (BOA) with fixed
learning rates of [28]5. We make more clear the connexion thereafter. We will start our proof with
Theorem 3.2 of [28] that we recall now together with the definition of BOA. For each expert j ∈ K
and each instance t > 1, from Equation (9) of [28], BOA assigns the weight

wj,t :=
exp

(
ηj
∑t
s=1 rj,s − η2

j r
2
j,s

)
wj,0∑

k∈K exp
(
ηk
∑t
s=1 rk,s − η2

kr
2
k,s

)
wk,0

(7)

where (ηj) and wj,0 are parameters of BOA which respectively correspond to the learning rates and
the initial weight associated with each expert; and where rj,t are the instantaneous linearized regrets
(denoted `j,t in [28]). In our case, rj,t = ∇`t(θ̂t−1)>(θ̂t−1 − θj). Now, Theorem 3.2 of [28] states
that for any distribution π̃ over the set of experts 1 6 j 6 K:

T∑
t=1

Ej∼π̃[rj,t] 6 Ej∼π̃

[
ηj

T∑
t=1

r2
j,t +

ln(π̃j/wj,0)

ηj
+

ln(Ek∼π0
[η−1
k ]/Ek∼π̃[η−1

k ])

ηj

]
. (8)

There are two main differences between BOA and Algorithm 1.

First, there is a subtle difference in the definition of the weights: we consider the weights
πj,t = ηjwj,t/Ek∼πt [ηkwk,t] instead of wj,t. This only impacts the priors (that are multiplied
by ηjEk∼π0

[η−1
k ]) and allows to remove the last term in (8) as analyzed in the proof of [28, Theorem

3.2]. For this definition of weights, we thus get:
T∑
t=1

Ej∼π̃[rj,t] 6 Ej∼π̃

[
ηj

T∑
t=1

r2
j,t +

ln(π̃j/πj,0)

ηj

]
. (9)

We refer the reader to the last equation of the proof of Theorem 3.2 of [28] for this inequality.

Second, in the original version of the BOA algorithm, each expert θk is assigned to a single learning
rate ηk. In Algorithm 1 each parameter θk for k = 1, . . . ,K is replicated several times, each replica
being assigned a different learning rate ηi = e−iE−1 for 1 6 i 6 ln(ET 2). Algorithm 1 corresponds
to applying BOA on this extended set where each expert k has ln(ET 2) replica indexed by i whose
weights are cumulated into π̂k,t. The initial weight π̂k,0 of expert k is uniformly distributed among
its ln(ET 2) replica; each gets the initial weight π̃j,0 = π̂k,0/ ln(ET 2).

For each parameter θk, k ∈ {1, . . . ,K}, let 1 6 ik 6 ln(ET 2) be the index of a learning rate which
will be chosen later by the analysis in order to optimize the final bound. Let π be a distribution over
the index set {1, . . . ,K}. We now apply Inequality (9) to a specific distribution π̃ on the replica. We
choose π̃ so that it assigns all the mass πk on the replica (k, ik) and no mass on the replica (k, i) for
i 6= ik. In other words, π̃j = πk1i=ik . Then ln(π̃j/π̃j,0) = ln(πk/π̂k,0 ln(ET 2)) and Inequality (9)
entails

T∑
t=1

Ek∼π[rk,t] 6 Ek∼π

e−ikE−1︸ ︷︷ ︸
:=λk

T∑
t=1

r2
k,t + eikE

(
ln(πk/π̂k,0) + ln ln(ET 2)

)
= Ek∼π

[
λk

T∑
t=1

r2
k,t +

ln(πk/π̂k,0) + ln ln(ET 2)

λk

]
, (10)

where we defined λk := e−ikE−1. Now, by choosing ik, this bound may be optimized with respect
to any λk of the form e−ikE−1, with 1 6 ik 6 ln(ET 2). To get the minimum over any λk > 0, we
pay additional additive and multiplicative terms due to edge effects that we compute now. Fix k > 0
and define Vk =

∑T
t=1 r

2
k,t. The minimum is reached when both terms in (10) are equal. This yields

the optimal choice λk ≈ (Vk/ak)−1/2, where ak := ln(πk/πk,0) + ln ln(ET 2). However, because
of edge effects, this is only possible when 1/(ET )2 6 (Vk/ak)−1/2 6 1/(Ee). We distinguish three
cases:

5It is also a specific case of Squint of [16] with a discrete distribution over the learning rates
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• if
√
ak/Vk > 1/(eE): then, we choose λk = 1/(eE), which yields:

λkVk +
ak
λk

6
2ak
λk

= 2eakE 6 6akE

• if 1/(ET )2 6 (Vk/ak)−1/2 6 1/(Ee): then, we can choose λk such that

λk√
e
6 (Vk/ak)−1/2 6

√
eλk ,

which entails λkVk + ak
λk

6 2
√
e
√
akVk 6 4

√
akVk

• if
√
ak/Vk < (ET )−2: then, the choice λk = (ET )−2 gives

λkVk +
ak
λk

6 2λkVk =
2Vk
E2T 2

6
2

T
,

because r2
k,t 6 E2.

Putting the three cases together and plugging into Inequality (10) yields
T∑
t=1

Ek∼π[rk,t] 6 Ek∼π
[
4
√
akVk + 6akE

]
+

2

T
. (11)

We recall Young’s inequality.
Lemma C.1 (Young’s inequality). For all a, b > 0 and p, q > 0 such that 1/p + 1/q = 1, then
ab 6 ap/p+ bq/q.

Applying it, with p = q = 2, and a =
√

2λkVk and b =
√

8ak/λk, we get 4
√
akVk 6 λkVk +

4ak/λk for any λk > 0. Therefore, substituting into Inequality (11), for any distribution π over
{1, . . . ,K}, we have

T∑
t=1

Ek∼π[rk,t] 6 Ek∼π
[
λkVk +

4ak
λk

+ 6akE

]
+

2

T
, (12)

where we recall that Vk =
∑T
t=1 r

2
k,t and ak = ln(πk/πk,0) + ln ln(ET 2). For simplicity, from now

on, we will denote Ek∼π by Eπ . Using Theorem 4.1 of [28] for ηj,t = λj independent of t, we obtain
with probability 1− e−x and integrating with respect to π

T∑
t=1

Et−1[Eπ[rk,t]] 6
T∑
t=1

Eπ[rk,t] + Eπ

[
λk

T∑
t=1

r2
k,t +

x

λk

]
(12)
6 Eπ

[
2λk

T∑
t=1

r2
k,t +

x+ 4ak
λk

+ 6akE

]
+

2

T
. (13)

To apply Assumption (A2), we need to transform the second order term (the sum of r2
k,s in the

right-hand side) into a cumulative risk. This can be done using a Poissonian inequality for martingales
(see for instance Theorem 9 of [9]): with probability at least 1− e−x

T∑
t=1

r2
k,t 6 2

T∑
t=1

Et−1

[
r2
k,t] +

9

4
E2x .

Substituting into the previous regret inequality, this yields for any λk > 0 and any distribution π over
{1, . . . ,K}

T∑
t=1

Et−1

[
Eπ[rk,t]

]
6 Eπ

[
4λk

T∑
t=1

Et−1[r2
k,t] +

9

2
λkE

2x+
4ak + x

λk
+ 6akE

]
+

2

T
. (14)

Now, we are ready to apply Assumption (A2) in order to cancel the sum in the right-hand side.
Assumption (A2) ensures that for any time t > 1

Et−1

[
`t(θ̂t−1)− `t(θk)

]
6 Et−1[rk,t]−

(
αEt−1[r2

k,t]
)1/β

.
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Therefore, summing over t = 1, . . . , T and using the preceding inequality with probability at least
1− 2e−x

Eπ
[ T∑
t=1

Et−1

[
`t(θ̂t−1)− `t(θk)

]]
6 Eπ

[
T∑
t=1

Et−1[rk,t]−
(
αEt−1[r2

k,t]
)1/β]

6 Eπ
[
4λk

T∑
t=1

Et−1[r2
k,t]−

T∑
t=1

(
αEt−1[r2

k,t]
)1/β

+
9

2
λkE

2x+
4ak + x

λk
+ 6akE

]
+

2

T
.

(15)

Now, we use Young’s inequality (see Lemma C.1) again to cancel the two sums in the right-hand
side. Let γ > 0 to be fixed later by the analysis. Using a = Et−1[r2

k,t]/γ, b = γ, p = 1/β, and
q = 1/(1− β), it yields

Et−1[r2
k,t] 6

β
(
Et−1[r2

k,t]
)1/β

γ1/β
+
(
1− β

)
γ1/(1−β) .

Thus,

λkEt−1[r2
k,t] 6

λkβ
(
Et−1[r2

k,t]
)1/β

γ1/β
+ λk

(
1− β

)
γ1/(1−β) .

The choice γ = (4λkβ)β/α yields 4λkβ/γ
1/β = α1/β , which entails

4λkEt−1[r2
k,t]−

(
αEt−1[r2

k,t]
)1/β

6 4λk
(
1− β

)
γ1/(1−β)

= 4λk
(
1− β

)( (4λkβ)β

α

)1/(1−β)

= 4
(
1− β

)
(4β)β/(1−β)

(λk
α

)1/(1−β)

6 4
(4λk
α

)1/(1−β)

. (16)

Summing over t and substituting into Inequality (15), we get

Eπ

[
T∑
t=1

Et−1

[
`t(θ̂t−1)− `t(θk)

]]
6 Eπ

[
4
(4λk
α

)1/(1−β)

T +
4ak + x

λk︸ ︷︷ ︸
=:Rk

+
9

2
λkE

2x+6akE

]
+

2

T
.

(17)
We optimize λk by equalizing the two main terms of Rk:

4
(4λk
α

)1/(1−β)

T =
4ak + x

λk
⇔ λk =

(
4ak + x

4T

) 1−β
2−β (α

4

) 1
2−β

.

We express Rk in termes of λk using this identity

Rk
T

= 2
4ak + x

λkT
= 2

(
4ak + x

αT

) 1
2−β

4
1−β
2−β 6 4

(
16ak + 4x

αT

) 1
2−β

.

The choice λk = 1/(2E) would give

RT
T

6 4
(4λk
α

)1/(1−β)

+
4ak + x

Tλk
6

(4ak + x)E

T
.

So that we can assume λk 6 1/(2E) and

RT
T

6 4

(
16ak + 4x

αT

) 1
2−β

+
(4ak + x)E

T

Substituting into Inequality (17) and upper-bounding λkE2 6 E/2, gives

1

T
Eπ

[
T∑
t=1

Et−1

[
`t(θ̂t−1)− `t(θk)

]]
6 Eπ

[
4

(
16ak + 4x

αT

) 1
2−β

+
(10ak + 4x)E

T

]
+

2

T 2
.
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Since x 7→ x1/(2−β) is concave, using Jensen’s inequality and replacing ak = ln(πk/πk,0) +
ln ln(ET 2) entails,

Eπ

[(
16ak + 4x

αT

) 1
2−β
]
.

(
Eπ[ak] + x

αT

) 1
2−β (def of ak)

=

(
K(π, π̂0) + ln ln(ET 2) + x

αT

) 1
2−β

which concludes the proof.

C.2 Proof of Theorem 3.2

We denote by θ1, . . . , θK the elements of Θ0. We recall that we use a particular case of Algorithm 1.
We can thus follow the proof of Theorem 2.1 and start from Inequality (11). We apply it to a Dirac
distributions π on {1, . . . ,K}. We get that for any 1 6 k 6 K, for any λk > 0,

T∑
t=1

rk,t 6 4

√√√√a

T∑
t=1

r2
k,t + 6aE +

2

T
. (18)

where a := ln(K) + ln ln(ET 2) and where we remind the notation of the linearized instantaneous
regret rk,t = ∇`t(θ̂t−1)>(θ̂t−1 − θk) for 1 6 k 6 K.

Let θ∗ ∈ Rd, let ε := D(θ∗,Θ0) and k∗ ∈ {1 6 k 6 K} such that ‖θ∗ − (1− ε)θk∗‖1 6 ε. Then
there exists θ̃ with ‖θ̃‖1 6 1 such that

θ∗ = (1− ε)θk∗ + εθ̃ . (19)

Since {θ ∈ B1 : ‖θ‖1 = 1, ‖θ‖0 = 1} ⊂ Θ0, we can write θ̃ as a combination of elements of Θ0.
Hence, from (19), there exists a distribution π = (π1, . . . , πK) ∈ ∆K such that

θ∗ =

K∑
k=1

πkθk and 1− πk∗ 6 ε.

Denoting rt := ∇`t(θ̂t−1)>(θ̂t−1 − θ∗), we thus get

rt := ∇`t(θ̂t−1)>(θ̂t−1 − θ∗) = ∇`t(θ̂t−1)>
(
θ̂t−1 −

K∑
k=1

πkθk

)
= ∇`t(θ̂t−1)>(θ̂t−1 − Ek∼π[θk]) = Ek∼π

[
rk,t

]
,

and integrating Inequality (18) with respect to π, we obtain

T∑
t=1

rt 6 Ek∼π
[
4

√√√√a

T∑
t=1

(
∇`t(θ̂t−1)>(θ̂t−1 − θ∗ + θ∗ − θk)

)2]
+

2

T
+ 6aE

6 4

√√√√a

T∑
t=1

r2
t + 4Ek∼π

[√√√√a

T∑
t=1

(
∇`t(θ̂t−1)>(θ∗ − θk)

)2]
+

2

T
+ 6aE . (20)

Let us upper bound the second term of the right hand side.

Ek∼π
[√√√√ T∑

t=1

(
∇`t(θ̂t−1)>(θ∗ − θk)

)2]

6

√√√√ T∑
t=1

‖∇`t(θ̂t−1)‖2∞
K∑
k=1

πk‖θ∗ − θk‖1

6

√√√√ T∑
t=1

‖∇`t(θ̂t−1)‖2∞
(
πk∗‖θ∗ − θk∗‖1 + (1− πk∗) max

16k6K
‖θ∗ − θk‖1

)

6

√√√√ T∑
t=1

‖∇`t(θ̂t−1)‖2∞
(
πk∗‖θ∗ − θk∗‖1 + 2(1− πk∗)

)
, (21)
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where the last inequality is because ‖θ∗ − θk‖1 6 ‖θk‖1 + ‖θ∗‖1 6 2. We also have from the
definition of θ∗ (see before (19))

‖θ∗ − θk∗‖1 6 ‖θ∗ − (1− ε)θk∗ + εθk∗‖1 6 ‖θ∗ − (1− ε)θk∗‖1 + ε‖θk∗‖1 6 2ε.

Therefore, substituting into (21) we get

Ek∼π
[√√√√ T∑

t=1

(
∇`t(θ̂t−1)>(θ∗ − θk)

)2]
6 4ε

√√√√ T∑
t=1

‖∇`t(θ̂t−1)‖2∞ = 4εḠT
√
T ,

where ḠT :=
√

1
T

∑T
t=1 ‖∇`t(θ̂t−1)‖2∞ 6 G.

Therefore, substituting into Inequality (20), we have

T∑
t=1

rt 6 4

√√√√a

T∑
t=1

r2
t + 16εḠT

√
aT +

2

T
+ 6aE ,

which yields by Young’s inequality for any λ > 0

T∑
t=1

rt 6 λ

T∑
t=1

r2
t +

4a

λ
+ 16εḠT

√
aT +

2

T
+ 6aE︸ ︷︷ ︸

=:z

. (22)

Now, we recognize an inequality similar to Inequality (12). There only are a few technical differences
which do not matter in the analysis: we consider here a Dirac distribution π on the comparison
parameter θ∗ and we have some additional rest terms that we denote by z := 16εḠT

√
aT + 2

T +6aE
for simplicity. We can then follow the lines of the proof of Theorem 2.1 after Inequality (12)

T∑
t=1

Et−1[rt]
Thm 4.1 of [28]

6
T∑
t=1

rt + λ

T∑
t=1

r2
t +

x

λ

(22)
6 2λ

T∑
t=1

r2
t +

4a+ x

λ
+ z

Thm 9 of [9]
6 4λ

T∑
t=1

Et−1[r2
t ] +

4a+ x

λ
+

9

2
λE2x+ z. (23)

Using Assumption (A2) then yields

T∑
t=1

Et−1

[
`t(θ̂t−1)− `t(θ∗)

]
6

T∑
t=1

Et−1[rt]−
(
αEt−1[r2

t ]
)1/β

(23)
6 4λ

T∑
t=1

Et−1[r2
t ]−

(
αEt−1[r2

t ]
)1/β

+
4a+ x

λ
+

9

2
λE2x+ z

(16)
6 4

(4λ

α

)1/(1−β)

+
4a+ x

λ
+

9

2
λE2x+ z.

This yields an inequality similar to Inequality (17). Optimizing in λ > 0, as we did for Inequality (17)
gives:

λ = min

{
1

2E
,

(
4a+ x

4T

) 1−β
2−β (α

4

) 1
2−β

}
,

and

1

T

T∑
t=1

Et−1

[
`t(θ̂t−1)− `t(θ∗)

]
6 4

(
16a+ 4x

αT

) 1
2−β

+
(4a+ x)E

T
+

9Ex

4T
+
z

T
.
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where we recall that a = ln(K) + ln ln(ET 2), z = 16εḠT
√
aT + 2

T + 6aE and ḠT :=√
1
T

∑T
t=1 ‖∇`t(θ̂t−1)‖2∞ 6 G. Replacing z with its definition and simplifying yields

1

T

T∑
t=1

Et−1

[
`t(θ̂t−1)−`t(θ∗)

]
6 4

(
16a+ 4x

αT

) 1
2−β

+
(10a+ 4x)E

T
+16εḠT

√
a

T
+

2

T 2
. (24)

Keeping the main terms only and replacing ε := D(θ,Θ0) concludes the proof.

C.3 Proof of Lemma B.1

Let π := ‖θ′ − θ‖1/(‖θ′ − θ‖1 + 1− ‖θ‖1). Then, thanks to the triangular inequality, we have∥∥θ − (1− π)θ′
∥∥

1
=
∥∥(1− π)(θ − θ′) + πθ

∥∥
1
6 (1− π)‖θ − θ′‖1 + π‖θ‖1

=
(1− ‖θ‖1)‖θ − θ′‖1 + ‖θ − θ′‖1‖θ‖1

‖θ − θ′‖1 + 1− ‖θ‖1
= π .

The Definition 3.1 of D(θ, θ′) concludes the proof.

C.4 Proof of Lemma B.2

Denote π := 1−min16i6d |θi|/|θ′i|. Then, for any 1 6 i 6 d, |θi| > (1− π)|θ′i|. Because θ′i and θi
have same signs, this yields

∣∣θi − (1− π)θ′i
∣∣ =

∣∣θi∣∣− (1− π)
∣∣θ′i∣∣ for all 1 6 i 6 d. Summing over

i = 1, . . . , d, entails

∥∥θ − (1− π)θ′
∥∥

1
=

d∑
i=1

∣∣∣θi − (1− π)θ′i

∣∣∣ =

d∑
i=1

∣∣θi∣∣− (1− π)
∣∣θ′i∣∣

= ‖θ‖1 − (1− π)‖θ′‖1
‖θ′‖1>‖θ‖1

6 π‖θ‖1 6 π. (25)

Therefore, the Definition 3.1 ofD(θ, θ′) concludes the proof of the first inequality. Now, let 1 6 i 6 d,
if |θ′i| 6 |θi| then 1− |θi|/|θ′i| 6 0 and the second inequality holds. Otherwise, we have

1− |θi|
|θ′i|

=
|θ′i| − |θi|
|θ′i|

|θ′i|>|θi|=
|θ′i − θi|
|θ′i|

|θ′i|>|θi|
6

|θ′i − θi|
|θi|

6
‖θ′ − θ‖∞

∆
,

which concludes the proof of the Lemma.

C.5 Proof of Lemma B.3

Let θ, θ′ ∈ B1 such that ‖θ−θ′‖∞ 6 ε. First, we check that θ̃ satisfies the assumptions of Lemma B.2.
Since ‖θ′−θ‖∞ 6 ε, for all coordinates 1 6 i 6 d, we have Sε(θ′)i = 0 or sign(Sε(θ

′))i = sign(θi).
Therefore, sign(θ̃i) = sign(Sε(θ

′)i) ∈ {0, sign(θi)}. Furthermore,

‖Sε(θ′)‖1 >
∑

i∈Supp(θ)

∣∣Sε(θ′)i∣∣ > ∑
i∈Supp(θ)

(∣∣θ′i∣∣− ε) > ∑
i∈Supp(θ)

(∣∣θi∣∣− 2ε
)
> ‖θ‖1 − 2d0ε .

(26)
If Sε(θ′) = 0, then ‖θ̃‖1 = 0 and ‖θ‖1 6 2d0ε so that D(θ, θ̃) 6 1 6 2d0ε/‖θ‖1. Therefore,
we can assume from now that Sε(θ′) 6= 0. By definition of θ̃, Inequality (26) yields ‖θ̃‖1 =(
‖Sε(θ′)‖1 + 2d0ε

)
∧ 1 > ‖θ‖1. Then θ̃ satisfies the assumptions of Lemma B.2, which we can

apply

D(θ, θ̃) 6 1− min
16i6d

|θi|
|θ′i|

= max
i∈Supp(θ̃)

|θ̃i| − |θi|
|θ̃i|

. (27)

We consider two cases:
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• ‖Sε(θ′)‖1 > 1− 2d0ε in which case for i ∈ Supp(θ̃)

θ̃i =
Sε(θ

′)i
‖Sε(θ′)‖1

=
(|θ′i| − ε) sign(θ′i)

‖Sε(θ′)‖1

so that |θ̃i| = (|θ′i| − ε)/‖Sε(θ′)‖1 and upper-bounding −|θi| 6 −|θ′i| − ε we get

|θ̃i| − |θi|
|θ̃i|

=
|θ′i| − ε− |θi|‖Sε(θ′)‖1

|θ′i| − ε
6
|θ′i| − ε− (|θ′i| − ε)‖Sε(θ′)‖1

|θ′i| − ε

6 1− ‖Sε(θ′)‖1 6 2d0ε 6
2d0ε

‖θ‖1
.

Substituting into Inequality (27) concludes this case.

• Otherwise ‖Sε(θ′)‖1 6 1− 2d0ε and for i ∈ Supp(θ̃) = Supp(Sε(θ
′))

|θ̃i| = |Sε(θ′)i|
(

1 +
2d0ε

‖Sε(θ′)‖1

)
= (|θ′i| − ε)

(
1 +

2d0ε

‖Sε(θ′)‖1

)
,

which implies upper-bounding −|θi| 6 −|θ′i| − ε,

|θ̃i| − |θi|
|θ̃i|

=
(|θ′i| − ε)

(
1 + 2d0ε

‖Sε(θ′)‖1

)
− |θi|(

|θ′i| − ε
)(

1 + 2d0ε
‖Sε(θ′)‖1

)
6

(
|θ′i| − ε

)
2d0ε

‖Sε(θ′)‖1(
|θ′i| − ε

)(
1 + 2d0ε

‖Sε(θ′)‖1

)
=

2d0ε

‖Sε(θ′)‖1 + 2d0ε

6
2d0ε

‖θ̃‖1
6

2d0ε

‖θ‖1
.

Substituting the obtained bounds in each cases into Inequality (27) concludes the proof.

C.6 Proof of Theorem 3.3

We perform the proof for θ ∈ B1/2 only. However, optimization on B1 can be obtained by renormal-
izing the loss functions considering `t(2θ) instead of `t. We leave this generalization to the reader.
Let θ ∈ B1/2 and denote d0 = ‖θ‖0. For simplicity, we also assume that T = 2I − 1 and d0 6= 0.

Part 1 (Õ(
√
T ) regret – logarithmic dependence on d0 and d) First, we prove the slow rate bound

obtained by Algorithm 1. Let i > 0. Denote by θ1, . . . , θ3d+1 the 3d+ 1 elements of Θ(i). For any
distribution π ∈ ∆3d+1 over Θ(i), we have from Inequality (11):

ti+1−1∑
t=ti

Ek∼π[rk,t] 6 Ek∼π
[
4
√
akVk + 6akE

]
+

2

T
. (28)

where we recall rk,t 6 ∇`t(θ̂t−1)>(θ̂t−1 − θk), ak := ln(πk/πk,0) + ln ln(ET 2) 6 ln(3d+ 1) +

ln ln(ET 2) =: a and Vk 6
∑ti+1−1
t=ti

r2
k,t 6 tiG

2. Let π such that θ =
∑3d+1
k=1 πkθk, then thanks to

the convexity assumption on the loss functions, we have

`t(θ̂t−1)− `t(θ) 6 ∇`t(θ̂t−1)>(θ̂t−1 − θk) = Ek∼π[rk,t] .

Therefore, Inequality (28) yields

ti+1−1∑
t=ti

`t(θ̂t−1)− `t(θ) 6 4G
√
ati + 6Ea+

2

T
.
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Summing over i = 0, . . . , j − 1 and substituting ti = 2i we get for any j > 1:

Regj(θ) :=

tj−1∑
t=1

`t(θ̂t−1)− `t(θ) 6 4G
√
a

j−1∑
i=0

2i/2 + 6Eaj +
2j

T︸ ︷︷ ︸
=:z

6 10G
√
a2j/2 + z , (29)

where we recall a = ln(3d + 1) + ln ln(ET 2). In particular for j = I . lnT we obtain the first
inequality stated by the theorem:

RT (θ) 6 O

(
G

√
ln d+ ln ln(ET )

T

)
.

Part 2 (Õ(T 1/4) regret – logarithmic dependence on d) We prove by induction the second bound of
the Theorem: that for some c > 0 and all j > 0, we have

Regj(θ) 6 48
ad0c

2G2

µ
+ j

caG2

µ
+ 16
√

5c

√
d0 (G

√
a)

3

µ

j∑
k=0

2−
3j
4 . (30)

Indeed, decomposing the cumulative regret, we have

Regj+1(θ) = Regj(θ) +

tj+1−1∑
t=tj

`t(θ̂t−1)− `t(θ) .

Note that Assumption (A2) is satisfied with β = 1, α = µ/(2G2) and without the expectation
Et. It is worth pointing out that the transformation of the second-order term into a cumulative risk
performed in (23) was not needed here since Assumption (A2) holds on the loss functions without the
expectation Et. Therefore, the result of Theorem 3.2, that we can apply from time instance tj = 2j

to tj+1 − 1, holds almost surely with x = 0, β = 1 and α = µ/(2G2). We get that there exists some
constant c > 0 such that

tj+1−1∑
t=tj

`t(θ̂t−1)− `t(θ) 6 cGD(θ, [θ∗j ]d0)
√
a2j +

caG2

µ
,

with a = ln(3d+ 1) + ln ln(ET 2). Replacing into the preceding inequality, it yields

Regj+1(θ) 6 Regj(θ) + cGD(θ, [θ∗j ]d0)
√
a2j +

caG2

µ
(31)

Because θ ∈ B1/2, we obtain from Lemma B.1

D
(
θ, [θ∗j ]d0

) (Lem. B.1)
6 2

∥∥θ − [θ∗j ]d0
∥∥

1

‖θ‖0=‖[θ∗j ]d0‖0=d0

6 2
√

2d0

∥∥θ − [θ∗j ]d0
∥∥

2

6 2
√

2d0

(∥∥θ − θ∗j∥∥2
+
∥∥θ∗j − [θ∗j ]d0

∥∥
2

)
.

By definition of the hard threshold, for any θ such that ‖θ‖0 = d0, we have∥∥θ∗j − [θ∗j ]d0
∥∥

2
6
∥∥θ∗j − θ∥∥2

.

Therefore, plugging into the previous inequality

D
(
θ, [θ∗j ]d0

)
6 4
√

2d0

∥∥θ − θ∗j∥∥2
. (32)

But because the loss functions are µ-strongly convex, the average loss over several rounds is also
µ-strongly convex. And since θ∗j := arg minθ∈B1/2

∑tj−1
t=1 `t(θ), we have for all θ ∈ B1/2

µ
∥∥θ − θ∗j∥∥2

2
6

1

2j − 1

tj−1∑
t=1

`t(θ)− `t(θ∗j ) (33)

=
Regj(θ

∗
j )− Regj(θ)

2j − 1
6

Regj(θ
∗
j )− Regj(θ)

2j−1
.
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Thus, from Inequality (32), we obtain

D
(
θ, [θ∗j ]d0

)
6 8

√
d0

(
Regj(θ

∗
j )− Regj(θ)

)
µ2j

.

Plugging into Inequality (31) gives

Regj+1(θ) 6 Regj(θ) + 8cG

√
ad0

µ

(
Regj(θ

∗
j )− Regj(θ)

)
+
caG2

µ
. (34)

We can upper-bound Regj(θ
∗
j ) using Inequality (29). This entails

Regj+1(θ) 6 Regj(θ) + 8cG

√
ad0

µ

(
10G
√
a2j/2 + z − Regj(θ)

)
+
caG2

µ
.

Now we have an inequality of the form

Regj+1(θ) 6 Regj(θ) + x1

√
x2 − Regj(θ) + x3

with x1 = 8cG
√
ad0/µ, x2 = 10G

√
a2j/2 + z and x3 = (caG2)/µ. If Regj(θ) > 0, Regj+1(θ)

is increased by at most x1
√
x2 + x3. Otherwise Regj(θ) 6 0 and the right-hand side is at most

3x2
1/4 + x3 (considering the maximum over Regj(θ) 6 0). Therefore,

Regj+1(θ) 6 max
{

3x2
1/4, (Regj(θ))+ + x1

√
x2

}
+ x3 .

= max

{
48
ad0c

2G2

µ
, (Regj(θ))+ + 16

√
5c

√
d0

µ

(
G

√
a

2j

)3/2
}

+
caG2

µ
. (35)

This concludes the induction, using the hypothesis (30). In particular, considering j = I = ln2(T−1),
we proved that

RT (θ) =
RegI(θ)

T
6 O

√d0

µ

(
G

√
ln d+ ln ln(ET )

T

) 3
2

 .

Part 3. (Õ(1) regret – square root dependence on d) Now, we prove a faster rate but at the price of a
square root dependence in the total dimension d. The proof follows the same lines as the preceding
part except that one changes the induction hypothesis and that one uses it to bound the regret of θ∗j .
We prove by induction: there exists c0 > 0 such that for any θ ∈ B1/2

Regj(θ) 6 j
ac0
√
‖θ‖0dG2

µT

where a = ln(3d+ 1) + ln ln(ET 2). We start from Inequality (34) obtained in Part 2:

Regj+1(θ) 6 Regj(θ) + 8cG

√
ad0

µ

(
Regj(θ

∗
j )− Regj(θ)

)
+
caG2

µ
.

Now, instead of upper-bounding Regj(θ
∗
j ) using Inequality (29), we use the induction hypothesis

itself. Since θ∗j is not necessarily sparse, we have

Regj(θ
∗
j ) 6 j

ac0dG
2

µ
,

which entails

Regj+1(θ) 6 Regj(θ) + 8cG

√
ad0

µ

(
j
ac0dG2

µ
− Regj(θ)

)
+
caG2

µ
.
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We obtain a regret bound of the same form than in Part 2:

Regj+1(θ) 6 Regj(θ) + x1

√
x2 − Regj(θ) + x3,

with x1 = 8cG
√
ad0/µ, x2 = (jac0dG

2)/µ and x3 = caG2/µ. Similarly to Inequality (35), we
have

Regj+1(θ) 6 max
{

3x2
1/4, (Regj(θ))+ + x1

√
x2

}
+ x3

= max

{
48
ad0c

2G2

µ
, (Regj(θ))+ +

8c
√
c0a
√
d0dG

2

µ

}
+
caG2

µ

6 (Regj(θ))+ +
(49 + 8c

√
c0)a
√
d0dG

2

µ
.

Choosing c0 > 0 such that 49 + 8c
√
c0 6 c0 concludes the induction. In particular, considering

j = I = ln2(T − 1), we proved that

RT (θ) 6 O
(√

d0dG
2(ln d+ ln ln(ET )) lnT

µT

)
.

C.7 Proof of Theorem 3.4

We recall that Θ∗ = arg minθ∈B1
E[`t(θ)]. The idea of the proof is to show that at each session i,

SABOA performs BOA by adding sparse estimators in Θ(i) that are exponentially closer to Θ∗.

Let x > 0. We prove by induction on i > 0 that with probability at least 1 − ie−x, there exists
θ∗ ∈ Θ∗ such that

D
(
θ∗,Θ(i)

)
6 ε2−τi , (Hi)

where D is defined in Definition 3.1,

ε := max
θ∗∈Θ∗

(
(8
√
aG)β max

{
2

αG2
,

8‖θ∗‖0
µ

min
{8‖θ∗‖0
‖θ∗‖21

,
1

(1− ‖θ∗‖1)2

}}) 1
2−β

, (36)

and τ = 1
2−β −

1
2 . Remark that θ∗ in (Hi) depends on i when Θ∗ is not a singleton.

Initialization. For i = 0, by definition (see Algorithm 2), Θ(0) := {0} and D(θ∗, {0}) 6 ‖θ∗‖1 6 1.
The initialization thus holds true as soon as ε > 1.

Induction step. Let i > 0 and assume (Hi). We start from Theorem 3.2 (see Inequality (24) for the
precise constants that we upper-bound here) that we apply for t = ti−1, . . . , ti − 1 and θ∗ ∈ Θ∗

satisfying (Hi): with probability 1− e−x

1

2i−1

ti−1∑
t=ti−1

Et−1

[
`t(θ̂t−1)− `t(θ∗)

]
6

2
√
aGD(θ∗,Θ(i))

2(i−1)/2
+ 4

( a

α2i−1

) 1
2−β

+
aE

2i−1
+

2

22i−2
,

where for simplicity of notation we define a := 16(1 + ln(Ki)) + 16 ln ln(ET 2) + 4x, where
Ki := Card(Θ(i)) + 2d denotes the number of experts used during the doubling session i, and
where we used ti = ti−1 + 2i−1. Using (Hi) together with Jensen’s inequality and recalling
θ̄(i) := 2−i+1

∑ti−1
t=ti−1

θ̂t−1, we obtain

E
[
`t(θ̄

(i))− `t(θ∗)
]
6 2
√

2aGε2−( 1
2 +τ)i + 4

( a
α

) 1
2−β

2−
i

2−β + aE21−i + 23−2i . (37)

Now, we simplify this expression by showing that the last three terms of the right-hand side are
negligible with respect to the first one. First, because a > 16 and E > 1, we have 16 6 aE and thus
23−2i 6 aE2−1−i. Then, because ε >

√
a, aE 6

√
aEε = 4

3

√
aεG and thus

aE21−i + 23−2i 6
3

2
aE2−i 6 2

√
aεG2−i

τ61/2

6 2
√
aεG2−( 1

2 +τ)i . (38)
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The second term is also dominated thanks to the definition of ε in (36)

ε
(36)
>

(
2(
√

8aG)β

αG2

) 1
2−β

⇒ 2
√

2aGε >
(16a

α

) 1
2−β 06β61

> 4
( a
α

) 1
2−β

and

τ
(36)
=

1

2− β
− 1

2
⇒ 1

2− β
>

1

2
+ τ

which yields

4
( a
α

) 1
2−β

2−
i

2−β 6 2
√

2aGε2−( 1
2 +τ)i . (39)

Thus replacing Inequalities (38) and (39) into Inequality (37) and upper-bounding 4
√

2 + 2 6 8, we
get for any θ∗ ∈ Θ∗

E
[
`t(θ̄

(i))− `t(θ∗)
]
6 8
√
aGε2−( 1

2 +τ)i . (40)

Using Assumption (A3), there exists at least one θ∗ ∈ Θ∗ (which can be different from the preceding
session), which satisfies∥∥θ̄(i) − θ∗

∥∥
∞ 6

∥∥θ̄(i) − θ∗
∥∥

2

(40)+(A3)

6 (8
√
aGε)

β
2 µ−

1
2 2−( 1

2 +τ) β2 i =: ε′ . (41)

Now, we want to apply Lemma B.3 if ‖θ∗‖1 is close to 1 and Lemma B.1 if ‖θ∗‖1 < 1. In
order to apply Lemma B.1, we consider hard-truncated estimators [θ̄(i)]d̃0 , canceling the d − d̃0

smallest components of θ̄(i) for d̃0 ∈ {1, . . . , d}. For the (unknown) choice d̃0 = d0, since
‖[θ̄(i)]d0‖0 = ‖θ∗‖0 = d0, we have ‖[θ̄(i)]d0 − θ∗‖0 6 2d0 and∥∥[θ̄(i)]d0 − θ∗

∥∥
1
6
√

2d0

∥∥[θ̄(i)]d0 − θ∗
∥∥

2
6
√

2d0

(∥∥[θ̄(i)]d0 − θ̄(i)
∥∥

2
+
∥∥θ̄(i) − θ∗

∥∥
2

)
6 2
√

2d0

∥∥θ̄(i) − θ∗
∥∥

2
6 2
√

2d0ε
′ .

Applying Lemma B.1, we get

D
(
θ∗, [θ̄(i)]d0

)
6

∥∥[θ̄(i)]d0 − θ∗
∥∥

1

1− ‖θ∗‖1
6

2
√

2d0ε
′

1− ‖θ∗‖1
. (42)

This bound is only useful for ‖θ∗‖1 < 1. Otherwise, we want to apply Lemma B.3. However the
values of ε′ and d0 = ‖θ∗‖0 are unknown. We approximate them with ε̃ and d̃0 on exponential grids,
which we define now:

Gε′ =
{

2−k, k = 0, . . . , i
}

and Gd0 =
{

1, 2, . . . 2−bln dc, d
}
.

We define for all ε̃ ∈ Gε′ and d̃0 ∈ Gd0 the dilated soft-threshold

θ̃(ε̃, d̃0) := Sε̃(θ̄
(i))

(
1 +

2d̃0ε̃

‖Sε̃(θ̄(i))‖1

)
∧ 1

‖Sε̃(θ̄(i))‖1
, (43)

with the convention 0
0 = 0, recalling the definition of the soft-threshold operator Sε(x)i =

sign(xi)(|xi| − ε)+ for all 1 6 i 6 d. Because ε′ > 2−i (using ε >
√
a > 4, G > 1 and τ 6 1/2

and µ ≥ 1) and
∥∥θ̄(i) − θ∗

∥∥
∞ 6 1, there exists ε̃ ∈ Gε′ such that ε̃ 6 2ε′ and

∥∥θ̄(i) − θ∗
∥∥
∞ 6 ε̃.

Furthermore, there exists also d̃0 ∈ Gd0 such that d0 6 d̃0 6 2d0. We can thus apply Lemma B.3,
which yields

D(θ∗, θ̃(ε̃, d̃0)
)
6

2d̃0ε̃

‖θ∗‖1
6

8d0ε
′

‖θ∗‖1
. (44)

We define the new approximation grid

Θ(i+1) :=
{
θ̃(ε̃, d̃0), ε̃ ∈ Gε′ , d̃0 ∈ Gd0

}
∪ {[θ̄(i)]d̃0 , d̃0 = 1, . . . , d

}
, (45)

24



where θ̃(ε̃, d̃0) is defined in Equation (43) and [·]k are hard-truncations to k coordinates. We get from
Inequality (42) and (44) that

D
(
θ∗,Θ(i+1)

)
6 min

{ √
8d0

1− ‖θ∗‖1
,

8d0

‖θ∗‖1

}
ε′

(41)
= (8

√
aGε)

β
2 µ−

1
2 min

{ √
8d0

1− ‖θ∗‖1
,

8d0

‖θ∗‖1

}
2−( 1

2 +τ) β2 i .

To conclude the induction, it suffices to show that this is smaller then ε2−τ(i+1). Our choices of ε
and τ defined in (36) was done in that purpose, so that the induction is completed.

Conclusion. Substituting the values of ε and τ into Inequality (40) and using the choice i = ln2 T
(which upper-bound the number of sessions after T times steps) concludes the proof:

E
[
`t(θ̄

(i))− `t(θ∗)
] Jensen

6
R

(i)
T

2i

(40)
6 8
√
aGε2−( 1

2 +τ)i

(36)
6 max

θ∗∈Θ∗

(
128a

T
max

{
1

α
,

4G2‖θ∗‖0
µ

min

{
1

(1− ‖θ∗‖1)2
,

8‖θ∗‖0
‖θ∗‖21

}}) 1
2−β

,

where we recall that a := 16(1 + ln(Ki) + ln ln(ET 2)) + 4x, where Ki := Card(Θ(i)) + 2d 6
(1 + ln2 d)(1 + ln2 T ) + d. Summing over i = 1, . . . , ln2(T ), we get the upper-bound for the
cumulative risk.
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